运筹学教案(胡运权版)
运筹学完整版胡运权
运筹学简述
运筹学的历史
“运作研究(Operational Research)小组”:解决复 杂的战略和战术问题。例如:
1. 如何合理运用雷达有效地对付德军德空袭 2. 对商船如何进行编队护航,使船队遭受德国潜
艇攻击时损失最少; 3. 在各种情况下如何调整反潜深水炸弹的爆炸深
度,才能增加对德国潜艇的杀伤力等。
线性规划问题的数学模型
Page 16
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints
怎样辨别一个模型是线性规划模型?
其特征是: (1)问题的目标函数是多个决策变量的线性函数, 通常是求最大值或最小值; (2)问题的约束条件是一组多个决策变量的线性不 等式或等式。
x3) x3)
x5 2 5
x1 , x2 , x3 , x3, x4 , x5 0
Page 25
线性规划问题的数学模型
Page 26
4. 线性规划问题的解
线性规划问题
n
max Z c j x j (1) j1
s.t
n j1
aij x j
bi
(i 1,2,, m)
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
每年节约成本1500万美元, 年收入大幅增加。 每年节约成本1300万美元
绪论
运筹学胡运权第五版课件第一章分析
注意:基解最多
m
Cn
? x1 ? ?? ? x2 ?
??
?? X ? ? xm ?
?0 ? ??
??
? ?
0
? ?
个。
(6)基可行解(基本可行解):满足决策变量非负要求的基解。
(7)可行基:与基可行解对应的基。
(8)基最优解:使目标函数达到最大值的基可行解。
(9)最优基:与基最优解对应的基。
4、线性规划问题各种解之间的关系
单位产品消耗设 I II 设备工时限量
备工时
(小时)
设备A
22
12
设备B
40
16
设备C
05
15
单位利润(元) 2 3
如何安排生产才能使总的利润最大?
解:设计划期内两种产品的数量分别为x1,x2,则总利润为:
z=2 x1+3 x2 在满足限制条件下求z的最大值。
简记为:
max z=2 x1+3 x2
P1 P2 P5
4
304 (最优解)
200
0 是 15
(最优目标函数值)
5 是 14
P1 P3 P5
4
0
4
0 15 是 8
P1 P4 P5
6
0
0 -8 15 否 12
P2 P3 P4
0
3
6 16 0 是 9
P2 P4 P5
0
6
0 16 -15 否 18
P3 P4 P5
0
0 12 16 15 是 0
§1.2 图解法
四、运筹学研究的基本特点
? 系统的整体优化 ? 多学科的配合 ? 模型方法的应用
五、运筹学研究的基本步骤
清华大学_运筹学_教案
一、课程概述课程名称:运筹学授课对象:清华大学经管学院管理科学与工程专业研究生授课时长:共16周,每周2学时教学目标:1. 理解运筹学的基本概念、原理和方法。
2. 掌握线性规划、整数规划、非线性规划等运筹学的基本模型和求解方法。
3. 培养学生运用运筹学解决实际问题的能力。
4. 提高学生的逻辑思维、分析问题和创新能力。
二、教学内容与安排第1-2周:运筹学的基本概念与数学基础1. 运筹学的基本概念、发展历程及应用领域。
2. 数学基础:线性代数、概率论与数理统计。
第3-4周:线性规划1. 线性规划的基本概念、数学模型与标准形式。
2. 线性规划的求解方法:单纯形法、对偶理论。
3. 线性规划的应用实例。
第5-6周:整数规划1. 整数规划的基本概念、数学模型与标准形式。
2. 整数规划的求解方法:分支定界法、割平面法。
3. 整数规划的应用实例。
第7-8周:非线性规划1. 非线性规划的基本概念、数学模型与标准形式。
2. 非线性规划的求解方法:梯度法、牛顿法、共轭梯度法。
3. 非线性规划的应用实例。
第9-10周:网络优化1. 网络优化的基本概念、数学模型与标准形式。
2. 网络优化的求解方法:最短路径法、最小生成树法、最大流问题。
3. 网络优化的应用实例。
第11-12周:动态规划1. 动态规划的基本概念、数学模型与标准形式。
2. 动态规划的求解方法:动态规划表、状态转移方程。
3. 动态规划的应用实例。
第13-14周:排队论1. 排队论的基本概念、数学模型与标准形式。
2. 排队论的求解方法:泊松过程、排队系统分析。
3. 排队论的应用实例。
第15-16周:案例分析1. 结合实际案例,分析运筹学在各个领域的应用。
2. 学生分组讨论,撰写案例分析报告。
三、教学方法与手段1. 讲授法:系统讲解运筹学的基本概念、原理和方法。
2. 案例分析法:通过实际案例,让学生理解运筹学的应用。
3. 讨论法:鼓励学生积极参与课堂讨论,提高学生的思考能力。
运筹学基础及应用第五版 胡运权34015电子教案
例:要离最小的方案。
A
5 S
5 B
5
D
T
C
E
4
即求图中的最小部分树
2、求法
方法一: 避圈法 将图中所有的点分V为V两部分, V——最小部分树中的点的集合 V——非最小部分树中的点的集合
⑴ 任取一点vi,令vi∈V,其他点在V中 ⑵ 在V与V相连的边中取一条最短的边(vi,vj), 加粗(vi,vj),令vj∈V ,并在V中去掉vj ⑶ 重复⑵ ,至所有的点均在V之内。
人
