常见函数定义域总结
函数知识点总结
![函数知识点总结](https://img.taocdn.com/s3/m/6f50df2da55177232f60ddccda38376baf1fe091.png)
函数知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!函数知识点总结函数知识点总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它是增长才干的一种好办法,是时候写一份总结了。
函数的概念及定义域、值域基本知识点总结.doc
![函数的概念及定义域、值域基本知识点总结.doc](https://img.taocdn.com/s3/m/46ee7d5f6c175f0e7cd137b7.png)
函数的概念及定义域.值域基本知识点总结函数概念1.映射的概念设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。
2.函数的概念(1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常⑵函数的定义域、值域在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。
(3)函数的三要素:定义域、值域和对丿应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式來表示。
4.分段函数在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。
(-)考点分析考点1:映射的概念例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ;(2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ;(3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x .上述三个对应是A到B的映射.例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对(4)8 个(3)12 个(C)16 个(0)18 个M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是()考点2:判断两函数是否为同一个函数例1.试判断以下各组函数是否表示同一函数?(1) /(X )= , g(x) = V?":⑶ /(x) = 2n ^X^ , g(X )= (2“V7)2"T (/7GN 4);(4) /(x) = Vx Jx + 1 , g(x) = Jx ,十 x ;(5) /(x) = x 2 -2x -1, g(t) = t 2 -2r -1 考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2) 若已知复合函数f[g(x)]的解析式,则可用换元法或配凑法;(3) 若已知抽象函数的表达式,则常用解方程组消参的方法求出/(%)题型1:由复合函数的解析式求原来函数的解析式例1.已知二次函数/(X )满足/(2X + 1) = 4X 2-6X + 5,求/U)(三种方法)| + V* | _ Y 2例2. (09湖北改编)已知/(-—)=—v ,则/(X )的解析式可取为 l-x 1 + JC题型2:求抽象函数解析式例1.已知函数/⑴满足/U) + 2/(-) = 3x,求/⑴函数的定义域题型1:求有解析式的函数的定义域(1) 方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的X 的取值范 围,实际操作时要注意:酚母不能为0;②对数的真数必须为正;酬次根式中被开方数应 为非负数;歿指数幕中,底数不等于0;矽分数指数幕中,底数应人于0;魁解析式由 儿个部分组成,则定义域为各个部分相应集合的交集;⑦n 果涉及实际问题,还应使得实际 问题有意义,而11注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义 域不耍漏写。
完整版)专升本高等数学知识点汇总
![完整版)专升本高等数学知识点汇总](https://img.taocdn.com/s3/m/81c1ec1159fb770bf78a6529647d27284b733795.png)
完整版)专升本高等数学知识点汇总常用的高等数学知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
2) y=1/x,分式形式的定义域为x≠0.3) y=sqrt(x),x根式的形式定义域为x≥0.4) y=log_a(x),对数形式的定义域为x>0.二、函数的性质1、函数的单调性:当x1<x2时,恒有f(x1)<f(x2),f(x)在x1,x2所在的区间上是增加的。
当x1<x2时,恒有f(x1)>f(x2),f(x)在x1,x2所在的区间上是减少的。
2、函数的奇偶性:定义函数y=f(x)的定义区间D关于坐标原点对称,若x∈D,则有- x∈D:1) 偶函数f(x)——对于任意x∈D,恒有f(-x)=f(x)。
2) 奇函数f(x)——对于任意x∈D,恒有f(-x)=-f(x)。
三、基本初等函数1、常数函数:y=c,定义域为(-∞,+∞),图形是一条平行于x轴的直线。
2、幂函数:y=x^u,(u是常数)。
它的定义域随着u的不同而不同。
图形过原点。
3、指数函数:定义y=f(x)=a^x,(a是常数且a>0,a≠1)。
图形过(0,1)点。
4、对数函数:定义y=f(x)=log_a(x),(a是常数且a>0,a≠1)。
图形过(1,0)点。
5、三角函数:1) 正弦函数:y=sin(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
2) 余弦函数:y=cos(x),T=2π,D(f)=(-∞,+∞),f(D)=[-1,1]。
3) 正切函数:y=tan(x),T=π,D(f)={x|x∈R,x≠(2k+1)π/2,k∈Z},f(D)=(-∞,+∞)。
4) 余切函数:y=cot(x),T=π,D(f)={x|x∈R,x≠kπ,k∈Z},f(D)=(-∞,+∞)。
四、极限一、求极限的方法:1、代入法:将x的值代入函数中求得对应的y值。
改写后的文章:高等数学中常用的知识点汇总如下:一、常见函数的定义域总结如下:1) y=kx+b,y=ax^2+bx+c,一般形式的定义域为x∈R。
常见函数定义域和值域
