三角形中位线定理及推论

合集下载

三角形中位线定理及推论

三角形中位线定理及推论

三角形中位线定理及推论一、中位线定理中位线是指连接三角形一个顶点与对边中点的线段。

三角形中位线定理是指在一个三角形中,三条中位线交于一点,且这个交点与三个顶点的距离相等。

我们先来证明中位线交于一点这一结论。

假设ABC为一个三角形,AD是BC中点连线,BE是AC中点连线,CF 是AB中点连线。

我们可以得到△ADC和△BCD是全等三角形。

根据全等三角形的性质,我们可以得到∠ADC=∠CBD,∠ACD=∠BCD,且AD=BD。

同理,我们可以得到△AEB和△CEB是全等三角形,∠AEB=∠CEB,∠ABE=∠CBE,且AE=BE。

因为∠ADC=∠CBD,∠ACD=∠BCD,所以∠ADC+∠ACD=∠CBD+∠BCD,即∠ADC+∠ACD=180°。

同理,∠AEB+∠ABE=180°。

我们可以得到∠ADC+∠ACD+∠AEB+∠ABE=∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE。

而∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。

所以∠ADC+∠ACD+∠AEB+∠ABE+∠BCD+∠CBE=360°。

而∠ADC+∠ACD+∠AEB+∠ABE=360°。

所以∠BCD+∠CBE=0°。

由于∠BCD+∠CBE=0°,所以∠BCD=0°,∠CBE=0°。

因此,BD和CE是平行线。

根据平行线的性质,我们可以得到三角形BDF和三角形CEG是全等三角形,∠BFD=∠CGE,∠BDF=∠CEG,且BD=CE。

所以,我们可以得到BF=CG。

因此,在三角形ABC中,三条中位线AD、BE、CF交于一点G,且这个交点与三个顶点的距离相等。

二、中位线推论1. 三角形中位线推论一:中位线长度在一个三角形中,连接一个顶点与对边中点的中位线的长度等于对边的一半。

假设ABC为一个三角形,AD是BC中点连线。

我们已经证明了AD和BC是平行线,且AD=BD。

三角形的中位线与三角形的中线有什么不同?

三角形的中位线与三角形的中线有什么不同?

三角形的中位线与三角形的中线有什么不同?
学过教科书上关于三角形的中位线的知识后,我们可以推出,判定一条线段是三角形的中位线的方法有以下3种:
1.定义:连结三角形两边中点的线段叫做三角形的中位线。

2.判定定理:经过三角形一边中点的直线,如果平行于另一边,那么这条直线位于三角形内的部分是这个三角形的中位线。

3.判定定理:端点位于三角形两边上的线段,如果平行于第三边,且等于第三边的一半,那么这两条线段是这个三角形的中位线。

由此可知:三角形的中位线平分这个三角形的两条边,平行于第三边,且等于第三边的一半,但不经过这个三角形的任何顶点;而三角形的中线只平分这个三角形的一条边,不平行于这个三角形的任何边,但经过与它所平分的边相对的顶点。

三角形的中位线是两两相交;而在将来我们可以证明,三角形的中线相交于一点,这一点把三条中线都分成2比1两段,被称为三角形的重心,它在物理学中用处很大。

三角形中位线定理

三角形中位线定理

1 EF= 1 BC 2 2
三角形的中位线的性质
三角形的中位线平行于第三边, 并且等于它的一半 A 用符号语言表示
∵DE是△ABC的中位线
E B
D C
1 ∴ DE∥BC, DE= BC. 2
① 证明平行问题
② 证明一条线段是另一条线段的2倍或1/2
初试身手
A D
练习1.如图,在△ABC中,D、E分别是 、F分别 AB 、、 AC 的中点 是 AB AC 、BC的中点
∴ DF=1/2BC,DE=1/2AC。 ∴ 四边形DECF的周长是 B DF+DE+EC+CF=16/2+12/2+1 6/2+12/2=28
D
F
E
C
拓展应用:
在△ABC中,∠BAC=90°,延长BA到点D,使 AD=1/2AB,点E,F分别为BC,AC的中点,试说DF=BE理 D 由
理由: ∵ 点E,F分别为BC,AC的中点
B三角 形的周长与原三角形的周长有什么 关系? 2、三角形三条中位线围成的三角形的面积与原三角 形的面积有什么关系?
演练
已知:如果,点D、E、F分别是△ABC的三边 的中点. (1)若AB=8cm,求EF的长; (2)若DE=5cm,求BC的长. (3)若增加M、N分别是BD、BF的中点, A 问MN与AC有什么关系?为什么?
例1、求证三角形的一条中位线与第三边上 的中线互相平分. A
E
C
14
定 理 应 用:
⑴定理为证明平行关系提供了新的工具
⑵定理为证明一条线段是另一条线段的2倍 或 1/2提供了一个新的途径
⑶解决“中点问题”
注意:在处理这些问题时,要求出现三角形及中位线

