过程控制仿真实验

合集下载

过程控制系统仿真实验指导

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验实验一 过程控制系统建模 (1)实验二 PID 控制 (2)实验三 串级控制 (6)实验四 比值控制 (13)实验五 解耦控制系统 (19)实验一 过程控制系统建模指导内容:(略)作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。

作业题目二: 某二阶系统的模型为2() 222n G s s s n n ϖζϖϖ=++,二阶系统的性能主要取决于ζ,nϖ两个参数。

试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶系统的理解,分别进行下列仿真:(1)2n ϖ=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线;(2)0.8ζ=不变时,n ϖ分别为2, 5, 8, 10时的单位阶跃响应曲线。

实验二 PID 控制指导内容:PID 控制器的参数整定是控制系统设计的核心内容,它根据被控过程的特征确定PID 控制器的比例系数、积分时间和微分时间。

PID 控制器参数整定的方法很多,概括起来有两大类:(1) 理论计算整定法主要依据系统的数学模型,经过理论计算确定控制器参数。

这种方法所得到的计算数据未必可以直接使用,还必须通过工程实际进行调整和修改。

(2) 工程整定方法主要有Ziegler-Nichols 整定法、临界比例度法、衰减曲线法。

这三种方法各有特点,其共同点都是通过实验,然后按照工程实验公式对控制器参数进行整定。

但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。

工程整定法的基本特点是:不需要事先知道过程的数学模型,直接在过程控制系统中进行现场整定;方法简单,计算简便,易于掌握。

a . Ziegler-Nichols 整定法Ziegler-Nichols 整定法是一种基于频域设计PID 控制器的方法。

基于频域的参数整定是需要考虑模型的,首先需要辨识出一个能较好反映被控对象频域特性的二阶模型。

过程控制实验报告【范本模板】

过程控制实验报告【范本模板】

过程控制实验实验报告班级:自动化1202姓名:杨益伟学号:1209003212015年10月信息科学与技术学院实验一 过程控制系统建模作业题目一:常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simul ink 中建立相应模型,并求单位阶跃响应曲线.答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。

通常的模型有一阶惯性模型,二阶模型等. 单容过程模型1、无自衡单容过程的阶跃响应实例已知两个无自衡单容过程的模型分别为s s G 5.01)(=和se ss G 55.01)(-=,试在Simuli nk 中建立模型,并求单位阶跃响应曲线。

Simul ink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:2、自衡单容过程的阶跃响应实例已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 5122)(-+=,试在Simu link 中建立模型,并求单位阶跃响应曲线.Simu link 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:多容过程模型3、有相互影响的多容过程的阶跃响应实例已知有相互影响的多容过程的模型为121)(22++=Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在S imulink 中建立模型,并求单位阶跃响应曲线在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:4、无相互影响的多容过程的阶跃响应实例已知两个无相互影响的多容过程的模型为)1)(12(1)(++=s s s G (多容有自衡能力的对象)和)12(1)(+=s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。

在Simu lin k中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:作业题目二:某二阶系统的模型为2() 224nG s s s n nϖζϖϖ=++,二阶系统的性能主要取决于ζ,n ϖ两个参数。