![常见函数定义域和值域](https://img.taocdn.com/s3/m/a155026f182e453610661ed9ad51f01dc28157ee.png)
常见函数定义域和值域1. 线性函数 f(x) = mx + b定义域: 实数集 R值域: 实数集 R2. 二次函数f(x) = ax^2 + bx + c (a ≠ 0)定义域: 实数集 R值域: 当 a > 0 时, 值域为 [c - b^2 / (4a), +∞)当 a < 0 时, 值域为 (-∞, c - b^2 / (4a)]3. 平方根函数f(x) = √x定义域: [0, +∞)值域: [0, +∞)4. 绝对值函数 f(x) = |x|定义域: 实数集 R值域: [0, +∞)5. 分数函数 f(x) = 1 / x定义域: 实数集 R 除去 0值域: 实数集 R 除去 06. 指数函数f(x) = a^x (a > 0, a ≠ 1)定义域: 实数集 R值域: 当 a > 1 时, 值域为(0, +∞)当 0 < a < 1 时, 值域为(0, +∞)7. 对数函数f(x) = log_a(x) (a > 0, a ≠ 1)定义域: (0, +∞)值域: 实数集 R8. 三角函数正弦函数 f(x) = sin(x)定义域: 实数集 R值域: [-1, 1]余弦函数 f(x) = cos(x)定义域: 实数集 R值域: [-1, 1]正切函数 f(x) = tan(x)定义域: 实数集 R 除去(2n + 1)π/2, n 为整数值域: 实数集 R以上是一些常见函数的定义域和值域的介绍。
需要注意的是,一些函数的定义域和值域可能会受到其他条件的限制,因此在实际应用中需要进一步分析。
基本初等函数知识总结
![基本初等函数知识总结](https://img.taocdn.com/s3/m/43481940551810a6f52486f5.png)
基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。
高中函数定义域知识点总结
![高中函数定义域知识点总结](https://img.taocdn.com/s3/m/e9f2e464c950ad02de80d4d8d15abe23482f03d3.png)
高中函数定义域知识点总结高一新生要依据自己的条件,以及高中阶段学科学问交叉多、综合性强,以及考查的学问和思维触点广的特点,那么接下来给大家共享一些关于高中函数定义域学问,盼望对大家有所关心。
高中函数定义域学问定义域(高中函数定义)设A,B是两个非空的数集,假如按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量全部值的集合常用的求值域的(方法)(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。
平常数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就减弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使同学对函数的把握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于相互转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
假如函数的值域是无限集的话,那么求函数值域不总是简单的,反靠不等式的运算性质有时并不能奏效,还必需联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值状况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,假如加强了对值域求法的讨论和争论,有利于对定义域内函的理解,从而深化对函数本质的熟悉。
“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中常常遇到的两个概念,很多同学经常将它们混为一谈,实际上这是两个不同的概念。
高中函数定义域知识点总结
![高中函数定义域知识点总结](https://img.taocdn.com/s3/m/6b726c1f42323968011ca300a6c30c225901f0e2.png)
高中函数定义域知识点总结高中函数定义域知识定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。
其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。
“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。
“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。
函数定义域、值域求法总结(精彩)
![函数定义域、值域求法总结(精彩)](https://img.taocdn.com/s3/m/30c6b7ff9b6648d7c1c746b7.png)
函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
这些解题思想与方法贯穿了高中数学的始终。
常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为[1,1],求函数)41(+=x f y )41(-⋅x f 的定义域第一页解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数定义域值域求法总结
![函数定义域值域求法总结](https://img.taocdn.com/s3/m/e57586885727a5e9856a61f4.png)
注:对于二次函数 ,
⑴若定义域为R时,
①当a>0时,则当 时,其最小值 ;
②当a<0时,则当 时,其最大值 .
⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].
①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,
所求的函数值域为{y|y≤4/3}。
小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
②∵顶点横坐标2 [3,4],
当x=3时,y=-2;x=4时,y=1;
∴在[3,4]上, =-2, =1;值域为[-2,1].
③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,
∴在[0,1]上, =-2, =1;值域为[-2,1].
