自然界中的元素 氮的循环
氮元素在自然界中的循环
氮元素在自然界中的循环氮元素在自然界中的循环氮是地球上最丰富的元素之一,它是生命体中不可缺少的元素。
氮的循环是生态系统中一个非常重要的过程,它影响着生物多样性和生态系统的稳定性。
本文将详细介绍氮元素在自然界中的循环。
1. 氮元素的来源氮元素最主要的来源是大气中78%的空气成分——氮气(N2)。
但是,大多数生物无法直接利用大气中的氮,因为N2分子非常稳定,需要高能输入才能将其转化为可利用形式。
此外,土壤和水体也含有一些可利用形式的氮元素,如铵离子(NH4+)、硝酸盐(NO3-)等。
2. 固定固定是指将大气中不可利用形式的N2转化为可利用形式。
这个过程主要由两种微生物完成:一种是根瘤菌,它们与豆科植物共生,在植株根部结出小块状物——根瘤,在根瘤内部固定了大量N2;另一种微生物则存在于土壤和水体中,它们能够利用高能输入将N2转化为铵离子或硝酸盐。
3. 氮素的生物利用氮元素是构成生命体的重要元素之一,它参与到蛋白质、核酸等重要物质的合成中。
植物通过根部吸收土壤中的铵离子和硝酸盐,并将其转化为氨基酸等有机分子,进而合成蛋白质。
动物则通过食物链摄取植物中的氮元素,将其转化为自身所需的有机分子。
4. 氮素的循环氮元素在生态系统中不停地循环着。
当动植物死亡或排泄出废物时,其中含有大量的氮元素。
这些残体和废物被微生物分解,释放出铵离子和硝酸盐等可利用形式的氮元素。
这些可利用形式的氮又被其他植物吸收利用,或者被微生物再次固定为N2释放到大气中。
5. 氮素在人类活动中的影响人类活动对于氮循环产生了巨大影响。
农业生产中使用了大量的化肥,这些化肥中含有大量的铵离子和硝酸盐等可利用形式的氮元素。
这些氮元素被作物吸收利用,但也会随着农业废水和农田流失到水体中,导致水体富营养化等问题。
此外,人类活动还导致了大量的氮氧化物(NOx)和氨(NH3)排放到大气中,加剧了酸雨和温室效应等环境问题。
结论综上所述,氮元素在自然界中的循环是一个复杂而重要的过程。
自然界氮循环过程
自然界氮循环是描述氮在自然界中如何被循环和再利用的过程。
氮是生物体的重要组成元素,对生命活动有着至关重要的作用。
然而,大气中的氮气(N2)对于大多数生物来说是无法直接利用的,因此需要通过一系列的化学反应和生物过程,将氮气转化为生物可利用的氮化合物。
氮循环的主要环节包括氮的固定、氨化作用、硝化作用、反硝化作用和有机氮的合成。
首先,氮的固定是将大气中的氮气转化为氨或其他含氮化合物的过程。
这个过程可以分为生物固氮和非生物固氮两种。
生物固氮主要是由一些特定的微生物(如豆科植物根瘤菌)完成的,而非生物固氮则通过高温、高压或闪电等自然条件实现。
接下来是氨化作用,即有机氮化合物被微生物分解产生氨的过程。
这个过程在土壤中进行,是氮循环的重要环节之一。
氨化作用产生的氨会被植物吸收利用,进一步参与生物体的代谢过程。
硝化作用是将氨转化为硝酸盐的过程,主要由硝化细菌完成。
硝酸盐是植物吸收氮的主要形式之一,通过植物的吸收和利用,氮元素得以进入生物体内部,参与生命活动。
反硝化作用是将硝酸盐还原为氮气的过程,主要在缺氧条件下由反硝化细菌完成。
这个过程是氮循环中氮元素返回大气的重要途径之一。
最后是有机氮的合成,即植物通过吸收氨或硝酸盐等无机氮源,将其转化为有机氮化合物的过程。
这个过程是植物生长和发育的基础,也是氮循环中氮元素得以在生物体内循环利用的关键环节。
总的来说,自然界氮循环是一个复杂而精致的生态系统过程,通过生物和非生物过程的相互作用,实现了氮元素在自然界中的循环和再利用。
这个过程对于维持生态系统的平衡和生物体的正常生命活动具有重要意义。
氮的循环
天上
N2
NO NO2
人间
NH3
HNO3
地下
NH3 、NH4
+、 NO
—
3
二、氮循环中的重要物质
.. … … N
放电
1、氮气
(1)物理性质:
N
无色、无气味的气体;难溶于水;密度比空气稍小。 (2)化学性质 : 氮气的化学性质很不活泼。 氮气可用作保护气,充填灯泡。 N2 + O2 2NO
..
在新疆和青海两省交界处,有一狭长山谷,有时牧民和牲畜进 入后,风和日丽的晴天顷刻间会电闪雷鸣,狂风大作,人畜常遇雷 击而倒毙,被当地牧民称为“魔鬼谷”。 奇怪的是这里草木茂盛,你知道其中的原因吗?