自适应过程控制系统的模型建立与仿真实验

自适应过程控制系统的模型建立与仿真实验

自适应过程控制系统的模型建立与仿真实验随着科技的不断发展,自适应过程控制系统在工业生产中得到了广泛应用。

自适应过程控制系统能够对生产过程中的变化进行及时响应和调整,达到最大限度地优化生产效率和产品质量。

本文将介绍自适应过程控制系统的基本原理和模型建立方法,以及如何通过仿真实验对系统性能进行评估与优化。

一、自适应过程控制系统基本原理自适应过程控制系统是指通过对受控对象进行监测和分析,对控制器或控制算法进行实时调整,以达到生产过程的最优化控制的一种控制系统。

它的基本结构包括受控对象、传感器、控制器和执行机构等四部分。

其中,传感器用于对受控对象的状态进行实时监测,控制器则根据传感器获取的数据进行控制算法的调整,最终通过执行机构对受控对象进行控制。

自适应过程控制系统的基本原理可以用下图表示:图1 自适应过程控制系统基本结构图自适应过程控制系统对受控对象的调整是通过调整控制器或者控制算法来实现的。

为了使控制器或者控制算法更加精确地调整,需要先建立一个可靠的、与实际生产过程相适应的动态数学模型。

二、自适应过程控制系统的模型建立在自适应过程控制系统中,模型建立是非常重要的一步。

一个准确的模型能够帮助我们更好地理解受控对象的性质和行为规律,从而使控制器或者控制算法更加精确地调整。

以下是模型建立的五个步骤:1、确定受控对象我们需要先明确受控对象的类型和性质,以确定我们需要建立的模型的类型和实际应用范围。

例如,如果我们需要控制某个生产流程中的温度变化,那么受控对象就是温度单元。

2、选择模型类型根据受控对象的特性,选择合适的模型类型。

一般情况下,我们可以选择传统的模型类型,例如传输函数模型或者状态空间模型。

此外,也可以采用非参数模型,例如神经网络模型或者模糊逻辑模型等。

3、数据采集我们需要采集受控对象的数据,并将其输入到模型中进行分析。

数据采集的方法和设备可以根据具体的受控对象和实际应用环境进行选择。

4、模型参数估计将采集得到的数据输入到模型中进行参数估计和模型拟合,以获得一个准确的模型。

过程控制系统仿真与实践结合的实验教学设计

过程控制系统仿真与实践结合的实验教学设计

mo d e 1 .Co l l a b o r a t i o n o f s i mu l a t i o n a n d a p p l i c a t i o n e x p e r i me n t a l t e a c h i n g b y c o mb i n a t i o n o f Ma t l a b / S i mu l i n k
根 据 要 求 设 计 出控 制模 型 , 对 学 生 掌 握 过 程控 制 系 统 理 论 基 础 具 有 重 要 的意 义 。 关键词 : 过 程 控 制 系 统 ;实 验 教 学 ; Ma t l a b ; 仿 真
中 图 分 类 号 :TP 2 7 3; TP3 9 1 . 9 文 献 标 志 码 :A 文章 编 号 :1 0 0 2 — 4 9 5 6 ( 2 0 1 3 ) 0 1 —0 0 9 1 —0 3
C N1 1 —2 0 3 4 / T
Ex p e r i me nt a l Te c h no l o g y a n d Ma n a g e me n t
V0 l _ 3 0 No . 1 J a n .2 01 3
现 代 教 育技 术
过程 控 制 系 统 仿 真 与 实践 结 合 的 实验 教 学 设 计
杨 光祥 ,梁 华 ,曹晓莉 ,胡卫 军 ,王荣 秀
( 1 .重 庆 工 商 大 学 检 测 控 制 集 成 系统 重 庆 市市 级 工 程 实验 室 ,重 庆
2 .电 子 商 务 及 供 应 链 系统 重 庆 市 重 点 实验 室 ,重 庆
4 0 0 0 6 7 ;
4 0 0 0 6 7 )
o f El e c t r o n i c C o mme r e n e e a n d S u p p l y Ch a i n S y s t e m( CTBU) ,Ch o n g q i n g 4 0 0 0 6 7。Ch i n a )

化工原理仿真实验

化工原理仿真实验

化工原理仿真实验
化工原理仿真实验是化工工程专业的重要课程之一,通过仿真
实验可以帮助学生更好地理解和掌握化工原理的基本知识和实验技能。

本文将介绍化工原理仿真实验的基本内容和实验步骤,希望能
对化工工程专业的学生有所帮助。

首先,化工原理仿真实验的基本内容包括物理化学实验、化工
原理仿真实验、化工过程控制仿真实验等。

其中,物理化学实验主
要是通过实验操作,让学生了解和掌握物理化学基本实验技能,包
括物质的性质和变化、化学平衡、化学反应动力学等内容。

化工原
理仿真实验则是通过虚拟仿真软件,模拟化工原理实验过程,让学
生在虚拟环境中进行实验操作,从而提高实验操作技能和实验设计
能力。

化工过程控制仿真实验主要是通过仿真软件模拟化工过程控
制系统的运行和调节,让学生了解化工过程控制的基本原理和方法。

其次,化工原理仿真实验的实验步骤包括实验前准备、实验操
作和实验结果分析。

在实验前准备阶段,学生需要了解实验的基本
原理和方法,准备实验所需的材料和设备,并对实验过程进行详细
的规划和设计。

在实验操作阶段,学生需要按照实验设计的要求,
进行实验操作,并记录实验数据和观察现象。

在实验结果分析阶段,
学生需要对实验数据进行处理和分析,总结实验结果,得出结论,
并撰写实验报告。

总之,化工原理仿真实验是化工工程专业的重要实践课程,通
过仿真实验可以帮助学生更好地理解和掌握化工原理的基本知识和
实验技能。

希望本文对化工工程专业的学生有所帮助,祝学习顺利!。

控制系统仿真实验报告书

控制系统仿真实验报告书

一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。

二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。

首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。

2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。

3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。

4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。

调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。

五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。

“过程控制系统”的计算机仿真实验教学

“过程控制系统”的计算机仿真实验教学
要 目的是使学生通过实验熟悉 Mal 的使用方法 , tb a
() 1燃烧炉蒸汽压力控制和燃料空气比值控制

燃料流量被空对象为: ( 一击 G )
10 5 T 1
燃料流量至蒸汽压力关系为 : O)一 3 G 蒸汽压力至燃料流量关系为: () l Gs一
收稿 日 : 0 6 O 7 修 回 日 :o 6 1 0 期 2 O —1 一1 } 期 2 o —1 3 第 一作者 : 方清城(99 )男, 16 - , 广东揭阳人 , 实验师 , 从事电力电子技术 与控制系统的实验教学 。
Hale Waihona Puke 统组成 : 蒸汽压力控制系统 、 燃料空气比值控制系统 和炉膛负压控制系统 。其原理方框图如图 1 所示。
12 系统辩识 .
1 基于 Smuik实验仿真 i l n
Sm l k i ui 是一种用 于实现计算机 仿真 的软件 n 工具 , 它是 Mal t b的一个附加组件, a 用来提供一个 系统级的建模与动态仿真工作平台。仿真实验的主
S se ,ti p p r nr d cst d 1 rcs o to sse b o t r alb Smuik y tm hs a e t u e mo e ap oe s n r1 y tm ys f i o o c waeM t / i l .Th i a n es mu
Ex e i n a a h n f“ r c s n r lS se ”Ba e n S mu a in p rme t lTe c i g o P o e sCo t o y tm s d o i l to
F N n -hn , U h n - a g A G Qige e g L O Z o gl n i