ABCDE F
甲
√
√
√
乙
√
√
√
丙
√
√
丁
√
√
戊
√
√
√
己
√
√
√
解:构造一个六阶图如下: 点:表示运动项目。
边:若两个项目之间有同一名运动员报名参加, 则对应的两个点之间连一条边。
A
F
B
E
C
D
为满足题目要求,应 该选择不相邻的点来 安排比赛的顺序:
A—C—B—F—E—D
或D—E—F—B—C—A
§6.2 树图和图的最小部分树
e4
e5
e6 e7
v3
v4
例如:e6= [v2,v3]
特别的,若边e的两个端点重合,则称e为环。
若两个端点之间多于一条边,则称为多重边。 简单图:无环、无多重边的图。
e7 v4
e3
v1 e8
v5
e5
e6 e2
e1
v3
e4
v2
4、点v的次(或度,degree)
与点v关联的边的条数,记为dG(v)或d(v)。 • 悬挂点 次为1的点,如 v5
运筹学胡运权第五版课件
单击此处添加副标题
汇报人:
目录
添加目录项标题 运筹学基础知识 整数规划 图论与网络优化
课件概览 线性规划 动态规划
01
添加章节标题
02
课件概览
课件简介
课程名称:运筹学胡运权第五版课件 课程内容:包括线性规划、非线性规划、整数规划、动态规划、图与网络优化等 课程目标:帮助学生掌握运筹学的基本理论和方法提高分析和解决问题的能力 课程特点:理论与实践相结合注重案例分析和实际问题的解决
最小生成树问题:在无向图中寻找最小生 成树
最大流问题:在流网络中寻找最大流
最小费用流问题:在流网络中寻找最小费 用流
网络可靠性问题:评估网络可靠性提高网 络稳定性
网络优化算法:如Dijkstr算法、Floyd算 法、Kruskl算法等
网络优化算法
最短路径算 法:Dijkstr
算法、 Floyd算法
等
图论与网络优化应用案例
物流网络优化:通过图论方 法优化物流网络降低物流成 本
社交网络优化:通过图论方 法优化社交网络提高社交网
络的稳定性和可靠性
交通网络优化:通过图论方 法优化交通网络提高交通效 率
电力网络优化:通过图论方 法优化电力网络提高电力系
统的稳定性和可靠性
感谢观看
汇报人:
课件结构
• 运筹学概述 • 线性规划 • 非线性规划 • 动态规划 • 随机规划 • 决策分析 • 网络规划 • 排队论 • 库存论 • 博弈论 • 运筹学应用案例 • 运筹学发展前景 • 运筹学与其他学科的关系 • 运筹学学习方法与技巧
课件特点
内容全面:涵盖了运筹学的基本概念、理论和方法 结构清晰:按照章节进行划分便于理解和掌握 实例丰富:提供了大量的实例和案例便于理解和应用 习题丰富:提供了大量的习题和练习便于巩固和提高
《运筹学》胡运权清华版-9-03网络计划的优化
44
20
18 19 2
15
0
10
9 5
5
1
0
(人数)
按时差将工作排序
(天数)
0 1 2 3 4 5 6 7 8 9 10 11
9
6
7
5
1
1
2
3
5
6
3
44
20
18
15
10
5 0
(人数)
19 工作2 (1,2) , 总时差0,编为1#
工作0 (1,49) , 总时差1,编为2# 工作(1,6) , 总时5 差7,编为1 3#
24
18 6 T=64(天)
18
③ 总直接费用 478+10×1=488(百元)
间接费用 180 -33=147(百元)
总费用
488 +147=635(百元)
第二次调整
①,
1246 1346
同时缩短
(1,3), (1,2) 同时缩小 2.5+1=3.5 可选方案: (1,3), (2,4) 同时缩小 1+2=3
按时差将工作排序
(天数)
0 1 2 3 4 5 6 7 8 9 10 119 Nhomakorabea6
7
5
1
1
2
3假设:已进行5中非关键工作 6
3
4 不4允许中断
工作(1,4) , 总时差1,编为1#
20
19 20
18
工作(2,3) , 总时差0,编为2#
15
10
9
工作(1,6) ,5总时差5,编为3#
5
1
0
第二次调整结果
总费用
634.4(百元)
物流运筹学教案
物流运筹学教案课程名称:物流运筹学适用专业:物流管理规定学时:32学时,2学分开课学期:三年级上学期任课教师:***物流运筹学教案一、课程说明物流运筹学运筹学是经管类专业本、专科生的主干课、学位课.通过本书学习要求学生掌握线性规划、整数规划、目标规划、图与网络分析、动态规划、存储论、排队论、决策论、博弈论的基本理论及方法,通过案例分析,要求学生学会建模的方法,能用各类模型的建立解决在经济管理中出现的各类问题.二、教学内容物流运筹学是物流管理专业的专业方向课程,教材涵盖了线性规划、整数规划、目标规划、图与网络分析、动态规划、存储论、排队论、决策论、博弈论的基本理论及方法,讨论了目标规划、图与网络分析在物流中的主要应用领域,探讨了利用线性规划、整数规划、目标规划、图与网络分析、动态规划、存储论、排队论、决策论、博弈论的基本理论及方法解决物流活动中的问题,并对物流运输路线安排、物资调配等专题进行了剖析.三、本课程的教案主要包括下列教学活动形式1、本章的教学目标及基本要求2、本章各节教学内容3、教学重点与难点4、本章教学内容的深化和拓宽5、本章教学方式手段及教学过程中应注意的问题6、本章的主要参考书目7、本章的思考题和习题8、教学进程四、课程教学的基本要求本课程的教学环节包括:课堂讲授、习题课、课外作业.