三角形中点定理

三角形中点定理

三角形中点定理三角形中点定理,又称为中位线定理,是平面几何中的一个重要定理。

它阐述了三角形内三条中线的特点与性质。

本文将详细论述三角形中点定理及其相关推论,以便更好地理解和应用该定理。

一、三角形中线的定义与性质在三角形ABC中,由三个顶点A、B、C分别连接各边的中点D、E、F,所形成的线段AD、BE、CF即为三角形ABC的中线。

根据三角形中点定理,中线具有以下性质:1. 三条中线互相平行,且等于三角形两边的一半。

证明:连接AD和CF,由于D、E、F为各边的中点,根据两点间的线段中点定理可推出AD ∥ BC,并且AD = 1/2 BC。

同理,BE ∥AC,BE = 1/2 AC;CF ∥ AB,CF = 1/2 AB。

所以三条中线互相平行,且等于各边的一半。

2. 三条中线交于一个点,该点称为三角形的重心。

证明:假设三条中线交于点O。

连接AO、BO、CO。

根据平行四边形的性质可知,AD = 1/2 BC,BE = 1/2 AC,CF = 1/2 AB。

根据向量加法和平行四边形的关系可得:AO + BO = 2AD + 2BE = BC + AC = ABBO + CO = 2BE + 2CF = AC + AB = BCCO + AO = 2CF + 2AD = AB + BC = AC由此可得AO = BO = CO,即点O在三条中线的交点上,故点O为三角形的重心。

二、三角形中点定理的应用1. 判断三角形形状:根据三角形中点定理,如果三角形的中线相等,那么该三角形是等腰三角形。

因为等腰三角形的两条边相等,所以由中线的定义可推出三条中线相等,且平行。

2. 求解三角形面积:根据三角形中点定理,三角形的两条中线之间的长度恰好为三角形面积的一半。

因此,我们可以通过已知三角形中线的长度来求解三角形的面积。

3. 构造三角形:根据三角形中点定理,给定一条边的中点和该边上的长度,还可以根据中线的定义,得到另外两条边的中点,从而构造出三角形。

三角形中位线定理

三角形中位线定理

三角形的中位线平行于第三边且等于第三边的一半
中位线定理的证明
如图,在△ABC中,D、E分别为AB、AC
的中点,连接DF.
求证:(1) DE ∥ BC 辅助线:延长DF至点F, 使EF=DF,连接FC △AED≌△CEF
1 2) DE (BC 2
一题多解
思考1
△ABC与△DEF的周长、面积有什么等量关系?
取AE中点G,连接DG
△DGF≌△CEF
四边形ABCD,AB与DC不平行,点E、F分别是
BC、AD的中点.求证: EF 1 AB CD
连接AC,取AC中点G 1 1 ∵FG=2 CD GE= AB 2
∴FG+GE>EF
1 EF ∴2 AB CD
2
∴平行四边形ABEC ∴F为BC中点,O为AC中 即:AB=2OF 点
如图,四边形ABCD中,E、F、G、H分别 是AB、BC、CD、DA的中点.求证:四边形EFGH 是平行四边形.
∵HG∥AC∥EF;EH∥BD∥F
GLeabharlann ∴EFGH为平行四边形题型二
增设中点,构造中位线
如图,已知△ABC中,D 是AB的中点, E是BC的三等分点(BE>CE),AE、CD相交于F. 求证:F是DC的中点.
中 点 的 辅 助 线
倍长中线
三线合一
中位线定理
直角三角形斜边中线定理
三角形中位线的定义
连接三角形两边中点的线段叫做三角形的中位线 注意中线和中位线的区别!
中线:
一个顶点和对边的中点连线
中位线:
两个中点的连线
三角形中位线定理
观察并猜想DE与BC的关系
位置关系
数量关系