基于STEP7和WinCC的过程控制仿真实验设计

基于STEP7和WinCC的过程控制仿真实验设计

基于STEP7和WinCC的过程控制仿真实验设计盖文东;曲承志;刘杰;张宁;张婧【摘要】针对目前在教学过程中使用的过程控制实验装置存在的实验成本高、效率低的问题,设计了一种基于STEP7和WinCC的过程控制仿真实验.该仿真实验利用STEP7软件完成了对典型工艺过程模型搭建、控制算法设计,并与WinCC组态软件进行实时通信,实现了对整个工艺过程的实时监控.以双容水箱液位串级控制为例,说明了该仿真实验的具体设计过程.应用结果表明:该仿真实验提高了实验效率,提升了学生运用知识的能力.【期刊名称】《实验室科学》【年(卷),期】2018(021)001【总页数】4页(P103-106)【关键词】过程控制;仿真实验;PLC;WinCC;STEP7【作者】盖文东;曲承志;刘杰;张宁;张婧【作者单位】山东科技大学电气与自动化工程学院,山东青岛 266590;山东科技大学电气与自动化工程学院,山东青岛 266590;山东科技大学电气与自动化工程学院,山东青岛 266590;山东科技大学电气与自动化工程学院,山东青岛 266590;山东科技大学电气与自动化工程学院,山东青岛 266590【正文语种】中文【中图分类】TP273.4过程控制是自动化技术的重要组成部分,其相应的实验课程是自动化专业的主要课程之一[1-2]。

通过相应的实验教学,学生可以深入了解过程对象的建模方法和控制系统的设计方法。

目前在各高校中使用较多的过程控制实验装置有天煌教仪的THKGK系列、青岛金博士GK06系列、北京华晟的A3000系列、求是教仪的NPCT系列等[3-4]。

它们包括以下典型工艺对象:双容/多容水箱系统、加热炉系统、锅炉系统等,反映了流程工业生产过程的基本特性[5]。

现有实验设备的采购和维护成本较高,占用较大的实验场地,并且同一实验设备上同时操作的学生人数较少,实验效率不高;另外,现有的实验设备只能完成一些固定类型的实验,可扩展性较差,难以满足本科毕业设计和研究生创新研究的需要。

过程控制:串级控制系统仿真

过程控制:串级控制系统仿真

实验四 串级控制实验内容:SIMULINK 建模仿真 学生信息:自动化XXX 提交日期:20XX 年5月28日 报告内容: 串级控制一、实验目的1. 通过比较单回路控制系统与串级控制系统,进一步加深对串级控制的认识; 2. 掌握串级控制的参数整定方法。

二、实验设备1. 计算机1台2. MATLAB 7.X 软件1套。

三、实验步骤已知某串级控制系统的主副对象的传递函数G o1,G o2分别为:211,1001101o G s s ==++,121()101o o G s s =+,副回路干扰通道的传递函数为:221()201d G s s s =++。

1.用Simulink 画出串级控制系统的方框图及相同控制对象下的单回路控制系统方框图。

○1单回路控制系统方框图如下其中,PID C1为单回路PID 调节器,d1为一次扰动,取阶跃信号;d2为二次扰动,取阶跃信号;G o2为副对象,G o1为主对象;r 为系统输入,取阶跃信号;y 为系统输出,它连接到示波器上,可以方便地观测输出。

○2串级控制系统方框图如下其中,PID C1为主调节器,采用PD调节,PID C2为副调节器,采用P调节;q1为一次扰动,取阶跃信号;q2为二次扰动,取阶跃信号;G o2为副对象,G o1为主对象;r为系统输入,取阶跃信号;y为系统输出,它连接到示波器上,可以方便地观测输出。