3Cu+8HNO3(稀)=3Cu(NO3)2+ 2NO↑ +4H2O 铝、铁遇冷、浓HNO3会发生钝化。 C + 4HNO3(浓) CO2↑+ 4NO2↑+ 2H2O
王水:浓硝酸与浓盐酸按体积比1 :3混合而成 。
浓硝酸的氧化性强于稀硝酸 硝酸的浓度越小被还原的程度越大。 HNO3 浓→ NO2 稀→ NO
NO2既是氧化剂又是还原剂 2NO2 N 2O 4
4NO2 + O2 + 2H2O = 4HNO3 4NO + 3O2 + 2 H2O =4HNO3
问题讨论: 1、如何检验一氧化氮? 无色气体遇空气立即变为红棕色,说明是NO。 2、能不能用排空气法收集一氧化氮?为什么? 因为NO易被空气中O2氧化成NO2 ,所以不能用 排空气法收集。
金属跟硝酸反应的本质:+5价氮元素得电子,被还 原为低价态氮的化合物或氮气。 3Fe2+ + NO3- + 4H+ = 3Fe3+ + NO↑ + 2H2O 铁粉与稀硝酸反应的化学方程式 Fe + NO3- + 4H+ = Fe3+ + NO↑ + 2H2O 2Fe3+ +Fe = 3Fe2+
高一化学氮的循环的知识点
高一化学氮的循环的知识点氮是地球上最丰富的元素之一,它在自然界中以气体的形式存在,占据了大气中的78%。
然而,氮气对大多数生物来说是无法直接利用的。
为了满足生物体的需求,氮必须先被转化成可供利用的形式,进入生物体的食物链中。
这一过程被称为氮的循环。
氮的循环包括氮气固氮、氮的硝化和氮的脱氮。
在这三个过程中,氮在不同形式之间进行转化,从而保持了地球上氮元素的平衡。
首先,我们来看氮气固氮这一过程。
氮气固氮是指将氮气转化成氨氮(NH3)或者铵盐(NH4+)的过程。
固氮的主要方式有两种:大气固氮和土壤固氮。
大气固氮是指氮气转化成氨氮的过程,其中最主要的作用是由氮气还原酶催化的。
这种酶存在于一些细菌和蓝藻中,它们能够利用氮气将其转化为氨氮。
这一过程中,固氮细菌通过吸附氮气分子并将其还原为两个氨气分子,然后氨气与水反应生成氨。
此外,一些雷暴也可能通过闪电将氮气转化为硝酸盐,这也是大气中固氮的一种方式。
而土壤固氮是指氮气转化成铵盐的过程,这一过程主要由土壤中一种叫做固氮细菌的微生物来完成。
这些细菌通常生活在根部附近的土壤中,并与某些植物共生。
植物会分泌一些物质吸引这些细菌,然后细菌在植物的根附近将氮气固定为铵盐。
接下来,我们来看氮的硝化过程。
硝化是指将氨氮或铵盐转化为硝酸盐的过程。
这一过程涉及到两个主要的微生物群落:硝化细菌和反硝化细菌。
硝化细菌能够将氨氮或铵盐氧化成亚硝酸盐,然后进一步氧化成硝酸盐。
这两个步骤分别由不同的细菌完成。
亚硝酸盐在水体中相对不稳定,容易被进一步氧化为硝酸盐。
这种氮化细菌能够适应较低的温度和较酸性的环境。
与硝化细菌相对的是反硝化细菌。
这些细菌具有还原硝酸盐的能力,将其还原为氮气并释放到大气中。
这一过程是氮循环中的一个重要环节,有助于维持地球大气中氮气的含量。
最后,我们来看氮的脱氮过程。
脱氮是指将有机物中的氮转化为氨氮或氮气的过程。
这一过程主要发生在土壤中,涉及到一些细菌和真菌。
在有机物分解的过程中,细菌和真菌会利用有机物中的氮,将其转化为无机形式的氮。
自然界中的元素氮的循环
氮气和氮氧化物在大气中氧化后形成酸雨,对水体造成酸化,影响水生生物和 水质。
06
氮循环的未来展望
减少氮污染的措施
推广环保农业
减少化肥和农药的使用,采用有机农业和生态农业的种植方式, 降低农田氮素流失。
优化工业生产
改进工业生产工艺,减少氮氧化物等氮化合物的排放,加强废气 处理和回收利用。
强化城市污水处理
影响
厌氧氨氧化是自然界中氮循环的重要环节,它有助于将土壤 和水体中的氨转化为无害的氮气。
03
氮的生物利用
植物对氮的吸收和利用
01
植物通过根部吸收土壤中的氮素,如铵态氮、硝态氮等,以满 足生长和发育的需求。
02
植物吸收的氮素主要用于合成蛋白质、核酸、叶绿素等重要的
生物分子。
植物通过光合作用将含有的氮主要来自食 物链中的蛋白质和其他含氮有
机物。
05
氮循环的影响
对气候的影响
温室效应
氮气是温室气体之一,当大气中的氮 气浓度增加时,会导致温室效应加剧 ,进而影响全球气候变化。
臭氧层破坏
氮氧化物在大气中会与臭氧发生反应 ,导致臭氧层破裂,使紫外线辐射增 加,对人类和生态环境造成危害。
THANKS
感谢观看
素含量,提高了土壤肥力。
植物生长促进
土壤中增加的氮素为植物提供 了充足的养分,促进了植物的 生长。
温室气体排放
过量的固氮会导致土壤中氮素过剩, 这些过剩的氮素会通过反硝化作用 产生温室气体一氧化二氮。
水体富营养化
过量的固氮会导致水体中氮素 含量过高,引发水体富营养化
问题,影响水生生态平衡。
02
氮的转化
火山活动释放出大量气体,其中含有氮气,这些气体 在空气中与水蒸气反应形成硝酸盐。
自然界中的氮循环
这两个过程通常在不同的环境和条件下进行,但也有可能在同一环境 中同时进行。
05
氮循环的影响因素