三角形中位线、多边形内角和定理

三角形中位线、多边形内角和定理

三角形的中位线与多边形的内角和定理【知识梳理】1、三角形中位线连结三角形两边中点的线段叫做三角形的中位线.注意三角形中位线与三角形中线的区别.2、三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半.如图,D、E分别是△ABC边AB、AC的中点,则,且DE∥BC.3、定理:经过三角形一边中点与另一边平行的直线平分第三边.4、多边形有关概念在一平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.这里所指的多边形是指凸多边形.即多边形总在任何一条边所在直线的同一旁.如图(1)是凸多边形,图(2)是凹多边形.组成多边形的各条线段叫做多边形的边,多边形有几条边就叫几边形,每相邻两条边的公共端点叫做多边形的顶点,连接不相邻两个顶点的线段叫做多边形的对角线,相邻两边组成的角叫做多边形的内角,简称多边形的角.5、正多边形如果多边形的各边都相等,各内角也都相等,那就称它为正多边形.研究多边形的问题经常转化为研究三角形的问题.6、多边形内角和定理n边形的内角和等于(n-2)·180°(n≥3的正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.7、多边形外角和定理多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.多边形外角和定理:任意多边形的外角和等于360°.8、注意:n边形的外角和恒等于360°,它与边数的多少无关.二、重难点知识归纳1、三角形中位线定理的证明方法,关键在于添加辅助线.除课本上的证明方法外,还有如下几种方法参考:(1)如图,延长中位线DE到点F,取EF=DE,连接DC、FC、AF.根据对角线互相平分判定四边形ADCF是平行四边形,得到AD CF.以下步骤同教材.(2)如图,作CF∥AB,与DE的延长线交于点F,通过证明△ADE≌△CFE,得 AD FC,以下步骤同教材.2、三角形中位线定理是三角形的一个重要性质定理.在同一题设下,有两个结论,一个结论是表明位置关系,即平行关系,另一个结论是表明数量关系,即中位线等于第三边的一半,应用时按需选用.3、经过探索式推理得到的定理:经过三角形一边中点与另一边平行的直线平分第三边,可以作为中位线的判定方法.4、利用三角形中位线定理,可判定顺次联结各种不同类型的四边形各边中点所得四边形的形状,它取决于原四边形的两条对角线的位置与长短,一般可归结为:原四边形两条对角线中点四边形互相垂直矩形相等菱形互相垂直且相等正方形既不互相垂直也不相等平行四边形5、由三角形中位线定理可以推得的结论(1)三角形三条中位线组成一个三角形,其周长为原三角形周长一半.(2)三角形三条中位线将原三角形分割成四个全等的三角形.(3)三角形三条中位线可以从原三角形中划分出面积相等的三个平行四边形.6、多边形内角和定理的几种证法(1)在n边形内任取一点,并把这点与各顶点连结起来,共构成n个三角形,这n个三角形的内角和为n·180°,再减去一个周角,即得到多边形的内角和为(n-2)·180°.(2)过n边形一个顶点连对角线,可以得(n-3)条对角线,并且将n边形分成(n-2)个三角形,这(n-2)个三角形的内角和恰好是多边形的内角和,等于(n-2)·180°.(3)在n边形一边上取一点与各顶点相连,得(n-1)个三角形,n边形内角和等于这(n-1)个三角形内角和减去所取点处的一个平角,即(n-1)·180°-180°=(n-2)·180°.注意:以上各推导方法体现将多边形问题转化为三角形问题来解决的基本思想.7、多边形外角和定理的证明多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°,外角和等于n·180°-(n-2)·180°=360°.8、多边形边数与内角和、外角和的关系(1)内角和与边数成正比,边数增加,内角和增加;边数减少,内角和减少.每增加一条边,内角和就增加180°.(反过来也成立)(2)多边形外角和恒等于360°,与边数的多少无关.9、多边形对角线的条数设n边形为A1A2A3…A n则以A1为端点的对角线有A1A3,A1A4,…,A1A n-1共(n-3)条.同理以A2,A3,…,A n为端点的对角线都有(n-3)条.但每条对角线都重复计数了一次,故n边形对角线的总数为.【典型例题】知识点一:三角形的中位线例1、如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:EG、FH互相平分.例2、如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.例3、如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=,则当△ABC+△DCB=90°时,求四边形EGFH的面积.知识点二:多边形的内角和与外角和例1、已知两个多边形的内角和的和为1980°,且这两个多边形的边数之比为2︰3,求这两个多边形的边数.例2、一个多边形除了一个内角外,其余各角的和为2750°.则这一内角是()A.130°B.140°C.150°D.120°1.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8B.10C.12D.142.如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分△BAC3.如图,△ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.12cm B.9cm C.6cm D.3cm4.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A.8B.9C.10D.115.如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12B.14C.16D.186.如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为()A.20cm B.20cm C.20cm D.25cm7.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是()A.6B.8C.18D.278.顺次连接四边形各边中点所得的四边形是()A.平行四边形B.矩形C.菱形D.以上都不对9.如图,点A,B为定点,定直线l△AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:△线段MN的长;△△PAB的周长;△△PMN的面积;△直线MN,AB之间的距离;△△APB的大小.其中会随点P的移动而变化的是()A.△△B.△△C.△△△D.△△10.如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG△CD,交AC 边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.11.己知正多边形的每个外角都是45°,则从这个正多边形的一个顶点出发,共可以作条对角线.12.已知一个多边形的边数恰好是从一个顶点出发的对角线条数的2倍,则这个多边形的边数是,内角和是.13.如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形的周长为.14.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为.15.如图,△ABC中,D、E、F分别是AB、AC、BC的中点.若EF=5cm,则AB=cm;若BC=9cm,则DE=cm;中线AF与DE的关系.16.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为cm.17.如图,D,E,F分别是△ABC的AB,BC,CA边的中点.若△ABC的周长为18cm,则△DEF的周长为.18.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F 分别为线段AB、AC的中点,则线段EF的长度为.19.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.20.已知,如图,E、F分别是AB、AC的中点,△ACD是△ABC的外角,延长EF交△ACD的平分线于G 点,求证:AG△CG.21.探索与证明如图,在△ABC中,BD、CE分别是边AC、AB上的中线,BD与CE相交于点O,M、N分别是BO、CO 的中点,顺次连接E、M、N、D四点.(1)求证:EMND是平行四边形;22.如图,已知△ABC是等边三角形,点D,F分别在线段BC,AB上,连接FC,AD,DE△FC,EF△DC (1)若D,F分别是BC,AB的中点,连接FD,求证:EF=FD;(2)连接AE,若BF=CD,求证:△AED是等边三角形.23.如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接CD,得到四边形ABDC.(1)在图1中顺次连接边AC、AB、BD、CD的中点E、F、G、H,则四边形EFGH的形状是菱形;(2)如图2,若点P是线段AB上任一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,△APC=△BPD,连接CD,得四边形ABDC,则(1)中结论还成立吗?说明理由;(3)如图3,若点P是线段AB外一点,在△APB的外部作△APC和△BPD,使PC=PA,PD=PB,且△APC=△BPD=90°,请你先补全图3,再判断四边形EFGH的形状,并说明理由.【巩固练习】1.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.122.如图,点D、E、F分别是△ABC中AB、BC、AC边上的中点,点M、N、P分别是DE、EF、DF的中点.若△ABC的周长为24,则△PMN的周长为()A.6B.8C.10D.123.直角三角形斜边上的中线与连结两直角边中点的线段的关系是()A.相等且平分B.相等且垂直C.垂直平分D.垂直平分且相等4.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6B.7C.8D.95.一个多边形的外角和与它的内角和的比为1:3,这个多边形的边数是()A.9B.8C.7D.66.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为()A.9B.10C.11D.127.如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2015个三角形的周长为()A.B.C.D.8.如图,已知长方形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC 上从点B向点C移动,而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长先增大后变小9.如图,△ABC中,D、E分别是BC、AC的中点,BF平分△ABC,交DE于点F,若BC=6,则DF的长是()A.3B.2C.D.410.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.11.如图,H是△ABC的边BC的中点,AG平分△BAC,点D是AC上一点,且AG△BD于点G.已知AB=12,BC=15,GH=5,则△ABC的周长为.12.如图,在△ABC中,AB=AC=13,DE是△ABC的中位线,F是DE的中点.已知B(﹣1,0),C(9,0),则点F的坐标为.13.如图,在△ABC中,△ACB=52°,点D,E分别是AB,AC的中点.若点F在线段DE上,且△AFC=90°,则△FAE的度数为°.14.(1)从四边形的一个顶点出发,可以引条对角线,将四边形分成个三角形.(2)从五边形的一个顶点出发,可以引条对角线,将五边形分成个三角形.(3)从六边形的一个顶点出发,可以引条对角线,将六边形分成个三角形.(4)从n边形的一个顶点出发,可以引条对角线,将n边形分成个三角形.15.由n边形的一个顶点可以引条对角线,它们将n边形分为不重叠的个三角形,n边形共有条对角线,12边形共有条对角线.16.已知一个多边形的每一个内角都等于150°,则此多边形从一个顶点出发的对角线共有条,可以将此多边形分成个三角形.17.如图,D是△ABC的BC边的中点,AE平分△BAC,AE△CE于点E,且AB=10,AC=16,则DE的长度为.18.如图,在△ABC中,D,E分别是AB和AC的中点,F是BC延长线上一点,CF=1,DF交CE于点G,且EG=CG,则BC=.19.如图,矩形ABCD中,E、F分别是AB、AD的中点,已知AB=6,AF=4,则AC=.20.已知,D是△ABC内一点,BD△CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,求四边形EFGH的周长.21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:△DHF=△DEF.22.如图1,已知E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.(1)求证:四边形EFGH是平行四边形(提示:可连接AC或BD);(2)在电脑上用适当的应用程序画出图1,然后用鼠标拖动点D,当点D在原四边形ABCD的内部,在原四边形ABCD的外部时,图1依次变为图2、图3.图2、图3中四边形EFGH还是平行四边形吗?选择其中之一说明理由.。