2.选用PID调节器,整定调节器的参数,并绘制相应的单位阶跃响应曲线。

进行调节器的参数整定,当输入比例系数为260,积分系数为0,微分系数为140时,系统阶跃响应达到比较满意的效果,记录系统阶跃响应图。

采用这套PID参数时,二次扰动作用下,置输入为0,系统框图如下,记录系统的输出响应图。

采用这套PID参数时,一次扰动作用下,置输入为0,系统框图如下,记录系统的输出响应图。

综合以上各图可以看出采用单回路控制,系统的阶跃响应达到要求时,系统对一次和二次扰动的抑制效果不是很好。

控制仿真PID实验报告

控制仿真PID实验报告
控制系统仿真与CAD实验报告
自动化1103
张天赐
201123910415
实验内容;控制系统设计与仿真(根轨迹,伯德图,PID)
实验步骤:
例4-8已知晶闸管直流调速系统的结构图如图,分析PID控制器的P、I和D对调速系统性能的影响
实验截图:
随着Kp的增大,系统的在增加,过渡过程时间变大,但响应初期的速度变大;系统的ess随着Kp的增大而减小。
绘制矫正后曲线
可得校正后系统的单位阶跃响应,曲线校正后系统是稳定的
例4-11某单位反馈控制系统的开环传递函数为:
校正后
4-12某单位反馈控制系统的开环传递函数为
校正前图像
未校正系统稳定,但响应速度较慢
校正后
校正后系统稳定,性能为
例4-4
未校正时的伯德图为
校正装置的传函为
校正后为
性能满足要求
实验心得:通过本次实验,了解了如何通过PID控制,波特图来判断是否系统处于稳定状态,并如何进行校正使之满足性能上的要求。
(2)积分作用分析,令,,,
绘制系统单位阶跃响应曲线,程如下
随着Kp的增大,系统的在增加,过渡过程时间变大,但响应初期的速度变大;系统的ess随着Kp的增大而减小。
微分作用分析
随着TD的增大,系统的在增大,过渡过程时间变大,响应初期的速度变小
例4-9程序为
其次,绘制根轨迹图,找到临界稳定增益
求取PID的参数kp=0.024,ti=0.98,td=0.25

基于 MATLAB/GUI 的过程控制仿真实验系统设计

基于 MATLAB/GUI 的过程控制仿真实验系统设计

基于 MATLAB/GUI 的过程控制仿真实验系统设计王红梅;张厚升;邢雪宁【摘要】为使学生更好地理解控制系统的结构及其特点,设计了基于MATLAB/GUI的过程控制仿真实验系统。