通过本课程各个教学环节的教学,重点培养学生的学习能力、分析问题解决问题的能力.一课堂讲授主要教学方法:主要采用教师课堂讲授为主,增加讨论课和习题课,调动学生学习的主观能动性.二习题习题是本课程的重要教学环节,通过习题巩固讲授过的基本理论知识,培养学生自学能力和分析问题解决问题的能力.习题课:安排每章后.三考试环节学生成绩评定:平时成绩20%+期末考试80%平时成绩包括:学习态度、小测验、作业等.期末考试主要采用笔试闭卷形式,题型主要分为:判断题、选择题、计算分析题、简述题和案例分析题等.五、建议使用教材及教学参考书运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.第一章线性规划及单纯形法本章的教学目标及基本要求了解运筹学的概念掌握线性规划问题的数学模型掌握图解法和单纯形法的计算学会用单纯形法解决现实问题本章各节教学内容本章共分四节,4学时第1章线性规划及单纯形法第一节一般线性规划问题的教学模型第二节图解法第三节单纯形法原理第四节单纯形法的计算步骤习题一教学重点与难点掌握线性规划问题的数学模型掌握图解法和单纯形法的计算本章教学内容的深化和拓宽线性规划在日常中的应用本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题一教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第二次课 2课时90分钟第三章运输问题本章的教学目标及基本要求熟悉运输问题的典例和数学模型掌握表上作业法掌握产销不平衡的运输问题及其应用本章各节教学内容本章共分三节,4学时第一节运输问题的典例和数学模型第二节表上作业法第三节产销不平衡的运输问题及应用习题三教学重点与难点表上作业法产销不平衡的运输问题及应用本章教学内容的深化和拓宽适当补充各种国内的运输现状,使学生掌握表上作业法.本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题三教学进程:具体每次课的教学内容设计第一次课 2课时90分钟教学进程:具体每次课的教学内容设计第二次课 2课时90分钟第六章图与网络分析本章的教学目标及基本要求熟悉图的基本概念与模型掌握树图和图的最小部分树概念掌握最短路问题掌握网络的最大流掌握最小费用流本章各节教学内容本章共分五节,4学时第一节图的基本概念与模型第二节树图和图的最小部分树第三节最短路问题第四节网络的最大流第五节最小费用流习题六教学重点与难点树图和图的最小部分树概念最短路问题网络的最大流最小费用流本章教学内容的深化和拓宽运用最短路和网络最大流,最小费用流解决物流问题.本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题习题六教学进程:具体每次课的教学内容设计第一次课 2课时90分钟教学进程:具体每次课的教学内容设计第二次课 2课时90分钟第7章计划评审方法和关键路线法本章的教学目标及基本要求了解PERT网络图的概念掌握PERT网络图的计算掌握关键路线和网络计划的优化了解完成作业的期望时间和在规定时间内实现事件的概率本章各节教学内容本章共分四节,4学时第一节 PERT网络图第二节 PERT网络图的计算第三节关键路线和网络计划的优化第四节完成作业的期望时间和在规定时间内实现事件的概率教学重点与难点PERT网络图的计算关键路线和网络计划的优化本章教学内容的深化和拓宽适当补充运用PERT图解决问题的方法.本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题七教学进程:具体每次课的教学内容设计第一次课 2课时90分钟教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第九章存储论本章的教学目标及基本要求掌握经济批量的存储模型掌握具有价格折扣优惠的存储模型掌握动态的存储模型了解单时期的随机存储模型了解多时期的随机存储模型本章各节教学内容本章共分六节,4学时第一节引言第二节经济批量的存储模型第三节具有价格折扣优惠的存储模型第四节动态的存储模型第五节单时期的随机存储模型第六节多时期的随机存储模型习题九教学重点与难点掌握经济批量的存储模型掌握具有价格折扣优惠的存储模型掌握动态的存储模型本章教学内容的深化和拓宽适当订货策略的内容本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题课后习题九教学进程:具体每次课的教学内容设计第一次课 2课时90分钟()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤++=<≤++=<≤++=Q Q k Q c c R QQ C Q Q Q k Q c c R QQ C Q Q k Q c c R QQ C 2331)3(21231)2(1131)1( ,21 ,210 ,21 1周期内需求量订购量:Qt = Rt ; 2周期内订购费用:Bt = c3 + KRt ; 3周期内平均订购费用:bt = c3/t + KR ; 4周期内平均存储量:qt = Qt/2 = Rt/2; 5周期内平均存储费用:At = c1Rt/2;6周期内总平均费用:Ct = c3/t + KR + c1Rt/2.