八年级数学上册第五章第2课时三角形的中位线定理及推论的综合运用习题pptx课件鲁教版五四制

八年级数学上册第五章第2课时三角形的中位线定理及推论的综合运用习题pptx课件鲁教版五四制

6
7
8
9
)
【点拨】
∵ AB = AC =15, AD 平分∠ BAC ,
∴点 D 为 BC 的中点.
∵点 E 为 AC 的中点,

∴ DE 为△ ABC 的中位线,∴ DE = AB ,
∴△ ABC 的周长是△ CDE 的周长的两倍,
∴ AB + AC + BC =42,
∴ BC =42-15-15=12.
【答案】 C
1
2
3
4
5
6
7
8
9
4. [2024·济宁期末]如图,在△ ABC 中, AB = AC =15,
AD 平分∠ BAC ,交 BC 于点 D ,点 E 为 AC 的中点,连
接 DE ,若△ CDE 的周长为21,则 BC 的长为(
A. 16
B. 14
C. 12
D. 6
(第4题)
1
2
3
4
5
【答案】 C
1
2
3
4
5
6
7
8
9
5. 如图,在△ ABC 中, AB > AC ,点 D 在边 AC 上.
(1)作∠ ADE ,使∠ ADE =∠ ACB , DE 交 AB 于点 E ;
(尺规作图,保留作图痕迹)
【解】如图,∠ ADE 为所作.
1
2
3
4
5
6
7
8
9
(2)在(1)中,若 BC =5,点 D 是 AC 的中点,求 DE 的长.
(第8题)
1
2
3
4
5
6
7
8
9
8a
.