仿真系统借助GUIDE良好的界面管理,分层次设计了液位单回路控制、加热炉温度串级控制、锅炉汽包水位控制等八个子实验。

每个实验界面可进行参数设置、仿真结果显示、重要信息提示。

后台程序采用MALTAB 的m 文件或 Simulink实现。

该系统知识全面、内容设计合理、界面友好、使用简单、可操作性强。

%In order to make students better understand the structure and characteristics of the process control system ,the process control simulation system based on MATLAB/GUI was de‐signed .With the help of a GUIDE good interface management ,the simulation system hierarchical designs eight children experiment .For example ,liquid level single loop control ,furnace tempera‐ture cascade control and boiler drum water level control .Each experiment has the same charac‐ters:parameters can be set ,simulation results can be shown ,important messages are pointed out .Daemons use MALTAB m file or Simulink .This system has the characteristics of compre‐hensive knowledge ,reasonable content design ,friendly interface ,simple use ,and strong maneu‐verability .【期刊名称】《山东理工大学学报(自然科学版)》【年(卷),期】2015(000)006【总页数】3页(P58-60)【关键词】过程控制;MATLAB/GUI;仿真实验【作者】王红梅;张厚升;邢雪宁【作者单位】山东理工大学电气与电子工程学院,山东淄博255049;山东理工大学电气与电子工程学院,山东淄博255049;山东理工大学电气与电子工程学院,山东淄博255049【正文语种】中文【中图分类】TP373过程控制课程是自动化学科的主干专业课程,该课程理论性和实用性都很强.目前课程的体系结构主要是授课加实验的模式.通过对学生实验情况的观察,发现学生不能把课程知识和实验很好的结合,对系统的结构特点理解欠佳,致使做实验时一知半解,影响实验效果.鉴于此,本文开发的基于MATLAB/GUI的仿真实验系统重点弥补以上缺憾.一方面,借助MALTAB友好的界面显示特点使学生对理论知识有更直观的理解,另一方面,通过对仿真系统的构造加强对系统结构的认知,为今后在过程控制实验装置上进行实验打下基础.与传统实验装置相比,该仿真实验系统不需要传感器、变送器、执行器等实验装置,仅需有安装MATLAB软件的计算机就可进行实验,不受场地和时间的限制,实验投入少,实验成本低,而且可开放性强.过程控制课程主要包含三个核心内容:1)各种形式的系统结构,比如,单回路、串级系统、前馈-反馈系统等,应该重点掌握各结构的组成、特点及应用场合.2)理论分析,通过理论分析进一步验证系统的结构特点.3)参数整定,可按照一定的整定步骤,实现参数的最优化[1-2].为了使学生对以上内容有更好的掌握,仿真系统设计的总体思路是借助MATLAB/GUI仿真工具,直观、简洁的展示抽象的理论知识,借助MATLAB/Simulink,系统、全面的反映过程控制系统的结构特点和参数整定.本仿真系统考虑教学内容和学生的认知规律,由简入难,逐层的设计各实验.实验系统总体分为:简单系统、高性能系统、特殊系统、复杂系统四部分,每个系统下面又有相应的子实验.同时,子实验的实例选取特别注意和实际应用相结合.系统的整体结构如图1所示.MATLAB的GUI为用户提供了设计良好的人机交互界面的工具,通过它可以更好的管理程序,使操作变的更为简单、便捷.GUIDE界面中提供了按钮、列表框、复选框、文本框、滑块、坐标系、菜单等控件.界面生成过程主要包括界面设计和程序实现,具体步骤如下:1) 明确系统功能后,通过合理布置控件,制作友好的静态界面.2) 按一致性原则对各控件的属性进行设置.3) 根据功能要求,编写各控件的回调函数.4) 系统测试运行.2.1 统主界面设计的仿真系统的主界面主要实现两个功能:1)展示实验的整体内容;2)通过相应的控件进入到子实验.为此,设计了如图2所示的主界面.四个Panel控件用于区分四个不同种类的子实验,每个Panel里放有两个控件用于进入不同的子实验.每个Pushbutton的回调函数均完成执行关闭主界面并打开相应子实验界面功能.整个主界面力求做到设计简洁,层次清晰,使用方便.2.2 子实验界面当在主界面选择了子实验后,系统进入相应的实验.本系统共包括8个子实验,界面设计主要分为三个区域:1)参数设置区,该部分主要实现操作人员对系统参数的设置;2)显示区,将仿真结果以图形化的方式进行显示;3)子实验的仿真结构图及其它信息显示区,该区便于操作人员了解子实验系统的构成.本文以PID参数作用分析子实验及前馈—反馈子实验分别进行说明.PID参数作用分析子实验是通过分析系统的阶跃响应随某一参数的变化趋势,来更好的理解各参数的作用[3].这样界面操作中就需要能输入不同数值的比例系数、积分系数、微分系数,并将阶跃仿真结果进行显示.设计的PID参数作用分析子实验界面如图3所示.PID参数作用分析子实验GUI界面右边区域可以根据需要利用Edit控件设定比例、积分、微分系数,每个参数的意义及可变化的维数利用Text控件说明.参数设置完毕后点击相应的“开始仿真”按钮,则后台仿真程序运行,完毕后在左边的显示区域显示系统随参数变化的阶跃响应曲线.图3显示的是比例系数Kp从0.5变化到1.5时的系统阶跃响应曲线.界面中还提供了仿真中的重要信息——被控对象数学模型.当实验结束后可通过“返回”按钮回到图2系统主界面,继续进行其它子实验.本界面很关键的一点就是编写“开始仿真”按钮的回调函数.首先需要获取界面中用户在Edit控件输入的比例、积分或微分参数;然后将参数由字符型转化成数值型用于阶跃响应分析.前馈—反馈控制仿真实验是以工业中常用的换热器出口温度控制为例[4],其中被加热液体的流量变化比较剧烈,采用前馈对该干扰进行补偿.该实验通过比较前馈-反馈控制与反馈控制的阶跃响应曲线的性能区别来体现前馈控制的作用.干扰信号取脉冲干扰和随机干扰两种形式,可通过界面中的按钮来进行选择.设计的前馈—反馈控制子实验界面如图4所示.在进行实验前,需先将前馈—反馈MATLAB/Simulink仿真程序中的手动开关打到相应的位置.Simulink仿真程序中的Manual Swith用于选择是否加入干扰,Manual Swith1用于选择干扰类型,Manual Swith2用于选择是否进行前馈补偿.界面中所有控件的回调函数都可以看到,学生一方面可以学习如何编写代码,另一方面可以根据需要对界面进行改进,更进一步还可以设计新的功能界面,这也是MATLAB的优势所在.子实验的运行都是通过后台的MATLAB的m文件或Simulink程序来实现.MATLAB/Simulink在编程方面尤其简便,通过选取相应的模块并连接,则能构建仿真系统.而且Simulink除了丰富的工具箱,还提供了用户自定义模块,方便用户使用.本文以基于MATLAB/Simulink的串级控制仿真程序为例进行介绍.程序通过串级控制与单回路系统的比较,理解串级结构形式的改变带来的性能变化,再通过对一次干扰和二次干扰的抗干扰能力的仿真分析,学习串级系统的抗干扰特点.仿真实例取自实际应用中的反应釜加热炉温度控制系统[5],其中,加热炉温度为主变量,夹套温度为副变量的串级控制系统.构建的串级控制仿真系统结构如图5所示.程序中通过Manual Swith选择是单回路控制还是串级控制,Manual Swith1选择是否加入一次干扰,Manual Swith2选择是否加入二次干扰.将基于MATLAB/GUI的过程控制仿真实验系统应用于《过程控制》的教学,使学生直观的领会和理解该课程的各系统结构和理论知识,对调动学生的学习积极性以及提高学生的实验兴趣和实验能力都有相当的作用.一方面,学生通过MATLAB这一仿真平台,可以更快捷有效的编写仿真实验,其超强的计算能力和丰富的图形界面显示给知识的学习带来意想不到的效果;另一方面,教师可在授课时使用该软件进行理论知识的直观演示,增强知识的传授.同时,结合过程控制所学知识以及MATLAB软件,学生可自行根据需求将实验装置中没有的一些复杂控制系统通过仿真实验的形式加以实现,从而极大的培养学生学习能力.【相关文献】[1] 黄德先, 王景春, 金以慧. 过程控制系统[M]. 北京: 清华大学出版社, 2011.[2]潘永湘, 杨延西, 赵跃. 过程控制与自动化仪表[M]. 第二版. 北京:机械工业出版社, 2007[3]何佳佳, 候再恩. PID参数优化算法[J]. 化工自动化及仪表. 2010, 37(11): 1-4.[4]孙秀丽, 王培培. 前馈-反馈控制系统的具体分析及其MATLAB/Simulink仿真[J]. 中国集成电路, 2013(9), 54-58.[5]罗及红. 基于PID算法的炉窑温度串级控制系统设计[J]. 计算机测量与控制,2012, 20(12): 3243-3245.。