例某钢厂月计划角钢产量为3000吨,每吨每月存储费元,每次生产的设备调试费用为2500元.试确定该厂角钢的经济生产批量和生产间隔时间,并比较按月计划生产与按经济批量生产两种方案的年费用情况.解 1 月计划生产方案:每月产量为3000吨,每月费用为×3000×+2500 = 10450元全年总费用为10450×12 = 125400元2 经济批量生产方案:16823.53000250022130≈⨯⨯==c Rc Q第三节 具有价格折扣优惠的存储模型40分钟设货物单价函数为KQ, 假定其价格分三级处理:(),, ,0 ,⎪⎩⎪⎨⎧≤<≤<≤=Q Q k Q Q Q k Q Q k Q K平均每单位货物所需费用为第十一章决策分析本章的教学目标及基本要求熟知不确定型的决策分析、风险情况下的决策熟知贝叶斯决策掌握决策分析中的效用度量掌握层次分析法和多目标分析法本章各节教学内容本章共分8节,2学时第一节引言第二节不确定型的决策分析第三节风险情况下的决策第四节贝叶斯决策第五节决策分析中的效用度量第六节层次分析法第七节多目标决策习题十一教学重点与难点不确定型的决策分析风险情况下的决策贝叶斯决策层次分析法多目标决策本章教学内容的深化和拓宽适当决策在物流中的应用本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目运筹学:运筹学教材编写组主编,清华大学出版社,2012年01出版.运筹学教程:胡运权主编,清华大学出版社,2012年02月出版.本章的思考题和习题习题十一教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第七章销售物流本章的教学目标及基本要求了解销售物流在企业市场营销中的作用掌握不同类型的产品与不同类型的销售物流的匹配关系掌握功能性产品的ECR策略及ECR战略对销售物流的要求掌握创新性产品的QR战略及QR战略对销售物流的要求本章各节教学内容本章共分三节,2学时引例箭牌的分销物流管理第1节物流与市场营销的关系第2节ECR战略与销售物流优化第3节QR战略与销售物流优化课后讨论案例可口可乐的销售物流模式教学重点与难点1、基于需求特点的产品分类2、ECR战略的基本内涵3、QR战略的基本内涵本章教学内容的深化和拓宽适当补充QR战略对厂商及零售商的优点本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目销售物流,安久意,2013-10-01 /销售物流管理,刘同利,2011-09-01 /本章的思考题和习题1、物流在企业市场营销中的作用是什么2、ECR战略和QR战略的不同之处和共同之处分别是什么教学进程:具体每次课的教学内容设计第一次课 2课时90分钟第八章生产物流本章的教学目标及基本要求掌握生产物流优化的基本内容熟知ERP在生产物流优化中的作用了解均衡化生产、同步化生产与生产物流的关系掌握精益生产的内涵、基本框架及精益生产对生产物流优化的贡献掌握大规模定制的概念、基本框架及大规模定制对生产物流优化的贡献本章各节教学内容本章共分三节,4学时引例法布劳格:生产物理规划领域的先行者第1节生产物流优化的内容与技术第2节精益生产与生产物流优化第3节大规模定制与生产物流优化课后讨论案例上海通用汽车的柔性化精益制造生产线教学重点与难点1、ERP的原理2、精益生产的内涵3、大规模定制的基本框架本章教学内容的深化和拓宽适当补充生产物流的类型、大规模定制可以实施的各个阶段本章教学方式手段及教学过程中应注意的问题本章以课堂讲解为主,并采用对比和案例教学的分析方法.每次课课前用5分钟提问,对提问内容精心设计.讲授结束时用3分钟总结,包括本节课需要掌握的知识点,重点和难点等.本章的主要参考书目企业生产物流流程,陈璐,2014-11-01 /生产物流管理,宋栎楠,2012-02-01 /本章的思考题和习题1、ERP对于企业的生产物流优化有哪些影响企业在实施ERP的过程中需要注意哪些问题2、精益生产的基本概念是什么它对于生产物流优化有哪些影响3、大规模定制的基本框架是什么它对于生产物流优化有哪些影响教学进程:具体每次课的教学内容设计第一次课 2课时90分钟提问:洋ERP水土不服的原因:国外软件设计的环境与目前国内大环境不同其数据库结构不能体现中国“准信用制社会”的特殊形态.在欧美国家,信用机制构成了市场运营的基础框架.国外专家开发的是以信用制社会为基础模型的系统,因此在业务流程、结算模式、财务指标……等等诸多关键环节上与国内企业的实际情况严重脱节.目前中国处于计划经济向市场经济的转型期,处于“准信用制社会”,经营风险灵活多变是主要特征.系统设计中不考虑这一关键因素,必然出现南辕北辙的局面.第二次课 2课时90分钟。
(完整word版)运筹学教案(胡运权版)
贵州工程应用技术学院理学院运筹学授课教案学期:2017-2018学年第二学期运筹学课程名称:运筹学基础及应用(第六版)胡运权编所用教材:16信管、15数学班级:聂登国任课教师:理学院所在部门:应用数学教研室教研室:《绪论》(2课时)【教学流程图】运筹学运筹学与数学模型的基本概念管理学布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(一)举例引入:(5分钟)(1)齐王赛马的故事(2)两个囚犯的故事导入提问:什么叫运筹学?(二)新课:绪论一、运筹学的基本概念(用实例引入)例1-1战国初期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。