证明三角形中位线定理向量的方法

证明三角形中位线定理向量的方法

证明三角形中位线定理向量的方法
1什么是位线定理
位线定理(又称三角形内心定理)是一种重要的三角数学定理。

它指出在一个三角形内,三条内角平分线的交点(又称三角形的内心),三条边的延长线的交点都在这三条内角平分线上,而且他们之间的比例是一个常量。

2位线定理向量的表示
位线定理可以用向量表示:若三角形ABC三个顶点处对应的位虚都是β1,β2,β3,则有:
β1A+β2B+β3C=O(该式中A,B,C是相应三个顶点处的向量)。

其中,位虚都是一个常量β。

3向量的诠释
上述式子可以进一步解释为,三个顶点处的向量分别表示三条边的朝向,按照他们的相应长度乘以对应位虚β1,β2,β3,然后把这三条边上的相乘结果相加,结果应该等于零向量。

4发展历程
位线定理由法国数学家瓦尔登提出于1822年,最早被在《朗贝尔几何集》中提出,历久不衰,后来由德国数学家贝克尔博士于1890年重新提出,并用维度假定的定理来证明向量的表示方法。

三角形中位线定理

三角形中位线定理


。B
E
例1:
Байду номын сангаас
已知点O是△ABC内一点,D、E、F、G分 别是AO、BO、CB、CA的中点。
求证:四边形DEFG是平行四边形
C
G
F
O
D A
E B
练习:求证:顺次连结四边形四条边的中点,所得的 四边形是平行四边形
已知:在四边形ABCD中,E.F.G.H 分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形 E
A
D。 。E
B
图1
C
B
D 。 4 。F 53 。
A 图2 E
1.如图1:在△ABC中,DE是中位线 (1)若∠ADE=60°,
则∠B= 60 度,为什么?
(2)若BC=8cm,
则DE= 4 cm,为什么?
2.如图2:在△ABC中,D、E、F分别 是各边中点
AB=6cm,AC=8cm,BC=10cm,
:三角形的中位线平行于第三边,并且等于第三边的 一半
已知:在△ABC 中,DE是△ABC 的中位线 求证:DE ∥ BC,且DE=1/2BC
证明:延 长DE 到 F,使EF=DE ,
A
连 结CF.
D
E
F
B
C
A
D
E
B
C
如果 DE是△ABC的中位线 那么 ⑴ DE∥BC,
⑵ DE=1/2BC
① 证明平行问题 ② 证明一条线段是另一条线段 的2倍或1/2
则△DEF的周长= 12 cm.
C △DEF面积是_________
思考:
如图,在A、B外选一点C,连结AC和BC,
并分别找出AC和BC的中点D、E,如果能测 量出DE的长度,也就能知道AB的距离了。

6.4_三角形的中位线定理

6.4_三角形的中位线定理

猜想:三角形的中位线平行于第 三边,并且等于第三边的一半。
证明:如图,延长DE至F, A
D E
F
使EF=DE,
连接CD、AF、CF
∵AE=EC
∴DE=EF
B C
∴四边形ADCF是平行四边形 ∴AD FC 又D为AB中点, ∴DB FC ∴四边形BCFD是平行四边形 ∴DE// BC 且DE=EF=1/2BC
DE是△ABC的中位线
D 思考: B F
E
C
1、一个三角形有几条中位线? 2、这三条中位线把三角形分成几个三角形?
三角形的中位线与三角形的中线有 什么区别? A A
D E
B F C 中位线是两个中点的连线,而中线是一个 顶点和对边中点的连线。
B
C
如图在等边△ABC中,AD=BD,AE=EC,
△ADE是什么三角形?
对 角 线
互相垂直的四边形各边中点组成______ 矩形 菱形 相等的四边形各边中点组成_____ 相等且互相垂直的四边形各边中点 组成_______ 正方形
怎样将一张三角形硬纸片剪成两部 分,使分成的两部分能拼成一个平行四 边形?
请动手试一试!
A D E (1) C
B D A
E C
B
(2)
问题:A、B两点被池塘隔开,如何 测量A、B两点距离呢?为什么?
A B
A
M
若MN=36 m,则AB=2MN=72 m 如果,MN两点之间还有阻 隔,你有什么解决办法?
C
N
B
在AB外选一点C,使C能直接到达A和B,
连结AC和BC,并分别找出AC和BC的中点M、N. 测出MN的长,就可知A、B两点的距离
已知:E、F、G、H分别是四边形ABCD中AB、 BC、CD、DA的中点。 A H 求证:EFGH是平行四边形。