④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3,x=5时,y=6,
(提示:定义域是自变量x的取值范围)
练习:
已知f(x2)的定义域为[-1,1],求f(x)的定义域
若 的定义域是 ,则函数 的定义域是( )
A. B C. D.
已知函数 的定义域为A,函数 的定义域为B,则( )
A. B.B C. D.
2、求值域问题
利用常见函数的值域来求(直接法)
一次函数y=ax+b(a 0)的定义域为R,值域为R;
(注意:f(x)中的x与f(2x-1)中的x不是同一个x,即它们意义不同。)
高中数学函数知识点总结
![高中数学函数知识点总结](https://img.taocdn.com/s3/m/8c23235a1fd9ad51f01dc281e53a580216fc5000.png)
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
函数定义域总结
![函数定义域总结](https://img.taocdn.com/s3/m/0f4b61c3f9c75fbfc77da26925c52cc58bd690d5.png)
函数定义域总结
函数定义域是指函数的能够接受哪些特定输入值的集合。
在函数中,
定义域可以是一个单独的值,也可以是一个区间,或者一个多个值的集合。
单独值表示只能输入一个特定值,而区间则表示能输入一定范围内的值,如[1,10]表示只能输入从1到10的值,范围可以是开区间、闭区间、半开半闭区间等。
多个值的集合表示可以输入哪些特定值,如{1,2,3}表
示只能输入1,2,3这三个数据。
同时,也有可以接受所有可能值的定义域,用通用的∀表示,这表示
该函数的定义域是所有的实数,或其他类型的变量。
定义域跟函数图像有关,它规定了函数值的取值范围。
对于定义域为[a,b]的函数,其函数图像会以位于a和b之间的点为轴,以[a,b]为定义域,以[a,b]为值域,绘制出一个完整的函数曲线。
另外,定义域的取值类型也会影响函数的表示方式,如定义域是整数,函数可以用函数表或部分导函数表示,如果定义域是实数,函数可以用函
数图像表示。
总之,函数定义域是指函数能够接受哪些特定输入值的集合,它影响
函数的表示方式,也决定了函数图像的形状。
函数值域定义域解析式方法总结
![函数值域定义域解析式方法总结](https://img.taocdn.com/s3/m/347002bcf524ccbff1218487.png)
函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零 (2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。
2、求值域问题例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9 例9求函数x x y 2231+-⎪⎭⎫ ⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域例11 求函数21+-=x x y 的值域 例12 求函数133+=x xy 的值域 练习:y =1212+-x x ;(y ∈(-1,1)) 例13 函数1122+-=x x y 的值域 例14 求函数34252+-=x x y 的值域 例15 函数11++=x x y 的值域 三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
函数定义域 函数值域高一数学知识点总结
![函数定义域 函数值域高一数学知识点总结](https://img.taocdn.com/s3/m/182842085b8102d276a20029bd64783e09127dd8.png)
函数定义域函数值域高一数学知识点总结函数定义域函数值域高一数学知识点总结「篇一」一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:2. 求函数定义域常见的用解析式表示的函数f(x)的.定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R。
②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。
③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。
④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。
⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。
⑥复合函数的定义域是复合的各基本的函数定义域的交集。
⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。
3. 求函数值域(1)、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域;(2)、配方法;如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域;(3)、判别式法:(4)、数形结合法;通过观察函数的图象,运用数形结合的方法得到函数的值域;(5)、换元法;以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域;(6)、利用函数的单调性;如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域;(7)、利用基本不等式:对于一些特殊的分式函数、高于二次的函数可以利用重要不等式求出函数的值域;(8)、最值法:对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域;(9)、反函数法:如果函数在其定义域内存在反函数,那么求函数的值域可以转化为求反函数的定义域。