当时齐王的马比田忌的马强,结果每年田忌都要输掉三千两银子。
但孙膑给田忌出主意,可使田忌反输为赢。
试问:如果双方都不对自己的策略保密,当齐王先行动时,哪一方会赢?赢多少?反之呢?例1-2有甲乙两个囚犯正被隔离审讯,若两人都坦白,则每人判入狱8年;若两个人都抵赖,则每人判入狱1年;若只有一人坦白,则他初释放,但另一罪犯被判刑10年。
求双方的最优策略。
乙囚犯抵赖坦白甲囚犯抵赖-1,-1 -10,0坦白0,-10 -8,-8定义:运筹学(Operation Research)是运用系统化的方法,通过建成立数学模型及其测试,协助达成最佳决策的一门科学。
它主要研究经济活动和军事活动中能用数学的分析和运算来有效地配置人力、物力、财力等筹划和管理方面的问题。
(完整版)运筹学胡运权第五版课件(第1章)
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
运筹学教案(胡运权版)
贵州工程应用技术学院理学院运筹学授课教案学期:2017-2018学年第二学期运筹学课程名称:运筹学基础及应用(第六版)胡运权编所用教材:16信管、15数学班级:聂登国任课教师:理学院所在部门:应用数学教研室教研室:《绪论》(2课时)【教学流程图】运筹学运筹学与数学模型的基本概念管理学布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(一)举例引入:(5分钟)(1)齐王赛马的故事(2)两个囚犯的故事导入提问:什么叫运筹学?(二)新课:绪论一、运筹学的基本概念(用实例引入)例1-1战国初期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。
当时齐王的马比田忌的马强,结果每年田忌都要输掉三千两银子。
但孙膑给田忌出主意,可使田忌反输为赢。
试问:如果双方都不对自己的策略保密,当齐王先行动时,哪一方会赢?赢多少?反之呢?例1-2有甲乙两个囚犯正被隔离审讯,若两人都坦白,则每人判入狱8年;若两个人都抵赖,则每人判入狱1年;若只有一人坦白,则他初释放,但另一罪犯被判刑10年。
求双方的最优策略。
乙囚犯抵赖坦白甲囚犯抵赖-1,-1 -10,0坦白0,-10 -8,-8定义:运筹学(Operation Research)是运用系统化的方法,通过建成立数学模型及其测试,协助达成最佳决策的一门科学。
它主要研究经济活动和军事活动中能用数学的分析和运算来有效地配置人力、物力、财力等筹划和管理方面的问题。
运筹学 胡运权 教案
运筹学胡运权教案运筹学教案
教学目标:
1. 了解运筹学的基本概念和意义。
2. 掌握运筹学的主要方法和技巧。
3. 能够应用运筹学方法解决实际问题。
教学内容:
1. 运筹学的基本概念
- 运筹学的定义和发展历程。
- 运筹学与管理科学的关系。
- 运筹学的应用领域。
2. 运筹学的主要方法和技巧
- 线性规划方法。
- 整数规划方法。
- 动态规划方法。
- 网络优化方法。
3. 运筹学在实际问题中的应用
- 生产调度问题。
- 供应链优化问题。
- 资源分配问题。
- 交通运输问题。
教学过程:
1. 简要介绍运筹学的基本概念和意义。
2. 分析和讨论运筹学的主要方法和技巧,并通过实例进行说明和演示。
3. 分组讨论和展示不同实际问题中的运筹学应用,并与全班进行讨论和交流。
4. 总结运筹学的重要性和实用性,并鼓励学生在实际问题中运用所学知识。
教学资源:
1. 运筹学教材和参考书籍。
2. 实例和案例分析材料。
3. 计算机软件和工具,如Excel、Matlab等。
教学评估:
1. 课堂练习和作业。
2. 实际问题的解决方案和报告。
教学延伸:
1. 鼓励学生参与运筹学相关的竞赛和项目。
2. 提供学生进一步深入研究和应用运筹学的机会,如实习或科研项目等。
(完整版)运筹学胡运权第五版课件(第1章)
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
x
j
xj
且
x
j
0
…
am1x1+am2x2+…+amnxn≤(=,≥) bm
x1 , x2, …, xn≥0
(3)其他形式: 连加形式
1-3 线性规划问题的标准形式
1、标准形式
或
2、条件
目标函数求极大值 约束条件全是等式(线性方程组) 决策变量全非负 右端常数全非负
3、标准化方法
(1)若目标函数求极小值,即
则令 z z
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。
(2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
运筹学
( Operations Research )
绪论
一、古代朴素的运筹学思想
例如:田忌赛马
二、运筹学的起源
国外 英文原名 Operations Research 简称“O.R.” 直译为:运用研究或作业研究 正式出现于1938年7月英国一份关于防空作战 系统运行的研究报告中
《运筹学》胡运权清华版-2-01对偶问题
应用场景限制
对偶问题在某些应用场景中可能存在限制, 需要探索更广泛的应用领域和场景。