三角形的中位线及性质PPT课件

三角形的中位线及性质PPT课件
在三角形中,中位线通常用两个大写 字母表示,其中一个是起点,另一个 是终点。
例如,如果中位线连接顶点A和顶点C 的中点,则表示为AC。
三角形中位线的性质
中位线平行于第三边
中位线与第三边平行,这是中位线的基本性质。
中位线长度是第三边的一半
中位线的长度等于第三边长度的一半。
中位线与第三边平行且等长
中位线与第三边平行且长度相等。
线的长度性质。
三角形中位线与第三边之间的角度相等
03
三角形的中位线与第三边之间的角度相等,这是三角形中位线
的角度性质。
三角形中位线的定理
三角形中位线定理
三角形的中位线长度等于第三边长度的一半,即ME=1/2EB,其中ME是中位 线,EB是第三边。
三角形中位线定理的推论
如果一个线段与三角形的两边平行,则该线段被三角形的另一边平分。
过程。
03
三角形中位线的证明
三角形中位线定理的证明方法
位线与底边平行且等于底 边一半的性质,证明中位 线定理。
平行四边形法
构造一个平行四边形,利 用平行四边形的性质,证 明中位线定理。
相似三角形法
通过构造相似三角形,利 用相似三角形的性质,证 明中位线定理。
三角形中位线定理证明的实例
实例一
利用定义法证明中位线定 理
实例二
利用平行四边形法证明中 位线定理
实例三
利用相似三角形法证明中 位线定理
三角形中位线定理证明的注意事项
注意中位线的定义和性质
注意证明方法的选取
在证明过程中,要明确中位线的定义 和性质,确保正确使用。
根据具体的情况,选取适当的证明方 法,以达到简洁明了的证明效果。
05

三角形的中位线

三角形的中位线

【考点精讲】1. 三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。

A BCA BCD DE E F2. 三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

3. 三角形的中位线的作用:一是位置关系,可用来证明线段平行; 二是数量关系,可用来证明线段相等或倍分。

【典例精析】例题1 如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3。

(1)求证:BN =DN ; (2)求△ABC 的周长。

A BCDN12思路导航:(1)证明△ABN ≌△ADN ,即可得出结论;(2)先判断MN 是△BDC 的中位线,从而求出CD 的长,再计算△ABC 的周长即可。

答案:(1)证明:∵BN ⊥AN ,∴∠ANB =∠AND =90°,在△ABN 和△ADN 中,∵⎩⎪⎨⎪⎧∠1=∠2AN =AN ∠ANB =∠AND ,∴△ABN ≌△ADN ,∴BN =DN ; (2)解:∵△ABN ≌△ADN ,∴AD =AB =10,由(1)知DN =BN ,又∵点M 是BC 中点,∴MN 是△BDC 的中位线, ∴CD =2MN =2×3=6,故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41。

点评:本题考查了三角形的中位线定理及等腰三角形的判定,注意培养数学灵感,一般出现高、角平分线重合的情况,都需要找等腰三角形;出现三角形某边的中点,常常构造三角形的中位线。

例题2 如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 的中点,D 、E 为BC 上的点,连接DN ,EM 。

若AB =13cm ,BC =10cm ,DE =5cm ,求图中阴影部分的面积。

A思路导航:连接MN ,根据中位线定理,可得出MN =DE =5cm ;图中阴影部分的面积就是图中三个三角形的面积,由图可知,这三个三角形的底相等都是5cm ,这三个三角形的高之和是从A 点到BC 的垂线段的长,利用勾股定理可求得高的值,据此可求出图中阴影部分的面积。

三角形、梯形的中位线

三角形、梯形的中位线

三角形、梯形的中位线【知识要点】1. 三角形中位线:连结三角形两边中点的线段。

注意:三角形的中位线有3条。

2.梯形的中位线是连结梯形两腰中点的线段。

注意:(1)不是连结两底中点 (2)梯形的中位线是唯一的3.(1)三角形的中位线定理:三角形中位线平行于第三边且等于第三边的一半。

推论:过三角形一边的中点作另一边的平行线,必平分第三边。

(2)梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。

推论:过梯形一腰的中点,作底边的平行线,必平分另一腰。

( ) ( ) 【典型例题】例1.求证:三角形中位线平行于第三边且等于第三边的一半。

例2.如图,在△ABC 中,BD 、CE 为AC 、AB 边上的中线,M 、N 是BG 、CG 的中点。

求证:(1)ME ∥ND ;(2)ME=ND例3.已知:如图所示,正方形ABCD 的对角线交于O ,∠BAC 的平分线交BO 于E ,交BC 于F ,A BC D E A D E F B C ABEDCM NGMN求证:OE=12FC 。

例4.如图,已知在口ABCD 中,BD=2AD ,E 、F 、G 分别是AO 、BO 、CD 的中点。

求证:EF=EG 。

例5.如图,在等腰梯形ABCD 中,AD ∥BC ,AD=24cm ,BC=26cm ,动点P 从A 点开始沿AD 边向D 以1cm/s 的速度运动,动点Q 从C 点开始沿CB 边向B 以3cm/s 的速度运动,P 、Q 分别从A 、C 同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t s ,问t 为何值时,四边形PQCD 是平行四边形;等腰梯形?【练习与拓展】1.梯形的中位线长为8cm ,高为4cm ,则梯形的面积为 。