控制系统仿真实验报告

控制系统仿真实验报告

控制系统仿真实验报告一、实验目的本次控制系统仿真实验的主要目的是通过使用仿真软件对控制系统进行建模、分析和设计,深入理解控制系统的工作原理和性能特点,掌握控制系统的分析和设计方法,提高解决实际控制问题的能力。

二、实验设备与软件1、计算机一台2、 MATLAB 仿真软件三、实验原理控制系统是由控制对象、控制器和反馈环节组成的一个闭环系统。

其工作原理是通过传感器测量控制对象的输出,将其与期望的输出进行比较,得到误差信号,控制器根据误差信号产生控制信号,驱动控制对象,使系统的输出逐渐接近期望的输出。

在仿真实验中,我们使用数学模型来描述控制对象和控制器的动态特性。

常见的数学模型包括传递函数、状态空间方程等。

通过对这些数学模型进行数值求解,可以得到系统的输出响应,从而对系统的性能进行分析和评估。

四、实验内容1、一阶系统的仿真建立一阶系统的数学模型,如一阶惯性环节。

使用 MATLAB 绘制系统的单位阶跃响应曲线,分析系统的响应时间和稳态误差。

2、二阶系统的仿真建立二阶系统的数学模型,如典型的二阶振荡环节。

改变系统的阻尼比和自然频率,观察系统的阶跃响应曲线,分析系统的稳定性、超调量和调节时间。

3、控制器的设计与仿真设计比例控制器(P 控制器)、比例积分控制器(PI 控制器)和比例积分微分控制器(PID 控制器)。

对给定的控制系统,分别使用不同的控制器进行仿真,比较系统的性能指标,如稳态误差、响应速度等。

4、复杂控制系统的仿真建立包含多个环节的复杂控制系统模型,如串级控制系统、前馈控制系统等。

分析系统在不同输入信号下的响应,评估系统的控制效果。

五、实验步骤1、打开 MATLAB 软件,新建脚本文件。

2、根据实验内容,定义系统的数学模型和参数。

3、使用 MATLAB 中的函数,如 step()函数绘制系统的阶跃响应曲线。

4、对响应曲线进行分析,计算系统的性能指标,如超调量、调节时间、稳态误差等。

5、设计控制器,修改系统模型,重新进行仿真,比较系统性能的改善情况。

过程控制仿真系统实验指导书

过程控制仿真系统实验指导书

目录前言 (3)第一章对象特性测试实验 (4)第一节测试对象特性的方法 (4)实验一上水箱特性测试实验 (14)实验二下水箱特性测试实验 (15)实验三二阶液位特性测试实验 (16)实验四温度加热器特性测试实验 (17)实验五调节阀特性测试实验 (18)第二章单闭环控制系统实验 (19)实验一压力单闭环控制系统实验 (22)实验二温度单闭环控制系统实验 (23)实验三液位单闭环控制系统实验 (24)实验四流量单闭环控制系统实验 (25)实验五二阶液位控制系统实验 (26)第三章串级控制系统实验 (27)串级控制系统的设计与整定 (27)实验一上水箱液位和流量串级控制系统实验 (30)实验二上、下水箱液位串级控制系统实验 (32)第四章前馈控制系统实验 (34)前馈控制系统的原理 (34)实验一前馈反馈控制系统实验 (35)前言过程控制模拟仿真系统是通过计算机仿真技术,将各种过程物理对象转换成数学模型,开发出对象的一阶和二阶过程的动态特性数学模型,计算机动态模拟,达到和真实的控制系统相一致的仿真目的,在教学实验应用方面具有很好的效果。

在仿真系统界面中,设置有各种过程控制器件,包括变频器、水泵、电动调节阀、压力变送器、温度变送器、液位变送器、流量变送器、加热器等。

管道设置为两条回路,主回路用红色管道表示,副回路用白色管道表示,管道为动态流水显示。

在系统运行状态下,只要打开流水管道,就会观察到动态流水过程,比较形象直观。

同时,在各个器件上方的动态文本里显示的是当前的实际值,水箱上标有液位刻度,可以直观的观察液位高度。

系统最右上方一栏显示的是各器件变送的电流值,变送输出电流为标准电流4~20mA,右下方的为输入控制电流,是用来控制调节阀,加热器,变频器,输入电流为标准4~20mA。