对偶问题的未来发展方向
交叉学科融合
对偶问题将与数学、物理、工程等多个学科交叉融合,形成新的 研究领域和方向。
算法优化与并行计算
针对大规模对偶问题的求解,将发展更高效的算法和并行计算技 术,提高求解效率。
应用领域拓展
02
对偶问题在优化、机器学习、大数据等领域的应用将进一步深
化,推动相关领域的发展。
算法创新
03
针对对偶问题的求解算法将不断创新,提高求解效率,满足大
规模复杂问题的求解需求。
对偶问题的研究难点与挑战
理论证明
对偶理论中的一些基本定理和性质仍需进一 步证明和完善,以增强其数学严谨性。
求解难度
求解动态规划对偶问题的方法包括状态转移方程、最优子结构、备忘录法等。这些方法可以帮助我们找 到最优解,并避免重复计算。
在求解动态规划对偶问题时,需要注意对偶问题的最优解并不一定对应原问题的最优解,因此需要对解 进行验证和调整。
博弈论对偶问题的求解方法
01
博弈论是研究多个决策者之间 决策问题的学科,而博弈论对 偶问题则是将原问题转化为求 最大值的问题。
题
非线性规划对偶问题是将原非线 性规划问题的目标函数和约束条 件转换为对偶形式后得到的新问 题。
对偶问题的重要性
理论意义
对偶问题在运筹学理论中具有重要的 地位,它揭示了原问题与对偶问题之 间的内在联系,有助于深入理解运筹 学的基本原理。
应用价值
在实际应用中,对偶问题可以用于求 解原问题的近似解或启发式解,提高 求解效率,尤其在处理大规模优化问 题时具有显著的优势。
运筹学_胡运权
标准型的向量形式:
max Z c j x j
j 1 n
标 准 型
n p j x j b s.t. j 1 x 0 j 1,2,, n j
a1 j a2 j 其中: p j a mj
标 准 化
把一般的LP化成标准型的过程称为 线性规划问题的标准化 方法: 1 目标标准化 min Z 等价于 max ( - Z ) max Z’=-∑cjxj 2 化约束为等式 加松弛变量、减剩余变量 3 变量非负化 x j 0 做变换 x j x j xj 0 或 x j x j x j 4 右端非负
目标函数 max z 2 x1 x2
数 学 模 型
5 x2 15 6 x 2 x 24 2 约束条件 s.t. 1 x1 x2 5 x1 , x2 0
(1.1a) (1.1b) (1.1c)
(1.1d)
max: maximize的缩写, “最大化”, s.t. subject to的缩写, “受限制于……”
一般形式:
目标函数
概 念 和 ห้องสมุดไป่ตู้ 型
max(或min) Z c1 x1 c 2 x2 c n xn a11x1 a12 x2 a1n xn (, )b1 约束条件 a x a x a x (, )b 2n n 2 21 1 22 2 s.t. a x a x a x (, )b mn n m m1 1 m 2 2 x1 , x2 , , xn 0 0,自由
标 准 化
2 x 2 x x x x 9 2 3 3 4 1 3x x 2 x 2 x x 4 1 2 3 3 5 s.t. 4 x1 2 x2 3 x3 3 x3 6 x1 , x2 , x3 , x3 , x4 , x6 0
运筹学教学案[胡运权版]
《绪论》(2课时)【教学流程图】运筹学运筹学与数学模型的基本概念管理学布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(一)举例引入:(5分钟)(1)齐王赛马的故事(2)两个囚犯的故事导入提问:什么叫运筹学?(二)新课:绪论一、运筹学的基本概念(用实例引入)例1-1战国初期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。
当时齐王的马比田忌的马强,结果每年田忌都要输掉三千两银子。
但孙膑给田忌出主意,可使田忌反输为赢。
试问:如果双方都不对自己的策略保密,当齐王先行动时,哪一方会赢?赢多少?反之呢?例1-2有甲乙两个囚犯正被隔离审讯,若两人都坦白,则每人判入狱8年;若两个人都抵赖,则每人判入狱1年;若只有一人坦白,则他初释放,但另一罪犯被判刑10年。
求双方的最优策略。
乙囚犯抵赖坦白甲囚犯抵赖-1,-1 -10,0坦白0,-10 -8,-8定义:运筹学(Operation Research)是运用系统化的方法,通过建成立数学模型及其测试,协助达成最佳决策的一门科学。
它主要研究经济活动和军事活动中能用数学的分析和运算来有效地配置人力、物力、财力等筹划和管理方面的问题。
二、学习运筹学的方法1、读懂教材上的文字;2、多练习做题,多动脑筋思考;3、作业8次;4、考试;5、EXCEL操作与手动操作结合。
二、学生练习(20分钟)三、课堂小结(5分钟)《线性规划及单纯形法》(2课时)【教学流程图】运筹学运筹学与线性规划的基本概念线性规划线性规划的标准型目标函数结合例题讲解线性规划标准型的转化方法约束条件的右端常数约束条件为不等式布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
运筹学胡运权运输问题PPT学习教案
xm1 + xm2 + ...+ xmn = am
x11
+ x21
x12
+ x22
...... ...... ...... ...... ...... .......