函数的定义域和值域知识题型总结(含答案)
![函数的定义域和值域知识题型总结(含答案)](https://img.taocdn.com/s3/m/e6c6983a48d7c1c708a145fb.png)
函数得定义域与值域一、定义域:1。
函数得定义域就就是使函数式得集合、2。
常见得三种题型确定定义域:①已知函数得解析式,就就是、②复合函数f [g(x)]得有关定义域,就要保证内函数g(x)得域就是外函数f (x)得域、③实际应用问题得定义域,就就是要使得有意义得自变量得取值集合、二、值域:1。
函数y=f(x)中,与自变量x得值得集合、2.常见函数得值域求法,就就是优先考虑,取决于 ,常用得方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为法与法)例如:①形如y=,可采用法;②y=,可采用法或法;③y=a[f(x)]2+bf (x)+c,可采用法;④y=x-,可采用法;⑤y=x-,可采用法;⑥y=可采用法等、典型例题例1、求下列函数得定义域:(1)y=;(2)y=; (3)y=、解:(1)由题意得化简得即故函数得定义域为{x|x〈0且x≠—1}、(2)由题意可得解得故函数得定义域为{x|—≤x≤且x≠±}、(3)要使函数有意义,必须有即∴x≥1,故函数得定义域为[1,+∞)、变式训练1:求下列函数得定义域:(1)y=+(x—1)0 ; (2)y=+(5x-4)0; (3)y=+lgcosx;解:(1)由得所以-3〈x〈2且x≠1、故所求函数得定义域为(—3,1)∪(1,2)、(2)由得∴函数得定义域为(3)由,得借助于数轴,解这个不等式组,得函数得定义域为例2、设函数y=f(x)得定义域为[0,1],求下列函数得定义域、(1)y=f(3x); (2)y=f();(3)y=f(; (4)y=f(x+a)+f(x-a)、解:(1)0≤3x≤1,故0≤x≤,y=f(3x)得定义域为[0, ]、(2)仿(1)解得定义域为[1,+∞)、(3)由条件,y得定义域就是f与定义域得交集、列出不等式组故y=f得定义域为、(4)由条件得讨论:①当即0≤a≤时,定义域为[a,1—a];②当即-≤a≤0时,定义域为[-a,1+a]、综上所述:当0≤a≤时,定义域为[a,1-a];当—≤a≤0时,定义域为[—a,1+a]、(0<a<)得定义域就是( ) 变式训练2:若函数f(x)得定义域就是[0,1],则f(x+a)·f(x—a)A、 B、[a,1—a] C、[—a,1+a]D、[0,1]解: B例3、求下列函数得值域:(1)y= (2)y=x—;(3)y=、解:(1)方法一(配方法)∵y=1—而∴0〈∴∴值域为、方法二 (判别式法)由y=得(y-1)∵y=1时,1、又∵R,∴必须=(1-y)2—4y(y-1)≥0、∴∵∴函数得值域为、(2)方法一(单调性法)定义域,函数y=x,y=-均在上递增,故y≤∴函数得值域为、方法二 (换元法)令=t,则t≥0,且x=∴y=-(t+1)2+1≤(t≥0),∴y∈(—∞,]、(3)由y=得,ex=∵ex>0,即>0,解得-1<y<1、∴函数得值域为{y|—1〈y〈1}、变式训练3:求下列函数得值域:(1)y=; (2)y=|x|、解:(1)(分离常数法)y=-,∵≠0,∴y≠-、故函数得值域就是{y|y∈R,且y≠-}、(2)方法一(换元法)∵1-x2≥0,令x=sin,则有y=|sincos|=|sin2|,故函数值域为[0,]、方法二y=|x|·∴0≤y≤即函数得值域为、例4.若函数f(x)=x2-x+a得定义域与值域均为[1,b](b>1),求a、b得值、解:∵f(x)=(x-1)2+a-、∴其对称轴为x=1,即[1,b]为f(x)得单调递增区间、∴f(x)min=f(1)=a—=1①f(x)max=f(b)=b2—b+a=b ②由①②解得变式训练4:已知函数f(x)=x2—4ax+2a+6(x∈R)、(1)求函数得值域为[0,+∞)时得a得值;(2)若函数得值均为非负值,求函数f(a)=2—a|a+3|得值域、解:(1)∵函数得值域为[0,+∞),∴Δ=16a2—4(2a+6)=02a2-a-3=0∴a=-1或a =、(2)对一切x∈R,函数值均非负,∴Δ=8(2a2-a-3)≤0-1≤a≤,∴a+3>0,∴f(a)=2-a(a+3)=-a2-3a+2=-(a+)2+(a)、∵二次函数f(a)在上单调递减,∴f(a)min=f=—,f(a)max=f(-1)=4,∴f(a)得值域为、小结归纳1。
高中数学函数定义域知识点总结
![高中数学函数定义域知识点总结](https://img.taocdn.com/s3/m/6794bf52a76e58fafab003bd.png)
a 变化对图象的影 响
在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.
五、对数函数
(1)对数的定义
①若 ax =N (a > 0,且a ≠ 1) ,则 x 叫做以 a 为底 N 的对数,记作 x = loga N ,其
中 a 叫做 底数, N 叫做真数. ②负数和零没有对数.