气候变化对氮循环的影响
气温升高
气温升高会导致土壤中氮的挥发和流失增加,影响氮 的固定和转化。
降水变化
降水量的增加或减少会影响土壤中氮的吸收和释放, 从而影响氮循环。
气形式存在。
氮循环涉及一系列生物和化学过程,包括固氮、硝化、反硝化
03
等,对维持地球生态平衡和生物多样性具有重要意义。
氮循环的环节
01
固氮
将空气中的游离态氮转化为含氮 化合物的过程,主要通过生物固 氮和工业固氮两种方式进行。
03
反硝化
将硝酸盐还原为氮气,释放到大 气中的过程,是氮循环中重要的
脱氮过程。
促进生物多样性
氮循环过程中涉及多种微生物和植物的共生关系,促进了生物多样 性的发展。
减缓全球气候变化
通过固氮作用,将大气中的氮气转化为含氮化合物,有助于减缓全球 气候变化。
02
氮的固定
自然固氮
生物固氮
通过微生物的作用,将大气中的氮气 转化为氨的过程,是自然固氮的主要 方式。
高温高压固氮
在高温高压条件下,地壳中的岩石和 矿物能够将大气中的氮气转化为氮化 合物。
反硝化作用通常发生在缺氧或 厌氧环境中,如土壤、水体等 。
反硝化作用是自然界氮循环的 另一个重要环节,能够将化合 态的氮转化为气态的氮,释放 到大气中。
硝化与反硝化的关系
01 02 03 04
硝化作用和反硝化作用是自然界氮循环的两个相互联系的环节,它们 共同维持着氮的循环和平衡。
硝化作用将氨氧化成硝酸盐,为反硝化作用提供了所需的硝酸盐。
自然界的氮循环
氮的释放是指自然界中氮气被转化为其他氮化 合物的过程。
03
火山活动可以将大量的氮气释放到大气中,同时岩 石风化也可以将氮气转化为硝酸盐等化合物。
02
自然界的氮释放主要来源于火山活动、岩石风 化和微生物的固氮作用等。
04
微生物的固氮作用是自然界中最重要的氮释放途径, 通过微生物的作用,大气中的氮气可以被转化为氨
等有机氮化合物。
氮的回归
土壤微生物固氮是指土壤中的微 生物将有机氮化合物转化为氨, 然后进一步转化为氮气。
自然界的氮回归主要通过生物呼 吸作用、土壤微生物固氮和燃烧 等途径实现。
05
04
03
02
01
燃烧也是氮回归的一种途径,例 如森林火灾和草原火灾可以将有 机氮化合物转化为氮气。
生物呼吸作用是植物和动物将有 机氮化合物转化为氮气和二氧化 碳的过程,这是自然界中最重要 的氮回归途径。
某些植物能够通过自生固氮作用将大 气中的氮气转化为硝酸盐,供自身吸 收利用。
03 氮的转化
有机氮的转化
1 2
有机氮的来源
有机氮主要来源于生物固氮和动植物残体的分解。
有机氮的转化过程
有机氮在微生物的作用下,经过一系列的分解和 转化,最终转化为氨、硝酸盐等无机氮形式。
3
有机氮的转化意义
有机氮的转化是自然界氮循环的重要组成部分, 对于维持生态系统的平衡和稳定具有重要意义。
氮的回归是指自然界中有机氮化 合物被转化为氮气的过程。
氮的循环平衡
氮的循环平衡是指自然界中氮的释放和回归达 到动态平衡的状态。
在这种状态下,大气中的氮气浓度保持相对稳 定,同时各种有机氮化合物在生物和非生物界 之间进行循环转化。
如果氮的循环平衡被打破,例如过度的农业活 动导致土壤中氮素过量积累或大气中氮气浓度 过高,就会对环境和生态系统造成负面影响。
自然环境知识:生态系统的氮、硫和磷循环
自然环境知识:生态系统的氮、硫和磷循环氮、硫和磷是生命所必需的元素,它们在生态系统中的循环是维持生态系统平衡、生命生长繁殖的重要环节。
1.氮的循环氮是构成蛋白质和核酸的重要元素。
生态系统的氮循环包括固氮、氨化作用、硝化作用、反硝化作用和氮矿化。
固氮是将氮气经过怀氏菌等生物的作用而转化为铵盐的过程。
铵盐还可以通过草履虫等多种微生物转化为其他有机氮物质。
由氨化作用、硝化作用产生的硝酸盐和铵盐在生态系统中的循环,促进了生物体对氮元素的吸收利用。
反硝化作用是生物体在缺氧环境下利用硝酸盐还原为氮气。
氮矿化包括死亡生物体和排泄物中的有机氮通过微生物分解而转化为无机氮的过程。
氮循环的平衡可以通过适度人为干预来实现,如降低化肥使用量和加大有机肥料的使用,从而减少生态系统中的污染。
2.硫的循环硫是有机化合物、氨基酸和核酸等生命体所必需的元素。
硫在地球表层的循环通过微生物介导,包括生物体内的硫代谢、硫氧化作用、二氧化硫还原作用和硫化作用。
生态系统中的硫循环有助于维持土壤和水体的稳定性和生物多样性。
人类活动的增加、化石燃料燃烧和工业污染等导致了生态系统中硫循环的失衡和土壤的酸化,影响着生态系统的健康和地球环境的变化。
3.磷的循环磷是构成脱氧核糖核酸和三磷酸腺苷等生命体所必需的元素。
生态系统中主要是有机磷和无机磷之间的转化循环。
磷循环的速率较慢,而且在多数生态系统中汇集在小范围之内。
如生物质分解会产生大量的有机磷,但因其不易被吸收利用而积累在生物质中,间接限制着生物体的生长繁殖。
因此,保护和改善土壤磷的循环是维护生态系统平衡和促进生态系统健康的重要措施之一。
总之,氮、硫和磷的循环乃至其他元素循环是维护生态系统平衡和生命生长繁殖的必要前提。