x1n + x2n
xij 0
= a2
+ xm1 + xm2
= a1
= b1 = b2 + xmn = bn
第23页/共42页
§
3
运 输 问
产销不平衡的运输问 题
题 有转运的运输问题
进
一
步
讨
论
第32页/共42页
m
n
1.当产大于销时,即 ai bj
检验数:目标函数的系数减去对偶变量之和
原问题检验数:σij=cij-(ui+vj)
特别对于m+n-1个基变量,有 σij=0
第25页/共42页
σj = C j- CBB-1 Pj = Cj - Y Pj
解 的
σij = C ij- CBB-1 Pij = Cij - Y Pij = Cij - (u1,u2, …,um, v1, v2, …,vn)
A2
8 2 10
3 2 9 10 1 1 1 6 0
始
A3
8 14 5
11 8 6 22 1 2
基
销量 8 14 12 14 48
可
12
513
34
行
2
列
2
1 3 总费用 z=
cij xij
解
罚3 2 数4
12 12
i=1 j=1
=244
5
第18页/共42页 2
运筹学教案(胡运权版)
讲课题目:绪论教课目的与要求:1.知识目标:掌握运筹学的观点和作用及其学习方法2.能力目标:掌握运筹学的数学模型3.素质目标:培育学生优秀的职业道德、建立爱岗精神教课要点:运筹学的数学模型教课难点:运筹学的数学模型教课过程:1.举例引入( 5 分钟)2. 新课(60分钟)(1)举例引入,绪论((2)运筹学与管理学(30 分钟)30 分钟)3.讲堂练习( 20 分钟)4.讲堂小结( 5 分钟)5.部署作业《绪论》(2 课时)【教课流程图】举例引入,绪论运筹学运筹学与数学模型的基本观点管理学讲堂练习讲堂小结部署作业【教课方法】本课主要采纳任务驱动和程序式思想相联合的教课方法,过程中间辅以事例解说、启迪发问、自主学习和协作学习等方式。
任务驱动是实现本课教课目的和达成教课内容的主要方法,任务是师生活动内容的核心,在教课过程中,任务驱动被多次利用。
自主学习能提升学生的自主研究能力,比赛和协作学习调换学生的踊跃性,激发学生参加的热忱。
学生之间互帮互帮,共同分享劳动果实,进而激发了学生的团队意识,达到理想的教课成效。
【教课内容】一、教课过程:(一)举例引入:(5分钟)(1)齐王赛马的故事(2)两个监犯的故事导入发问:什么叫运筹学?(二)新课:绪论一、运筹学的基本观点(用实例引入)例 1-1 战国早期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,而且说好每输一匹马就得支付一千两银子赐予获胜者。
当时齐王的马比田忌的马强,结果每年田忌都要输掉三千两银子。
但孙膑给田忌出想法,可使田忌反输为赢。
试问:假如两方都不对自己的策略保密,当齐王先行动时,哪一方会赢?赢多少?反之呢?例 1-2 有甲乙两个监犯正被隔绝审问,若两人都坦率,则每人判入狱8 年;若两个人都狡辩,则每人判入狱 1 年;若只有一人坦率,则他初开释,但另一犯人被判刑 10 年。
求两方的最优策略。
乙监犯狡辩坦率甲监犯狡辩-1,-1 -10,0坦率0,-10 -8,-8定义:运筹学( Operation Research)是运用系统化的方法,经过建成立数学模型及其测试,辅助达成最正确决议的一门科学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《绪论》(2课时)【教学流程图】举例引入,绪论运筹学运筹学与数学模型的基本概念管理学课堂练习课堂小结布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(一)举例引入:(5分钟)(1)齐王赛马的故事(2)两个囚犯的故事导入提问:什么叫运筹学?(二)新课:绪论一、运筹学的基本概念(用实例引入)例1-1战国初期,齐国的国王要求田忌和他赛马,规定各人从自己的上马、中马、下马中各选一匹马来比赛,并且说好每输一匹马就得支付一千两银子给予获胜者。
当时齐王的马比田忌的马强,结果每年田忌都要输掉三千两银子。
但孙膑给田忌出主意,可使田忌反输为赢。
试问:如果双方都不对自己的策略保密,当齐王先行动时,哪一方会赢?赢多少?反之呢?例1-2有甲乙两个囚犯正被隔离审讯,若两人都坦白,则每人判入狱8年;若两个人都抵赖,则每人判入狱1年;若只有一人坦白,则他初释放,但另一罪犯被判刑10年。
求双方的最优策略。
乙囚犯抵赖坦白甲囚犯抵赖-1,-1 -10,0坦白0,-10 -8,-8定义:运筹学(Operation Research)是运用系统化的方法,通过建成立数学模型及其测试,协助达成最佳决策的一门科学。
它主要研究经济活动和军事活动中能用数学的分析和运算来有效地配置人力、物力、财力等筹划和管理方面的问题。
二、学习运筹学的方法1、读懂教材上的文字;2、多练习做题,多动脑筋思考;3、作业8次;4、考试;5、EXCEL操作与手动操作结合。
二、学生练习(20分钟)三、课堂小结(5分钟)《线性规划及单纯形法》(2课时)【教学流程图】运筹学运筹学与线性规划的基本概念线性规划(结合例题讲解)线性规划的标准型目标函数结合例题讲解线性规划标准型的转化方法约束条件的右端常数约束条件为不等式课堂练习课堂小结布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:第一章线性规划及单纯形法第一节线性规划问题及其数学模型(用实例引入)例1-3美佳公司计划制造Ⅰ、Ⅱ两种产品,现已知各制造一件时分别占用的设备A、B的台时数,及测试工序所需要的时间。
问该公司应制造两种家电各多少件时才能使获取的利润最大?例1-4 有A、B、C三个工地,每天需要水泥各为17、18、15百袋。
为此甲、乙两个水泥厂每天各生产23百袋和27百袋水泥供应这三个工地。
其单位运价如下表,求最佳调运方案。
一、线性规划的基本概念如果规划问题的数学模型中,决策变量的取值是连续的整数、小数、分数或实数,目标函数是决策变量的线性函数,约束条件是含决策变量的线性等式或不等式,则称这种规划问题为线性规划。