③对数式与指数式的互化: x= loga N ⇔ ax = N (a > 0, a ≠ 1, N > 0) .
2a
2a
当x=
−b 2a
时,fmin (x) =
4ac − b2 4a
;当 a < 0 时,抛物线开口向下,函数在 (−∞, − b ] 2a
上递增,在[− b , +∞) 上递减,当 x = 2a
−b 2a
时,
fmax (x) =
4ac − b2 4a
.
三、幂函数
(1)幂函数的定义 一般地,函数 y = xα 叫做幂函数,其中 x 为自变量,α 是常数.
① 加 法 : loga M + loga N = loga (MN ) loga M − loga N = loga MN
②减法:
③数乘:= n loga M loga M n (n ∈ R)
⑤
log= ab M n
n b
loga
M
(b
≠
0,
n
∈
R)
loga N=
logb N (b > 0,且b ≠ 1) logb a
过定点
图象过定点 (0,1) ,即当 x = 0 时, y = 1.
奇偶性 单调性
函数值的 变化情况
(完整版)高中数学-函数定义域、值域求法总结
![(完整版)高中数学-函数定义域、值域求法总结](https://img.taocdn.com/s3/m/2070414c0c22590103029d05.png)
函数定义域、值域求法总结一.求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
定义域的求法1、直接定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(解:①∵x-2=0,即x=2时,分式21-x 无意义, 而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 2 定义域的逆向问题例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 (定义域的逆向问题) 解:∵定义域是R,∴恒成立,012≥+-a ax ax∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于练习:322log+-=mx x y 定义域是一切实数,则m 的取值范围;3 复合函数定义域的求法例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
定义域知识点总结
![定义域知识点总结](https://img.taocdn.com/s3/m/ecf3133b00f69e3143323968011ca300a7c3f66e.png)
定义域知识点总结在代数学中,函数定义域是实数集合,通常是我们可以输入到函数中的实数的所有值。
定义域可以是有限的或者无限的,并且可以包含实数的所有值或者一部分值。
在一元函数的情况下,定义域通常是函数可以接受的所有实数的范围。
但是在多元函数的情况下,定义域可能受到更多的限制,因为函数的定义域涉及到多个变量的取值范围。
定义域的概念对于理解函数的性质和图像是非常重要的。
一个函数的定义域决定了函数的每个点的横坐标的取值范围。
在绘制函数的图像时,定义域的概念可以帮助我们确定函数图像的水平方向的范围。
以下是一些关于定义域的重要知识点总结:1. 函数的定义域是实数集合中的一部分,它是函数定义的自变量可以取值的范围。
2. 函数的定义域可以是有限的或者无限的,也可以是单个数或者数轴上的一段连续区间。
3. 定义域的概念对于理解函数的性质和图像是非常重要的。
4. 在一元函数的情况下,定义域通常是函数可以接受的所有实数的范围。
5. 在多元函数的情况下,定义域可能受到更多的限制,因为函数的定义域涉及到多个变量的取值范围。
6. 在绘制函数的图像时,定义域的概念可以帮助我们确定函数图像的水平方向的范围。
7. 对于有理函数、指数函数、对数函数等特定类型的函数,定义域需要根据函数的性质和特点来确定。
在求函数的定义域时,可以根据函数的性质和特点来确定具体的取值范围。
下面以一些常见的函数类型来说明如何确定函数的定义域。
1. 多项式函数对于一元多项式函数f(x) = a0xn + a1xn−1 + ... + an−1x + an,它的定义域是实数集合R。
因为实数集合包含了所有实数,多项式函数的定义域也就是所有实数的范围。
2. 有理函数对于一元有理函数f(x) = P(x)/Q(x),其中P(x)和Q(x)都是多项式函数,它的定义域是除去使得分母等于0的x值的所有实数集合。
因为有理函数的定义域受到分母的限制,所以需要排除分母为0的情况。
函数的概念及定义域、值域基本知识点总结.doc
![函数的概念及定义域、值域基本知识点总结.doc](https://img.taocdn.com/s3/m/46ee7d5f6c175f0e7cd137b7.png)
函数的概念及定义域.值域基本知识点总结函数概念1.映射的概念设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。
2.函数的概念(1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常⑵函数的定义域、值域在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。