人类在细心呵护自生态环境的同时,应该适度干预生态系统中的元素循环,使循环保持平衡和稳定,从而实现可持续发展。
高一化学 知识点总结 必修一 3.2 氮的循环
3.2 氮的循环一、自然界中氮的循环:1.氮的存在形态氮是地球上含量丰富的一种元素,以游离态的形式存在于大气中,以化合态的形式存在于动植物体、土壤和水体中。
2.氮在自然界中的循环➢在自然界中豆科植物根部的根瘤菌把空气中的氮气转变为硝酸盐等含氮的化合物。
➢在放电条件下,空气中少量的N2与O2化合生成NO,NO和O2迅速生成NO2并随水进入土壤和水体。
➢人们通过化学方法把空气中的N2转化为NH3,再根据需要进一步转化成各种含氮化合物(如HNO3、氮肥等)。
二、氮气:1.物理性质➢色味态:无色无味气体➢溶解性:难溶于水➢密度:比空气略小2.化学性质放电2NO➢与氧气:N2+O2=====➢与氢气:N2+3H22NH3➢与镁:N2+3Mg点燃Mg3N23.用途➢氮气是合成氨,制硝酸的重要原料➢氮气因为性质稳定,经常用作保护气,比如用于焊接金属➢液氮可用作冷冻剂,应用于医学领域4、氮的固定(1) 概念:使空气中游离态的氮转化为含氮化合物的过程(2) 分类:➢自然固氮:主要包括生物固氮和高能固氮➢人工固氮:主要包括合成氨固氮和仿生固氮三、氮的氧化物:12. 注意事项:➢酸酐的问题:N2O3是亚硝酸的酸酐,N2O5是硝酸的酸酐➢颜色的问题:只有NO2是红棕色气体,其余均为无色气体➢污染的问题:氮的氧化物都具有毒性,而且都是大气污染物,3. NO和NO2(1)物理性质➢色味态:NO是无色无味气体,NO2是红棕色有刺激性气味的气体➢溶解性:NO难溶于水,NO2易溶于水➢密度:NO比空气略小,NO2比空气大(2) 相互转换➢NO→NO2:2NO+O2====2NO2➢NO2→NO:3NO2+ H2O====2HNO3 + NO(3)影响➢NO:是传递神经信息的“信使分子”,但容易与血红蛋白结合而使人体缺氧。
➢NO2:能损坏多种织物和尼龙制品,对金属和非金属材料有腐蚀作用。
四、氨气:1.物理性质(1)NH3是无色、有刺激性气味、极易溶于水的气体,常温时,1体积水大约溶解700体积的氨气。
自然界中氮的循环
自然界中氮的循环
氮的循环可以分为自然界氮的生物转化循环和地球自然界氮的物理化
学循环。
自然界氮的生物转化循环是指在植物、藻类、动物和细菌之间,氮以
不同形式在体内反复转化的过程。
物质循环中,氮是从大气中以氮气形式
注入到地球上,它被植物通过光合作用转变为有机物(植物组织中的氨基酸),然后将氮经由食物链传递到动物,植物和细菌体内,形成具有各种
生物特性的氨基酸,作为动物和植物的新陈代谢的主要物质媒介。
此外,
细菌通过进行氮素的氧化扩散,将氮转换成氮气,最终形成大气的一部分,形成地球的氮循环。
地球自然界氮的物理化学循环是指大气中氮物质以不同的物理、化学
变化形式在大气层、水体和土壤之间循环的过程。
大气中空气中的氮气经
由光和酸雨反应被水溶性水体中氨基酸和其它有机物带入水体。
水体经蒸
发潜热分解为氮气和氧,被叠向大气层,氮气又叠向水体,从而形成大气
湿润水平面的氮物质循环。
自然界中的氮循环
自然界中的氮循环
氮循环是指在自然界中氮元素通过各种反应形式传递的过程,是其中一项重要的营养元素的循环。
氮循环分为大气循环、植物循环和土壤循环三个部分。
大气循环是氮的最终归宿,一是大气中的氮原子,当其暴露在强紫外线的照射下,会被氧活化而成可溶性的尿素,分解而形成氮气。
氮气在雨水和其他水体的作用下,会被还原,形成氨等有机氮化合物,这些化合物可以被动植物和细菌合成利用。
植物循环是植物从氨等有机氮化合物中取得氮元素,进行光合作用,利用太阳能将CO2与H2O分解成氨、糖、烯醇等有机物,植物利用这些物质生长发育,而在此过程中释放的CO2又回到大气。
植物死后,经土壤微生物分解释放出的氮元素,又流入到地下水中,经天然回归再返回大气,形成了一个完整的氮循环。
土壤循环是有机物和无机物完成氮元素流动的过程,这种循环可以通过土壤中的微生物和植物把氮从原有化合物形式释放出来,使氮得以流通利用。
细菌利用土壤中的尿素、氨等有机氮化合物,可以把它们氧化成氮气,并作为植物吸收使用的氮源,也可以还原成氨等有机物再次流入植物的体内,这样就形成了氮循环的一个重要环节。
高中氮的循环知识点
氮的循环一、氮在自然界中循环1、氮的固定使空气中游离态的氮转化为含氮化合物的过程叫氮的固定,简称固氮。
正是通过氮的固定,开始了氮在自然界中的循环,氮的固定有自然固氮和人工固氮两种方式。
2、自然固氮(1)生物固氮:大豆、蚕豆等豆科植物的根部含有根瘤菌,能把空气中的N2转变为硝酸盐,被植物吸收。
故豆类植物不需要施用氮肥,这种固氮方式占整个自然固氮的90%。
(2)高能固氮:通过闪电等高能量途径把N2固定的方式为高能固氮。
涉及到的反应主要有:N2+O22NO 2NO+O2=2NO2 3NO2+H2O=2HNO3+NO可知,N2最终变成HNO3,即正常的雨水略呈酸性。