二、将线性规划的普通型化为标准型1、对于minZ=CX,可转化为min(-Z)=-CX ;2、 当约束条件中出现i n in i i b x a x a x a ≤+++Λ2211时,在左边加上一个“松弛变量”01≥+i x ,使不等式变为等式;当约束条件中出现i n in i i b x a x a x a ≥+++Λ2211时,则在左边减去一个“松弛变量”01≥+i x 。
3、 当某个决策变量0∠j x 或符号不限时,则增加两个决策变量'j x 和''j x ,令'''j j j x x x -=;4、 当约束条件中有常数项0∠i b 时,则在方程两边同乘以(-1)。
例1-5 将下列非标准4型线性规划问题转化为标准型。
解:学生练习:P42习题1.2。
二、学生练习 (20分钟) 三、课堂小结(5分钟)《线性规划的求解》(2课时)【教学流程图】以学生自学引入图解法线性规划求解方法介绍单纯形法EXCEL规划求解法坐标系图解法的操作步骤求出可行域平移目标函数直线化为标准型迭代法【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(一)举例引入:(5分钟)复习中学数学中的图解法。
导入提问:线性规划图解法中有哪些基本概念?(二)新课:第二节图解法一、图解法的步骤(以学生自学引入)学生自学P16-17,教师检查看不懂文字的学生,并做好记录。
提问:以P44的1.4题第1小题为例,图解法第一步是什么?以下逐步提出问题。
教师演示并总结如下:图解法适用于两个决策变量的线性规划非标准型。
步骤如下;1、用决策变量建立直角坐标系;2、对于每一个约束条件,先取等式画出直线,然后取一已知点(一般取原点)的坐标代入该直线方程的左边,由其值是否满足约束条件的不等号及该已知点的位置来判断它所在的半平面是否为可行域。
3、令Z等于任一常数,画出目标函数的直线,平移该直线,直至它与凸多边形可行域最右边的角点相切,切点坐标则为最优解。
例1-5解可行解——满足约束条件的解,全部可行解的集合叫可行域。
最优解——使目标函数达到最大值的可行解。
基变量——利用矩阵的初等变换从约束条件的m×n(n>m)阶系数矩阵找出一个m×m阶单位子矩阵,它们对应的变量叫基变量,其余的叫非基变量。
矩阵的初等变换——将矩阵的一行同乘以一个数;将矩阵的一行同乘以一个数,再加到另外一行上去。
4.课堂小结(5分钟)5.布置作业:要求学生完成P43习题1.3两个小题。
第四节《单纯法的计算步骤》(2课时)【教学流程图】以学生自学引入图解法线性规划求解方法介绍单纯形法EXCEL规划求解法化为标准型求出初始表迭代法【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(二)举例引入:(5分钟)复习中学数学中的图解法。
导入提问:线性规划图解法中有哪些基本概念?(二)新课:一、三个基本定理可行解——满足约束条件的解,全部可行解的集合叫可行域。
最优解——使目标函数达到最大值的可行解。
基变量——利用矩阵的初等变换从约束条件的m×n(n>m)阶系数矩阵找出一个m×m阶单位子矩阵,它们对应的变量叫基变量,其余的叫非基变量。
矩阵的初等变换——将矩阵的一行同乘以一个数;将矩阵的一行同乘以一个数,再加到另外一行上去。
二、 单纯形表迭代法 教师先演示: 1、 化为标准型2、 做出初始单纯形表,求出检验数;3、 确定检验数中最大正数所在的列为主元列,选择主元列所对应的非基变量为进基变量4、 按最小比值原则,用常数列各数除以主元列相对应的正商数,取其最小比值,该比值所在的行为主元行;主元列与主元行交叉的元素为主元,主元所对应的基变量为出基变量。
5、 对含常数列的增广矩阵用初等变换把主元变为1,主元所在的列的其余元素化为0。
6、 计算检验数,直到全部检验数小于等于0,迭代终止。
基变量对应的常数列为最优解,代入目标函数得最优目标函数值。
例1-6解:先化为标准型:s.t. 0,,,,524261550002max 543215214213254321≥=++=++=+++++=x x x x x x x x x x x x x x x x x x Z其约束条件的系数增广矩阵为 0 5 1 0 0 156 2 0 1 0 24 1 1 0 0 1 5初始始基可行解为:T,0,0(15=,以此列出单纯形表如下。
,X)5,24得:T=,代入目标函数得:,2/3,2/7(X)0,0,0,2/15Z=2*7/2+1*3/2+15/2*0+0*0=17/2。
4.课堂小结(5分钟)《单纯形法的进一步讨论》(2课时)【教学流程图】用实例引入人工变量法初始单纯形表中无单位矩阵人工变量法的例题讲解引入人工变量在目标函数中引入大M两阶段法用EXCEL求解中的困难两阶段法的例题讲解第一阶段的模型第二阶段的模型课堂小结布置作业【教学方法】本课主要采用任务驱动和程序式思维相结合的教学方法,过程当中辅以案例讲解、启发提问、自主学习和协作学习等方式。
任务驱动是实现本课教学目标和完成教学内容的主要方法,任务是师生活动内容的核心,在教学过程中,任务驱动被多次利用。
自主学习能提高学生的自主探究能力,竞赛和协作学习调动学生的积极性,激发学生参与的热情。
学生之间互帮互助,共同分享劳动果实,从而激发了学生的团队意识,达到理想的教学效果。
【教学内容】一、教学过程:(三)举例引入:(5分钟)复习单纯形法。
导入提问:当初始单纯形表中不出现单位矩阵怎么办?(二)新课:第五节单纯形法的进一步讨论(用实例引入人工变量法)例1-7 用单纯形法求解下列线性规划问题:解:将第二个约束条件化为等式(左边减去一个松弛变量)后,约束条件的系数矩阵不存在单位矩阵,这时可在约束条件第一、二等式的左边分别加上一个人工变量作为初始基变量,使之出现单位矩阵。
为了使目标函数中的人工变量为0,令它们的系数为任意大的负值“-M”,然后采用一般单纯形表法求解。
所以最优解为:X=(45/7,4/7,0,0,0,0)例1-8 对LP模型:s.t. 01252652415min 3132132321≥≥++≥+++=-y y y y y y y y y w用两阶段法求解。