2.△ABC 的面积为16cm 2,则三条中位线组成的三角形面积为。

3.梯形的中位线长为6,上下底之差等于3,则此梯形上下底长分别为 。

4.顺次连结四边形各边中点所得的四边形常称为中四边形。

梯形、三角形中位线

梯形、三角形中位线

梯形、三角形中位线知识要点:1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

推论1:经过梯形一腰的中点与底平行的直线必平分另一腰。

推论2:经过三角形一边中点与另一边平行的直线必平分第三边。

2.三角形中位线:(1)定义:连结三角形两边中点的线段叫做三角形的中位线。

(2)三角形中位线定理:三角形中位线平行于第三边,并且等于它的一半。

3.梯形中位线:(1)定义:连结梯形两腰中点的线段叫做梯形中位线。

(2)梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。

例题分析第一阶梯[例1]在直角梯形ABCD中,∠D=90°,DC∥AB,若△ABC为等边三角形,其边长为a.求:此梯形的中位线及高.提示:(1)梯形的中位线与梯形的哪些元素有什么样的关系?(2)在图形中,梯形的高是哪条线段?为什么?DC、AB的长通过哪些知识可以求出来?是多少?(3)若求出S△ADC∶S△ABC∶S梯形ABCD的值,你发现面积间的内在联系吗?请总结一下规律.参考答案:说明:若在直角梯形中,有一等边三角形那么梯形的高线对角线与边可以构成三个全等的三角形,则其面积应是相等的.[例2]如图M、E、F分别为△ABC的边BC、AC、AB的中点,AD⊥BC于D.求证:四边形DEFM为等腰梯形.提示:(1)在图形中有几条中位线?它们分别是什么图形的中位线?在数量与位置上分别有什么关系?为什么?(2)要想证明一个四边形是等腰梯形,首先要证什么?然后再证什么?在证明过程中,要注意与什么特殊四边形的判定.在哪有区别?(3)请总结一下此题的证明都用到了哪些知识?参考答案:说明:(1)证明梯形时,可通过一组对边平行,另一组对边不平行,或平行的一组对边不相等,来证,要注意与平行四边形的一组,对边平行且相等的条件相区别.(2)在应用三角形中位线定理时,对结论的选择要由具体情况而定.第二阶梯[例1]已知如图,梯形ABCD中,AD∥BC,AB=DC=12cm,E、F分别是AB、BD的中点,连结EF并延长交DC于G,EF=4cm,FG=10cm.求∠ABC的度数.提示:(1)∠ABC与图形中的哪个角相等,为什么?一般求角的度数,可考虑把这个角放在什么样的图形中?(2)根据条件,可添加什么样的辅助线把条件和结论有机的结合起来,构造特殊的三角形?(3)梯形的高,除了用常规方法求;还有别的方法吗?参考答案:解:在梯形ABCD中∵AD∥BC E、F分别是AB、BD的中点.∴EF∥AD 又E、F、G三点在同一直线上.∴G是DC的中点,EG∥BC ∴AD∥EG∥BC.∵AB=DC ∴∠ABC=∠C作DM⊥BC交BC于M.∵EF=4 FG=10 ∴AD=8 BC=20∴MC∵在Rt△DMC中,DC=12 MC=6 ∴∠C=60°说明:(1)等腰梯形具有对称性,所以MC的长度是上、下底差的一半(2)G是DC的中点,要证明,不能默认,EF∥AD利用了中位线的定义及中位线定理,FG ∥BC利用了平行线等分线段定理的推论.[例2]求证:连结梯形两条对角线的中点的线段平行于两底,并且等于两底差的一半.已知:在梯形ABCD中,AB∥CD,M、N分别为对角成AC、BD的中点.求证:(1)MN∥AB∥DC (2)MN=(AB-CD)提示:(1)如何添加辅助线,使MN是某个三角形的中位线?(2)AB与CD的差,可以通过构造什么样的特殊图形表示在AB线段上?点M或点N是否在构造的图形边上?(3)此题还有别的方法吗?请试一试.参考答案:证明:(1)连结CN并延长交AB于E,在梯形ABCD中,AB∥CD∴∠1=∠2 ∠CND=∠ENB BN=ND∴△CDN≌△EBN(ASA)∴CN=EN BE=CD.∴N是CE的中点在△CEA中,M是AC的中点.∴MN∥AE 即MN∥AB ∴MN∥AB∥DC.(2)由(1)可知AB-AE=BE=CD.∴AB-CD=AE 又MN=AE∴.方法二:取AC的中点F,连结NF交AD于M′,梯形ABCD中,AB∥DC∵N为BC的中点,在△ABC中.NF∥AB NF=AB ∴NF∥AB∥DC(三角形的中位线平行于第三边且等于它的一半)∴M′是AD的中点(一组平行线在一条直线上截得的线段相等,在其它的直线上截得的线段也相等)又M是AD的中点∴M与M′重合,即点M在NF上.∴NF=AB MF=DC.∵MN=NF-MF=AB-DC=(AB-DC)∴说明:说明一、(1) N是CE的中点,必须要进行证明.(2)请注意辅助线的作法,是连结CN并延长交AB于E,并不是过C(或N)作DA的平行线,若作平行线,要证过N点.(3)此题还可用同一法证明:即取DA的中点F,连结NF交AC于M′,证明M与M′重合,此法易出错,要特别注意.说明二、(1)菱形常用的判定方法:①从四边形考虑:)四条边相等的四边形)对角线互相垂直平分的四边形②从平行四边形考虑:)一组邻边相等的平行四边形;)对角线相垂直的平行四边形。