HNO3与土壤中的矿物作用,得到硝酸盐,被植物吸收,这就是“雷雨发庄稼”的科学道理。
3、人工固氮人们在工业生产中把N2转化为氮的化合物的方法为人工固氮,又叫工业固氮。
常见的方法有:(1)N2与H2合成NH3:,该反应为工业制HNO3的基础反应。
(2)仿生固氮:用某些金属有机化合物做催化剂,实现常温、常压固氮,这些金属有机物类似于根瘤菌,故又叫仿生固氮,这是目前科学界较为关注的研究性课题。
4、氮在自然界中的循环人们在生产活动中也涉及到了氮的循环,其中主要是利用N2与H2合成工业中重要的生产原料——NH3,即人工固氮。
涉及到两种很重要的物质:NH3、HNO3。
二、氮循环中的重要物质及其变化1、氮气,常况下是一种无色无味的气体,难溶于水,通常无毒。
氮气占空气体积总量的78.12%,是空气的主要成份。
氮气的化学性质很不活泼,只在特殊条件下,才能以下反应。
①与氧气反应:通常状况下氮气和氧气不反应,但在放电条件下,却可以直接化合生成NO。
反应的化学方程式为:★N2+O2闪电2NO②与氢气反应:在高温、高压、催化剂作用下,氮气和氢气可以反应制得氨气。
反应的化学方程式为:★N2 + 3H22NH3 此反应是工业合成氨的反应③与金属镁反应:金属镁可以在氮气中燃烧,生成氮化镁。
高考化学专题七 氮的循环
专题七氮的循环一、氮在自然界中的循环1.自然界中氮元素循环示意图2.主要形式(1)游离态→化合态①是豆科植物根部的根瘤菌,把氮气转变为硝酸盐等含氮化合物;②放电条件下,与氧气结合为氮氧化合物,并随降水进入水体中;③合成氨工厂、汽车发动机都可以将一部分氮气转化成化合态。
(2)化合态→游离态:硝酸盐在某些细菌作用下转化成氮气。
(3)化合态→化合态:化石燃料燃烧、森林和农作物枝叶燃烧所产生的氮氧化合物通过大气进入陆地和海洋,进入氮循环。
3.氮气与氮的固定(1)氮气的物理性质:无色无味气体,难溶于水,与空气密度相近。
(2)氮气的化学性质:①与O2的反应在放电条件下,氮气跟氧气能直接化合生成无色的一氧化氮(NO)。
反应式为:N2+O22NO说明:在雷雨天气,汽车的发动机中均可以发生该反应。
在该反应中,N2表现出还原性。
②与H2反应N2+3H2高温、高压催化剂2NH3说明:a 该反应是工业上合成氨的反应原理,具有非常重要的现实意义。
在该反应中,N2表现出氧化性。
b在氮气跟氢气反应生成氨的同时,氨气也在分解生成氮和氢气。
像这样同时向正反两个方向进行的反应称为可逆反应。
在可逆反应的化学方程式中用“”代替“=”。
(3)氮的固定①定义:将空气中游离的氮转变成氮的化合物的方法叫做氮的固定。
②分类:1.氨(1)物理性质:无色、有刺激性气味比空气轻;极易溶于水,在常温、常压下1体积水能溶解约700体积氨气。
(2)化学性质:①碱性:氨与水、酸反应时显碱性与水反应:NH 3+H 2O NH 3·H 2O NH 4++OH -与酸反应:NH 3+HCl =NH 4Cl说明:a 氨溶于水,大部分与水结合成一水合氨(NH 3·H 2O ),一水合氨少部分电离,因此,氨水显弱碱性。
氨气是中学阶段唯一的一种碱性气体,利用这一点,可以检验NH 3。
b NH 3与其它酸也能反应生成相应的铵盐。
其中,NH 3与盐酸这样的易挥发性酸反应时会有白烟(铵盐固体的小颗粒)生成。
氮的循环完整课件
氮元素除了以氮气旳形式存在空气中外, 还以哪些形式存在于自然界中
一、氮在自然界中旳循环
图1 氮在自然界中旳循环示意图
二、氮循环中旳主要物质及其变化
(ቤተ መጻሕፍቲ ባይዱ)氮气与氮旳固定 1、氮气旳性质
结构
化学性质 稳定,极难与其他物质反应
用途
2、氮旳氧化物 N2O、NO、N2O3、NO2、N2O4、N2O5
液氨
氨水
一水合氨
一水合氨是弱碱,能使酚酞试液变红 氨水是弱碱,对吗? 氨水呈弱碱性
氨水旳密度都不大于1g/cm3 氨水越浓,密度越小
氨气是唯一旳碱性气体,能使湿润 旳红色石蕊试纸变蓝(检验氨气)
产生喷泉旳原理:
两个容器经过连接管构成连通 器,装有液体旳容器压强远不 小于另一种容器旳压强(即产生 较大旳压强差),就会产生喷 泉
2HNO3+NO
①
2NO +O2
2NO2
②
上述两个反应屡次循环,综合① ②可得总反应关系式
4NO2 +O2 +2H2O
4HNO3
3、氮旳固定
N2+3H2
高温、高压 催化剂
2NH3
(1)概念:使空气中游离态旳氮转化为含氮化合物
(2)分类:
高能固氮
自然固氮 生物固氮
氮旳固定
人工固氮 合成氨 仿生固氮
练习
用手轻轻地在瓶口扇动, 使少许旳气体飘进鼻孔。
3、NH3具有还原性
-3
催化剂 +2
4NH3+5O2=高=温= 4NO+6H2O
注①意反:应条(件NH:3催在化空剂气、中加反热应) ②是工业制硝酸中旳关键一步,
也叫氨旳催化氧化 ③C阐l2明、氨C有uO一等定氧旳化还原性,可被O2、
第三章《自然界中的元素》氮的循环
▲浓硝酸为什么常呈黄色?