该仿真系统将计算机内部变送电流数值通过牛顿模块输出为实际的电流值,而实际控制模拟输入电流又可通过牛顿模块转换为数字信号输入到计算机内。

过程控制对象数字仿真实验系统研究

过程控制对象数字仿真实验系统研究

to ss c sFis— r e y tm ,p o o t n ld ly ieta o o e t n ig e d u l trt n bet in u h a rto d rS se r p ri a ea n rilc mp n n ,a d sn l/ o b ewa e a k o jc o
( e tia n iern & Auo to a o ao y Elcr lE gn eig c tma in L b r tr ,Ha bnI si t fTeh oo y,Habn 1 0 0 r i n t u eo c n lg t r i 5 0 1,Chn ) ia
Ab t a t n o d rt u t e e i r c s o to h o y a d t e p ro ma c f i e e tp o e s c n r 1 y — sr c :I r e O f rh rv rf p o e sc n r l e r n h e f r n eo f r n r c s o to s y t d f s
为 工业 过程 控 制 提供 了 良好 的 实验 平 台 。 关 键 词 : 程 控 制 ;实 验 系统 ; 字 仿 真 ; M 嵌 入式 微控 制器 过 数 AR
中 图 分 类 号 : P 7 ; 4 . 2 T 2 4 G6 2 4 3 文献标志码 : A 文 章 编 号 :1 0 9 6 2 1 ) 1 0 3 — 5 0 24 5 ( O 1 1 — 0 6 0
Suyo it iuao pr na ss m rcs cnrl b c td nd il m l i e emet yt o poes ot j t g as tn x i l e f oo e

过程控制工程的计算机仿真实验设计

过程控制工程的计算机仿真实验设计
务后 , 学生 自己设计实验 方案 、 相关参 数 , 行调试 , 取 进 测 数据 , 并对 实验 曲线进行 分 析, 理 出结 果 , 整 得到 有关结 论, 最后撰写 实验 报告 。计 算机 仿 真实验 则充 分 利用 其
实验 , 使学 生通过 实验 的 比较 、 分析过 程 , 控制 系统特 对
性有进一步的 了解和掌握 。 例 1 干扰位置对控制质量 的影 响。在工业生产 过程 : 中 , 于 同一个控 制意 图 , 对 往往 可 以有几种 手段 来达 到 , 选择 不同的手段 , 以使 干扰 在 系统 中的相 对位 置发 生 可 变化。同时 , 会引 起控 制 系统 闭环特 性 的 变化 。该 实 也 验 的 目的是使 学生 了解 相 同干扰 作用 下 , 同的加入 位 不 置对控制 质量 的影 响 。要 求 学生 利 用 SMUL NK搭 建 I I
果进行分析 比较 , 对课 程 中涉 及 的原理 和方 法进 行理 解
和思考 。
例 2 对象时 间常数 的匹配对控 制质量 的影响。 当广 : 义对 象传递函数 有多个 时 间常 数时 , 时 间常 数 的匹配 各
( ) 一 用曲 线拟 合 法 估 计 模 型 参 数
[ 作者简介]刘漫丹 ( 93) 女 , 1 7- , 副研究员 , 博士 。
辅相成 , 目的是 加深对课 堂所 学的过程 控制理论 的理解 ,
利用 SMU N I LI K搭建各 种控制 系统 , 以方便地行 比较 、 究 。为此 , 研 我们
针对过程控制工 程课 程 的教学 内容 , 计 了一些相 关 的 设
并提高动手能力 。演示实验 和提高 实验则在小 型过 程控 制 系统 ( 包括温度 、 压力 、 液位等 ) 上进 行 。在提 出实验 任

过程控制虚拟仿真实验报告

过程控制虚拟仿真实验报告

过程控制虚拟仿真实验报告实验名称:过程控制虚拟仿真实验实验目的:1. 掌握过程控制系统的基本模型;2. 具备使用模拟软件进行过程控制系统仿真实验的能力;3. 了解过程控制系统在工业生产中的应用。

实验原理:过程控制系统是现代化工、制造业等领域中必不可少的重要系统。

它是一种涉及多种工程学科的复杂系统,其基本功能是对工业生产过程中的各种参数进行监测、数据采集、控制和调节,实现对产品质量、生产效率、成本等方面的控制。

过程控制系统通常包含传感器、执行器、控制器和数据采集系统等组成部分,其中控制器是核心设备之一,其作用是读取传感器数据,并利用控制算法实现对各个执行机构的控制。

虚拟仿真软件是目前较为常用的过程控制系统建模和仿真工具之一,可模拟出不同类型的过程控制系统,并对其进行虚拟实验。

在本实验中,我们将使用 软件模拟出一个简单的加热反应过程,利用PID控制算法对反应温度进行控制,观察PID控制系统在控制反应温度时的表现。

实验步骤:1. 启动软件,并创建一个新的控制系统模型;2. 在模型界面中创建一个加热反应室,即将容器内的反应物加热至设定的温度;3. 设置温度传感器,并将其连接到PID控制器上;4. 设置执行器,控制加热反应室内的加热器;5. 设置控制算法,利用PID控制算法对反应温度进行控制;6. 设置数据采集系统,观察反应过程中各项参数的变化;7. 进行虚拟仿真实验,观察PID控制算法的控制效果;8. 改变PID控制参数,观察控制效果的变化,并分析原因。

实验结果:通过对PID控制参数的改变,我们发现当Kp=1、Ki=0.1、Kd=0时,PID控制系统对反应温度的控制效果最佳,并能够在较短的时间内将反应温度控制在目标温度范围内。