(3)函数的三要素:定义域、值域和对丿应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式來表示。
4.分段函数在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。
(-)考点分析考点1:映射的概念例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ;(2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ;(3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x .上述三个对应是A到B的映射.例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对(4)8 个(3)12 个(C)16 个(0)18 个M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是()考点2:判断两函数是否为同一个函数例1.试判断以下各组函数是否表示同一函数?(1) /(X )= , g(x) = V?":⑶ /(x) = 2n ^X^ , g(X )= (2“V7)2"T (/7GN 4);(4) /(x) = Vx Jx + 1 , g(x) = Jx ,十 x ;(5) /(x) = x 2 -2x -1, g(t) = t 2 -2r -1 考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2) 若已知复合函数f[g(x)]的解析式,则可用换元法或配凑法;(3) 若已知抽象函数的表达式,则常用解方程组消参的方法求出/(%)题型1:由复合函数的解析式求原来函数的解析式例1.已知二次函数/(X )满足/(2X + 1) = 4X 2-6X + 5,求/U)(三种方法)| + V* | _ Y 2例2. (09湖北改编)已知/(-—)=—v ,则/(X )的解析式可取为 l-x 1 + JC题型2:求抽象函数解析式例1.已知函数/⑴满足/U) + 2/(-) = 3x,求/⑴函数的定义域题型1:求有解析式的函数的定义域(1) 方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的X 的取值范 围,实际操作时要注意:酚母不能为0;②对数的真数必须为正;酬次根式中被开方数应 为非负数;歿指数幕中,底数不等于0;矽分数指数幕中,底数应人于0;魁解析式由 儿个部分组成,则定义域为各个部分相应集合的交集;⑦n 果涉及实际问题,还应使得实际 问题有意义,而11注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义 域不耍漏写。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见函数定义域总结
在数学中,函数是一种将一个集合中的每个元素(称为定义域的
元素)映射到另一个集合中的唯一元素(称为值域的元素)的规则。
函数定义域是指函数的自变量可以取的值的集合,它决定了函数的合
法输入范围。
在学习和使用函数时,了解常见函数的定义域是非常重
要的。
本文将总结一些常见函数的定义域,并探讨它们的特点和应用。
一、常线性函数的定义域
线性函数是最简单的函数之一,它的定义域通常是整个实数集。
线性函数的表达式为:
f(x) = ax + b
其中a和b是常数。
无论a和b的取值如何,线性函数的定义域
都是整个实数集。
这意味着线性函数对于任何实数都有定义。
线性函
数在代数、几何和物理等领域都有广泛应用,例如线性方程组的求解、直线的图像等。
二、指数函数的定义域
指数函数是以常数e(自然对数的基数)为底的函数,它的定义
域是整个实数集。
指数函数的表达式为:
f(x) = a^x
其中a是正实数,且a≠1。
指数函数的定义域为负无穷到正无穷。
指数函数常见于统计学、生物学和金融学等领域,用于描述指数增长
或衰减的现象。
三、对数函数的定义域
对数函数是指数函数的反函数,它的定义域是正实数集。
对数函数的表达式为:
f(x) = log_a(x)
其中a是大于0且不等于1的实数。
对数函数的定义域为0到正无穷。
对数函数广泛应用于科学计算、信号处理和密码学等领域,例如在解决指数方程时,我们常常使用对数函数将次方转化为对数。
四、三角函数的定义域
三角函数是一类周期函数,常见的有正弦函数、余弦函数和正切函数等。
它们的定义域为整个实数集。
三角函数的表达式为:
f(x) = sin(x), f(x) = cos(x), f(x) = tan(x)
其中x为实数。
三角函数在几何学、物理学和工程学等领域有广泛应用,用于描述周期性变化的现象。
五、根式函数的定义域
根式函数是以根式为表达式的函数,它的定义域取决于根式中的实数。
常见的根式函数有平方根函数、立方根函数等。
根式函数的定义域一般是根式中的实数使得表达式合法的集合。
根式函数在数学分析、物理学和工程学等领域有重要应用,例如在解决方程时,经常需要求根式函数的值。
通过对常见函数的定义域进行总结,我们可以更加清楚地了解函数的合法输入范围和特点。
函数的定义域是函数是否有意义的重要标准,它决定了函数是否能够计算出有意义的结果。
在解决数学问题和实际应用中,正确理解和使用函数的定义域是非常关键的。
本文通过介绍常见函数的定义域,希望能够帮助读者更好地理解和应用函数的概念。