硝酸分解发出的二氧化氮气体溶于硝酸 而使硝酸呈黄色 ▲如何保存硝酸? 阴凉、避光(棕色试剂瓶)
返回
受热或见光
3)氧化性(HNO3)
⑴硝酸与大部分的金属能反应
3Cu +8HNO3(稀)=3Cu(NO3)2+2NO ↑ +4H2O Cu +4HNO3(浓)=Cu(NO3)2+2NO2 ↑ +2H2O 3Mg+8HNO3(稀)=3Mg(NO3)2+2NO ↑ +4H2O
(1)受热易分解 NH4HCO3 NH3 + CO2 + H2O
l
NH3 + HCl
NH3 + HCl = NH4Cl NH3 + HNO3 = NH4NO3
2NH3 + H2SO4 = (NH4)2SO4 (3)与氧气反应(氨的催化氧化)
高温
(2)与碱反应生成氨
三.氨的实验室制法
2NH4Cl + Ca(OH)2 ==2NH3 + CaCl2 + 2H2O
点燃
NO2
NO
2、氮的氧化物
+1 +2 +3 +4 +4 +5 N2O、NO、N2O3、NO2、N2O4、N2O5
NO与NO2的比较
NO NO2
物理 无色有刺激性气味气体 红棕色有刺激性气味 气体,能溶于水,剧毒! 性质 难溶于水,剧毒!
化学 性质
现象
2NO+O2=2NO2
无色变为红棕色
3NO2+H2O= 2HNO3+NO
铵态氮肥
化学式
NH4HCO3 NH4Cl NH4NO3
自然界中氮的循环 课件
一、氮在自然界中的循环
图1 氮在自然界中的循环示意图
二、氮循环中的重要物质及其变化
(一)氮气与氮的固定 1、氮气的性质
结构
化学性质 稳定,很难与其他物质反应
用途
2、氮的氧化物
N2O、NO、N2O3、NO2、N2O4、N2O5
俗语说“雷雨发庄稼”,这句话隐含着什么原理?
氨气是唯一的碱性气体,能使湿润的红色石蕊试纸 变蓝(检验氨气) 产生喷泉的原理: 两个容器通过连接管组成连通
器,装有液体的容器压强远大于另一个容器的压强 (即产生较大的压强差),就会产生喷泉 喷泉实验失败的原因 ◇收集的氨气不纯或较少
◇收集氨气时烧瓶潮湿
◇烧瓶装置气密性不好
◇导管过长
◇其他
2、氨跟酸的反应 NH3+HCl=NH4Cl (白烟) NH3+HNO3=NH4NO3 (白烟) 2NH3+H2SO4=(NH4)2SO4
氨气和氯气接触发生反应的方程式是什么? 在 纯氧中燃烧如何反应?
①2NH3+ 3Cl2= N2+ 6HCl (氨气不足) ② 8NH3+ 3Cl2= 6NH4Cl+N2(氨气过量) NH3在纯氧中点燃即可燃烧,通常产物是N2和水
4NH3+3O2=2N2+6H2O
氨在纯氧中燃烧 氨氧化炉(中间是铂铑合金网)
加热或光照
4HNO3 2H2O NO2 O2
如何保存浓硝酸?
②强氧化性
与金属反应:
4HNO3 (浓) Cu Cu(NO3 )2 2NO2 2H2O 8HNO 3 (浓) 3Cu 3Cu(NO3 )2 2NO 4H2O
研 ❖铁在稀浓硝酸中的反应方程式有哪些情况? 讨 ❖浓硝酸为何可装在铁质或铝质容器中?
