第七章 吸附与离子交换..
土壤离子吸附与交换
第七章土壤离子吸附与交换第一节土壤胶体一、土壤胶体土壤胶体是土壤中高度分散的部分,是土壤中最活跃的物质,其重要性犹如生物中的细胞,土壤的许多理、化现象,例如土粒的分散与凝聚、离子吸附与交换、酸碱性、缓冲性、粘结性、可塑性等都与胶体的性质有关。
所以,只有深入研究土壤胶体的性质,才能了解土壤理、化现象发生的本质。
二、土壤胶体的种类和构造在胶体化学中,一般指分散相物质的粒径在1—100毫微米之间的为胶体物质,而土壤胶体微粒直径的上限一般取2000毫微米。
1.胶体的种类土壤胶体按其成分和特性,主要有三种:1)土壤矿质胶体:包括次生铝硅酸盐(伊利石、蒙脱石、高岭石等)、简单的铁、铝氧化物、二氧化硅等。
2)有机胶体:包括腐殖质、有机酸、蛋白质及其衍生物等大分子有机化合物。
3)有机-无机复合胶体:土壤有机胶体与矿质胶体通过各种键(桥)力相互结合成有机-无机复合胶体。
在土壤中有机胶体和无机胶体很少单独存在,只要存在这两类胶体,它们的存在状态总是有机-无机复合胶体。
2.土壤胶体的构造胶体的构造有两种形式。
若胶体内部组成的分子或离子排列组合有严格规律的为晶形胶粒;若排列无严格规律的则属非晶形胶粒。
土壤无机胶体多属晶形胶体,有机胶体多属非晶质胶体。
土壤胶体微粒构造,从内向外可分为几个圈层:胶核是胶粒的核心,土壤胶体胶核的成分由二氧化硅、氧化铁、氧化铝、次生铝硅酸盐腐殖质等的分子团所组成的微粒核。
微粒核表面的分子向溶液介质解离而带有电荷,形成一个内离子层;在内离子层外面,由于电性吸引,形成带有相反电荷的外离子层。
这两个电性相反组成的电层,称为双电层。
在双电层中,由于内离子层决定着胶体的电位,故又称决定电位离子层;双电层的外层,由于其电荷符号与内层相反,故又称反离子层,亦称补偿离子层。
补偿离子层的离子,因距离内层远近不同,所受的电性引力的大小也不同。
距离近者受吸引力大,不能自由活动,这一部分的离子层,称为非活性补偿离子层。
化工分离工程第7章 吸附
FLGC
活性氧化铝和分子筛的脱水性能比较
活性氧化铝:在水蒸气分压高的范围内吸附容量较高 沸石分子筛:在低水蒸气分压下吸附容量较高 因此,若要求水蒸气的脱除程度高,应选用? 若吸附容量更为重要,则应选用? 也可混用,先用氧化铝脱除大部分水,之后用分子筛进 行深度干燥。
FLGC
其他吸附剂
反应性吸附剂:能与气相或液相混合物中多组分进行化学 反应而使之去除。适用于去除微量组分(反应不可逆,不 能现场再生;吸附负荷高时,吸附剂更换过于频繁,不经 济)。 生物吸着剂:利用微生物将吸附的有机物氧化分解成二氧 化碳和水等,如工业废水的生化处理
FLGC
分子筛
分子筛亦称沸石,是一种晶态的金属水合铝硅酸盐晶体。
化学通式:Mex/n[(AlO2)x(SiO2)y]mH2O,其中Me阳离子,n 为原子价数,m为结晶水分子数 每一种分子筛由高度规则的笼和孔组成,它具有高度选择 性吸附性能,是由于其结构形成许多与外部相通的均一微 孔。
FLGC
根据原料配比、组成和制造方法不同可以制成各种孔 径和形状的分子筛。见课本表7-3。 强极性吸附剂,对极性分子如H2O、CO2、H2S等有 很强的亲和力,对氨氮的吸附效果好,而对有机物的 亲和力较弱。 分子筛主要用于气态物的分离和有机溶剂痕量水的去 除。
工业吸附剂可以是球形、圆柱形、片状或粉末状 粒度范围从50μm至1.2cm,比表面积从300至1200m2/g, 颗粒的孔隙度30%—85%, 平均孔径1-20nm 孔径:按纯化学和应用化学国际协会的定义,微孔孔径 小于2nm,中孔为2~50nm,大孔大于50nm
FLGC
1.密度
1)填充密度B(又称体积密度): 是指单位填充体积的吸 附剂质量。通常将烘干的吸附剂装入量筒中,摇实至体积 不变,此时吸附剂的质量与该吸附剂所占的体积比称为填 充密度。
胶体化学第7章-2 固液界面的吸附作用
对稀溶液,Gibbs等温式可写作
c n RT c S
S :固体的比表面
将(1)式代入求导
Sc ( 0 m ) dn n s RT n dc
s 2
s 2
作不定积分
n RT ln n ln c ln a ( 0 m )S
s 2
s
set
n s RT 1 ( 0 m )S n
n ac
s 2
1
n