实验结论:本实验通过虚拟仿真的方式,实现了对过程控制系统的模拟和控制,提高了学生的实践能力和理论掌握能力,具备了相关过程控制系统的建模与仿真能力。

同时,通过分析实验结果,我们可以了解到PID控制算法在过程控制系统中的应用和控制效果。

过程控制仿真实验

过程控制仿真实验

过程控制实验实验一用临界比例度法整定单回路反馈控制系统一实验目的1熟悉临界比例度法的整定方法。

2了解阶跃响应的一般规律。

二实验原理临界比例度法是目前应用比较广泛的一种整定方法,这种方法的特点是:不需要对被控对象单独求取响应曲线,而直接在闭环反馈控制系统中进行整定(实验框图见实验指导书末)。

这种方法的要点是:使调节器对被控对象起控制作用,但调节器先要当作比例调节器(Ti=∞,Td=0),从较大的比例度δ开始作实验,逐步减小比例度δ,每改变δ一次,作一次定值干扰实验,观察控制过程曲线,看看被控参数是否达到临界振荡状态,如果控制过程波动是衰减的,则应把比例度继续减小, 如果控制过程波动是发散的, 则应把比例度放大一些,一直实验到比例度减小到被控参数作临界振荡为止。

这时比例度就是临界比例度δk,来回波动一次的时间就是临界周期Tk (临界振荡曲线如图1-1 )图1-1这时控制系统已处于“临界状态”。

记下这时的波动周期Tk以及临界比例度δk,再跟据表1-2的经验公式,计算调节器的最佳参数。

表1-2三试验步骤1开机执行c:\ MATLAB(用鼠标双击MA TLAB图标) 进入MATLAB:“Command Windows”。

2在MATLAB命令窗口上键入M文件命令:mainmap0欢迎画面闪动5秒钟后,进入主窗口,如图1-4所示。

进行某一实验点击相应按钮,实验结束后点按退出按钮会回到这个窗口,已进行下一个实验,另外可以点按索引和详细情况进行查询,本实验点击实验一即可进入临界比例度法的演示实验。

图1-43 进入实验一显示窗口如1-5 所示。

先将Ti=∞(MATLAB中inf即为无穷大) Td=0 取一个比较大的δ(1/kp)开始试验。

建议选择参数:给定阶跃幅值 1仿真精度1-e3仿真步距0.1仿真点数1000图像显示点数10001/Kp 0.1图1-5(1)点击运行显示在现在参数下的系统阶跃响应图像如图1-6 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程控制仿真实验
1.背景
在现代计算机系统中,多任务操作系统可以同时运行多个进程或任务。

这些进程之间可能存在资源竞争和冲突,并需要操作系统进行合理的调度
和控制。

过程控制是指操作系统对这些进程的控制和管理,以确保它们按
照一定的顺序和优先级进行执行,达到系统的稳定和高效运行。

因此,了
解和掌握过程控制的原理和机制对于设计和优化计算机操作系统至关重要。

2.目的
过程控制仿真实验的目的是通过模拟和仿真操作系统的过程控制流程
来深入理解和掌握过程控制的原理和机制。

通过实际操作和观察,可以更
好地理解和分析进程的调度、同步和通信等问题,从而提高操作系统的性
能和可靠性。

3.方法
3.1设计实验任务
首先需要确定实验的任务和目标。

例如,可以设计一个进程调度实验,要求模拟操作系统对多个进程进行调度的过程。

3.2编写模拟程序
根据实验任务,编写一个模拟程序,该程序包含多个进程或任务。


个进程都有自己的优先级、执行时间和资源需求等属性。

同时,编写相应
的调度算法,如先来先服务(FCFS)、最短作业优先(SJF)或轮转调度(RR)等。

3.3运行模拟程序
在计算机上运行模拟程序,并观察和记录每个进程的执行情况。

可以
使用图形界面或命令行界面显示进程状态、执行时间和资源占用等信息。

3.4分析和讨论结果
根据模拟程序的运行结果,分析和讨论进程的调度和执行顺序。

比较
不同调度算法的性能和效果,并提出改进意见和建议。

4.结果
4.1不同调度算法的性能差异
通过比较模拟程序在不同调度算法下的运行结果,可以分析和比较它
们的性能差异。

例如,FCFS算法可能导致一些进程等待时间过长,而RR
算法可以较好地平衡进程的执行时间。

4.2进程同步和通信的问题
在模拟程序中,可以设置一些资源竞争和冲突的情况,以测试操作系
统对进程同步和通信的处理能力。

通过观察和分析进程之间的互动和通信
情况,可以发现潜在的问题和改进的方向。

4.3操作系统的优化建议
通过实验结果和分析,可以提供一些针对操作系统的优化建议。

例如,可以调整调度算法的参数、增加进程的优先级或引入更高级的同步和通信
机制等。

5.总结与展望
过程控制仿真实验是研究过程控制原理和机制的重要手段。

通过模拟
和模拟操作系统中的进程控制流程,可以更好地理解和分析操作系统的运
行原理和机制。

未来,可以进一步扩展和改进实验内容和方法,以适应不断变化的计算机系统和应用需求。

相关文档
最新文档