第三章_自然界中的元素第二节氮的循环
第二节 氮的循环一、氮气及氮的氧化物1.氮的循环2.氮气的化学性质氮气很稳定,难与其他物质发生化学反应。
在高温或放电时可与某些物质反应,N 2表现为既有氧化性,又有还原性。
(1)与O 2的反应在放电条件下,氮气跟氧气能直接化合生成无色的一氧化氮(NO)。
N 2表现出还原性。
反应式为:N 2+O 2=====放电2NO说明:在雷雨天气,汽车的发动机中均可以发生该反应(2)与H 2反应:N 2+3H 22NH 33.氮的固定①定义:将空气中游离的氮转变成氮的化合物的方法叫做氮的固定。
②分类: 氮的固定⎩⎨⎧自然固氮⎩⎪⎨⎪⎧ 高能固氮(闪电,约占10%)生物固氮(约占90%)人工固氮⎩⎪⎨⎪⎧ 合成氨仿生固氮4.氮的氧化物(NO x ,x =0.5、1、1.5、2、2.5)2①2NO +O 2===2NO 2(常温下无色,NO 气体遇空气迅速变为______色;NO 有毒,是因为与血红蛋白易结合,造成人体缺氧)。
②3NO 2+H 2O===2HNO 3+NO(红棕色气体被水吸收后气体体积减少了______) ③2NO 2N 2O 4(无纯净的NO 2气体,盛有红棕色气体的玻璃球放入冰水中,发现气体颜色迅速____________)。
特别提示:(1)4NO +3O 2+2H 2O===4HNO 3,4NO 2+O 2+2H 2O===4HNO 3,常用于守恒法解题。
①形成光化学烟雾,污染大气。
②形成酸雨。
③破坏大气中的臭氧层。
5.氮的氧化物以及与氧气混合后溶于水的情况分析(1)NO 2或NO 2与N 2(非O 2)的混合气体溶于水时,可根据反应:3NO 2+H 2O===2HNO 3+NO ,利用气体体积的变化差值进行计算。
(2)NO 2和O 2的混合气体溶于水时,根据反应:4NO 2+O 2+2H 2O===4HNO 3 当V (NO 2)∶V (O 2)=4∶1时,恰好反应,无剩余气体;当V (NO 2)∶V (O 2)<4∶1时,剩余氧气;当V (NO 2)∶V (O 2)>4∶1时,NO 2过量,剩余气体为NO ,且体积为过量NO 2体积的1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然界中的元素氮的循环一. 教学内容:第3章第2节氮的循环二. 教学目的1. 能简要说明氮循环的基本过程,知道固氮的本质以及生物固氮和人工固氮这两种固氮形式。
2. 了解氮循环过程中的重要物质以及人类活动对氮循环和环境的影响(知道酸雨、光化学烟雾和富营养化等环境问题)3. 能列举含氮元素的单质及其化合物了解氮气、氨气、铵盐及硝酸的主要物理性质和化学性质,知道NH 的检验方法和氨气的实验室制法,能书写相关反应的化学方程式。
三. 教学重点、难点氮气、氨、铵盐和硝酸的性质四. 知识分析空气中的主要物质?植物生长需要的主要元素?(一)氮在自然界中的循环和存在形式1. 氮元素在自然界中的存在形式自然界中氮元素存在的形式一种是游离态,如N2,一种是化合态,如铵盐、硝酸盐、氨、蛋白质等。
2. 氮在自然界中的循环(1)氮在自然界中的循环的基本过程自然界里,空气的氮气转化为植物可以直接吸收含氮化合物的两种主要形式,豆科植物的根瘤菌把N2转化为硝酸盐;闪电使少量N2与O2化合生成NO,随之变为硝酸随降水进入土壤和水体。
植物的根从土壤中吸收铵盐、硝酸盐,经过复杂的生物转化,形成了各种氨基酸,氨基酸最后变成蛋白质。
动物以植物为食而获得植物蛋白,并将其转化为动物蛋白,动物遗体中的蛋白质被微生物分子分解成铵离子、硝酸根和氨,又回到了土壤和水体中,被植物再次吸收利用。
(2)氮循环的重要意义由于存在着氮元素的循环,其他生命元素的循环,以及水的循环,地球的生命才生生不息,生机勃勃。
(二)氮循环的重要物质及其变化1. 氮气(1)物理性质无色无味的难溶于水的气体;密度比空气小,在空气中约占总体积的78%,占其它质量的75%。
(2)分子结构两个氮原子之间的强烈作用,要破坏这种牢固的结合,需要很高的能量。
常温下,N2的化学性质很不活泼,但在高温、放电、点燃等条件下能与O2、Mg、H2等反应。
(3)化学性质①与O2反应:N2+O2=2NO ②与H2反应:N2+3H2=2NH3③与Mg的反应:N2+3Mg=Mg3N2温馨提示:●由于N2的化学性质不活泼,所以N2与其它物质的反应,需特别注意标明条件。
●N2和O2反应后,“最初产物”是NO,而不是NO2。
●一般情况下,N2不能燃烧,也不助燃,但Mg条却可以在N2中燃烧。
(4)用途:a.保护气b.液氮作深度冷冻剂c.合成氨等思考:相同质量的镁条分别在O2、N2和空气中充分燃烧,所得固体产物的质量m1,m2,m3由大到小的顺序是(解答:m1>m3>m2 )重要补充:①氮的固定概念:使空气中游离的氮转变为含氮化合物的方法。
分类:自然固氮和人工固氮②可逆反应概念:在相同条件下,能同时正反两个方向进行的反应,为可逆反应,化学方程式中用“”代替“=”。
特点:相同条件下,相反方向的两个化学反应;与化学反应有关的各种物质共存,如N2+3H2 2NH3反应体系中就存在N2、H2、NH3分子。