3角形中位线定理

3角形中位线定理

3角形中位线定理三角形中位线定理,是在三角形中,与三条相邻边的中点相连的线段,它们构成的三个交点都在同一点上。

本文将从定理的证明、推广应用、例题等三个方面进行阐述。

一、定理的证明证明思路:设三角形ABC的三边分别为a、b、c,D为BC的中点,E为AC的中点,F 为AB的中点,则连接AD、BE、CF的交点为G。

则需证明AD、BE、CF三条线段的交点G是一个固定点。

证明:由于D、E、F都是各边中点,可得:∵ D是BC的中点,∴ BD = DC;又∵ G是AD与BE的交点,故可以得出:∵ D、E分别为BC和AC的中点,∴ DE // AC,同时AE = EC,∴ △AED与△CEB 相似。

$\frac{GA}{BD}=\frac{GC}{CE}$又 $\because BD=DC$ , $\therefore GA=GC$同理可得:于是,我们得到了两个相等的值:GA=GC,GB=GC。

由此,可知三角形GAC是一个等腰三角形,且AG与CF之间的线段垂直于CF,同理可得:因为三角形GAC、GBA、CBG均拥有最长边CG,所以它们就构成了一个共同的圆,而这个圆的中心就是点G。

因此可以得知:三角形ABC的三边中位线的交点G是一个固定点。

二、推广应用利用中位线定理,我们可以推导容易证明的三条定理和一个相关问题:中位线长定值定理、七分线长定值定理、以及在四边形中应用中位线定理、解决中位线问题。

1. 中位线长定值定理在三角形中,如果其中一条中位线相等,那么这个三角形就是等边三角形。

设△ABC为等边三角形,则BD、AE、CF三条中位线的长度均为$\frac{1}{2}$边长,又 $\because BD=AE=CF$ ,所以可以得到:BD=AE=CF=$\frac{1}{2}$a=a,同理可得:b=c=a。

在三角形中,三条中位线可将它们所在线段的长分为1:2:3的比例。

首先,由于三角形的三角形内部对角线互不交于同一点,那么三角形内部的线段AB、AC、BC是不会共线的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形中位线定理及推论
一、三角形中位线定理
三角形中位线定理是指在任意三角形中,连接一个顶点与对边中点的线段称为中位线,三条中位线交于一点,且该点与三个顶点的距离相等。

具体表述为:三角形三条中位线的交点与三个顶点的距离相等。

以三角形ABC为例,连接顶点A与边BC的中点D,顶点B与边AC 的中点E,顶点C与边AB的中点F,根据中位线定理可知,中位线AD、BE和CF三条线段交于一点G,并且AG=BG=CG。

中位线定理的证明可以通过向量法或平面几何法进行,这里我们选择平面几何法证明。

证明思路如下:
1. 连接顶点A与边BC的中点D,假设点G是中位线AD与中位线BE 的交点;
2. 连接顶点B与边AC的中点E;
3. 通过顶点C以平行于边AB的直线与中位线AD交于点H;
4. 由平行线的性质可知,AH=CH;
5. 进一步,由三角形的对应边成比例可得:AH/AD=CH/CF;
6. 由于AH=CH,所以AD=CF;
7. 同样地,由中位线定理可得:BE=CF;
8. 综上所述,AD=BE=CF,即证明了中位线定理。

二、三角形中位线推论
基于中位线定理,我们可以得出一些有关三角形的推论。

1. 三角形中位线长度关系推论
根据中位线定理,三角形三条中位线的交点与三个顶点的距离相等,即AG=BG=CG。

由此可得,中位线上的点距离顶点的距离是相等的。

进一步推论,三角形中位线的长度满足以下关系:AG=2GD,BG=2GE,CG=2GF。

2. 三角形中位线与三角形面积推论
由三角形中位线定理可知,三条中位线交于一点G。

以G为顶点,三边中点分别为D、E、F,连接DG、EG和FG。

我们可以发现,连接
G与三角形顶点的线段将三角形分成了六个小三角形,而这些小三角形的面积相等。

因此,我们可以推论得到:三角形中位线所分割的三个小三角形的面积相等。

3. 三角形中位线与三角形高度推论
在三角形中,如果我们将中位线作为底边,那么与之对应的高度就是顶点到底边中点的距离。

根据中位线定理可知,三角形三条中位
线的交点与三个顶点的距离相等,而中位线的中点即为底边中点。

因此,我们可以推论得到:三角形中位线与三角形高度相等。

4. 三角形中位线长度与三角形边长关系推论
设三角形的边长分别为a、b、c,根据中位线定理可知,中位线上的点距离顶点的距离是相等的。

由此可得,AG=BG=CG=1/2 * c。

进一步推论,三角形中位线的长度与三角形的边长存在以下关系:AG=BG=CG=1/2 * c。

三角形中位线定理及其推论可以帮助我们更好地理解和应用三角形的性质。

通过这些定理和推论,我们可以推导出一些有关三角形边长、面积和高度的关系,为解决实际问题提供了便利。

在几何学和工程学中,中位线定理及其推论有着广泛的应用价值。

相关文档
最新文档