2、氮的氧化物—NO、NO2的重要性质(1)物理性质NO:无色无味难溶于水的气体有毒NO2:红棕色有刺激性气味的气体有毒(2)化学性质2NO+O2=2NO2 6NO+4NH3=5N2+6H2O3NO2+H2O=2HNO3 +NO 6NO2+8NH3=7N2+12H2O(3)计算中用到的两个重要化学方程式4NO+3O2+2H2O=4HNO3 ;4NO2+O2+2H2O=4HNO3思考:①NO有毒,为什么在1992年被世界著名学术期刊《科学》(Seience,美国)评为明星分子?②NO2为什么能使多种织物退色,损坏多种织物和尼龙制品,对金属和非金属材料也有腐蚀作用?③实验室如何收集NO、NO2?为什么?解答:①NO作为一种神经系统的信使分子,在使血管扩张、免疫、增强记忆力等方面有着及其重要的作用。
②NO2溶于水生成了硝酸,使织物退色、腐蚀材料。
③收集NO用排水法,收集NO2用向上排空气法;前者易与氧气反应,后者易与水反应3、氮的氢化物——NH3(1)分子结构立体结构(三角锥形)(2)物理性质无色、有刺激性气味的气体,标况下密度为0.771g·L-1,比空气轻,极易溶于水(1:700),且快速溶解,易液化得液氨,液氨气化时要吸收大量的热,使物质的温度急剧下降,所以液氨常用作制冷剂。
关于喷泉实验:①氨气能形成喷泉的本质原因是氨极易溶于水。
②用教材中的装置进行喷泉实验,引发水上喷的操作是挤压胶头滴管,使少量水进入烧瓶。
该实验的原理是,少量水进入烧瓶时,氨迅速溶解,瓶内压强迅速降低,水在外界大气压作用下,压入烧瓶。
如果把胶头滴管去掉,如何引发水上喷?③氨溶解于水不是简单的溶解过程,有化学反应,生成碱性物质。
(3)化学性质①氨与水的反应NH3+H2O NH3·H2O说明:●氨的溶解中更重要的是生成了NH3·H2O,但溶质为NH3●氨的水溶液显弱碱性,NH3·H2O NH4++OH—●氨水易挥发,要密封保存,对许多金属有腐蚀作用,不能用金属容器盛装。
●氨水的密度小于水的密度,且质量分数越大,密度越小。
●氨水的成分:NH3、H2O、NH3·H2O、NH4+、OH—H+②氨与HCl反应NH3+HCl=NH4Cl练习:写出NH3与硝酸、硫酸、磷酸的化学方程式解答:NH3+HNO3=NH4NO3;2NH3+H2SO4=(NH4)2SO4;3NH3+H3PO4=(NH4)3PO4)③氨与某些盐溶液的反应FeCl3+3NH3·H2O=Fe(OH)3↓+3NH4Cl ;MgCl2+2NH3·H2O=Mg(OH)2↓+2NH4Cl④氨的还原性a. 氨与O2的反应催化氧化:4NH3+5O2=4NO+6H2O ;与纯O2反应:4NH3+3O2=2N2+6H2Ob. 与Cl2反应①氨气不足(Cl2过量)2NH3+3Cl2=N2+6HCl②氨气足量8 NH3+3Cl2=N2+6NH4Clc. 与CuO的反应2NH3+3CuO=3Cu+N2+3H2O(可用于制N2)小结:●NH3是唯一能使湿润的红色石蕊试纸变蓝的气体,可用于氨气的检验●氨水与液氨为不同物质,氨水为混合物,液氨为纯净物;NH3为非电解质,而NH3·H2O为弱电解质。
●与浓氨水靠近,能产生白烟现象的物质:①挥发性酸如浓HNO3、浓HCl ②酸性气体HCl、HBr、HI、H2S等;③Cl2。
但浓H2SO4、浓H3PO4因难挥发而无此现象。
●NH3可在纯氧中燃烧,不是在空气中燃烧,故NH3不属于可燃烧气体。
4. 铵盐的主要性质(1)概念:由铵根离子和酸根离子组成的盐(2)物理性质:都是无色晶体,都易溶于水(3)化学性质①受热易分解a. 热不稳定酸的铵盐为NH3和酸的分解产物NH4HCO3 NH3↑+CO2↑+H2O(对热不稳定酸:H2CO3、H2SO3、H2SiO3)b. 挥发性酸对应的铵盐的分解产物是NH3和相应的酸NH4Cl NH3↑+HCl↑(挥发性酸:HCl、HBr、H2S、HI)c. 高沸点酸的铵盐的分解产物为NH3和相应的酸(NH4)3PO4 3NH3↑+H3PO4d. 氧化性酸的铵盐的分解产物随温度而异2NH4NO3 2N2↑+O2↑+4H2O②与碱反应NH4Cl+NaOH NaCl+NH3↑+H2O(4)NH4+的检测:在未知溶液中加入强碱并加热,用湿润的红色石蕊试纸检验,若试纸变蓝,则证明原溶液中含NH4+思考:①铵盐都能受热分解,能不能用此种方法检验NH4+的存在?②铵盐与浓碱溶液,铵盐与稀碱溶液反应并加热,铵盐与稀碱溶液反应不加热的离子方程式有何不同?解答:①不能。
②生成氨气、生成氨气、生成一水合氨。
5. 硝酸的重要性质(1)物理性质:纯HNO3是无色,易挥发(沸点83℃),有刺激性气味的液体。
易溶于水密度比水大,常用的浓HNO3质量分数为69%,98%的硝酸称“发烟硝酸”)(2)化学性质①酸的通性②特性a. 不稳定性:4HNO3 4NO2+O2+2H2O并且越多越易分解b. 强氧化性:浓硝酸可以与不活泼金属如铜、银等以及碳、磷等非金属反应。
说明:①浓、稀HNO3均有强氧化性②氧化性:浓HNO3>稀HNO3③金属与硝酸反应不产生H2,而是与浓硝酸反应生成NO2,与稀HNO3生成NO4HNO3(浓)+Cu=Cu(NO3)2+2NO2↑+2H2O8HNO3(稀)+3Cu=3Cu(NO3)2+2NO↑+4H2O小知识:●常温下浓HNO3可使铁、铝表面形成致密的氧化物膜而钝化,(浓H2SO4也有此性质)因此可用铁、铝容器盛放浓H2SO4、HNO3。
●氧化性酸和酸的氧化性:酸的氧化性是指H+的氧化性;氧化性酸是酸根离子中心原子获得电子的性质。
思考:①分别将盛有浓HCl,浓H2SO4,浓HNO3的烧杯置于空气中,其中质量增加的是,质量减少的是,原因分别是。
②浓HNO3为什么常是黄色?浓HNO3如何保存?解答:①浓H2SO4;浓HCl、浓HNO3;浓H2SO4有吸水性,吸收空气中的水蒸气;浓HCl、浓HNO3都有挥发性。
②浓硝酸易分解产生NO2,NO2溶于水显黄色;浓硝酸通常保存在棕色瓶中,置于冷暗处。