加而直线降低的关系导出的 关系式,只适用于中等覆盖度的化学吸附或物理 吸附。
1 =n / n ln Ac a s n2 k1 k2 ln c
s 2 s m
四、自电解质溶液中的吸附
1. 固体表面与介质在液体介质中带电
a.表面基团解离 b.吸附带电 c.非水介质中的带电... 为了保持荷电固体和介质的电中性,介质中的 与固体表面电荷符号相反的离子必将靠近表面 形成双电层(double layer)。
四、自电解质溶液中的吸附
2 双电层
Stern面
滑动面
- - 溶剂分子 - 反离子 - -
表面电势
φ0
Stern电势
φδ
ζ
+- + +- + +- + +- + +- + +-
-
紧密层(Stern层)
扩散层
例:AgNO3+过量KCl →AgCl(晶体)+K++Cl-+NO3-
①Cl-可在AgCl晶体上吸附成牢固的化学结合
b 结构影响 : 碳自水溶液中吸附量 在水中的溶解度
(2)溶剂影响
溶剂/溶质作用强烈,溶解度上升,吸附量降低 溶剂/吸附剂作用强烈,竞争吸附,吸附量降低
(3)吸附剂影响
第七章吸附与离子交换_图文
活性炭对物质的吸附规律
活性炭是非极性吸附剂,因此在水中吸附能力大于有 机溶剂中的吸附能力。 针对不同的物质,活性炭的吸附遵循以下规律: ①对极性基团多的化合物的吸附力大于极性基团少的化合
物; ②对芳香族化合物的吸附能力大于脂肪族化合物; ③对相对分子量大的化合物的吸附力大于相对分子量小的
化合物; ④pH 值的影响 ;
7-3
7.2吸附过程的理论基础
7.2.1吸附原理
固体的分类:多孔和非多孔性 比表面的组成:多孔性固体的比表面是由“外表
面”和“内表面”所组成。表面积大并 且有较高的吸附势。 表面力的产生和吸附力的关系:见图7-4 界面分子的力场是不饱和的,能从外界吸附分 子、原子、或离子,形成多分子层或单分子层。 吸附过程中的几个名词: ⑴吸附作用 ⑵吸附剂 ⑶吸附物(质)
7.1概述
7.1.1什么叫吸附
吸附是利用吸附剂对液体或气体中某一组分具有选择性吸 附的能力,使其富集在吸附剂表面的过程。
吸附过程通常包括: 待分离料液与吸附剂混合、吸附质被吸附到吸附剂表
面、料液流出、吸附质解吸回收等四个过程。
料液与吸 附剂混合
Step1
吸附质 被吸附
Step2
料液 流出
Step3
001×7-交联度为7%的苯乙烯 系凝胶型强酸性阳离子交换树脂
骨架代号 D315:大孔型丙烯酸弱碱
分类代号
性阴离子交换树脂
大孔型代号
大孔型
代号 0 1 2 3 4 5 6
离子交换树脂命名法代号表
分类名称
骨架名称
强酸性
苯乙烯系
弱酸性
丙烯酸系
强碱性
酚醛系
弱碱性
环氧系
螯合性
乙烯吡啶系
现代离子交换与吸附技术
现代离子交换与吸附技术离子交换与吸附技术是一种重要的分离与纯化技术,广泛应用于水处理、废水处理、医药制造、食品加工等领域。
它们通过对溶液中的离子或分子与固体表面发生化学或物理作用,实现溶液组分的分离与富集。
本文将详细介绍现代离子交换与吸附技术的原理、应用以及未来的发展趋势。
一、离子交换技术离子交换技术是一种通过固定相上的功能基团与溶液中的离子发生置换反应,实现离子的分离与富集的方法。
离子交换材料通常是具有特定功能基团的聚合物或无机材料。
离子交换过程通常分为两个步骤:吸附和解吸。
在吸附阶段,离子与功能基团之间发生化学反应,被固定在固定相上;在解吸阶段,通过改变溶液条件,使离子与功能基团之间的化学键断裂,实现离子的解吸和再生。
离子交换技术在水处理中得到了广泛应用。
例如,通过阳离子交换树脂去除水中的钙、镁离子,可以软化水质,减少水垢的形成;通过阴离子交换树脂去除水中的硝酸盐、氯离子等有害物质,提高水质的安全性。
此外,离子交换技术还可用于药物分离纯化、金属离子富集等领域。
二、吸附技术吸附技术是一种通过固体表面与溶液中的分子或离子间的非化学作用力相互吸附,实现分离与纯化的方法。
吸附材料通常是具有特定吸附性能的多孔材料,如活性炭、硅胶等。
吸附过程主要取决于吸附材料的孔隙结构、表面化学性质以及溶液中物质的性质。
吸附技术在废水处理中具有重要的应用价值。
例如,活性炭是一种常用的吸附材料,可用于去除废水中的有机物、重金属离子等污染物,提高废水的处理效果。
此外,吸附技术还可用于气体分离、气体净化等领域。
三、现代离子交换与吸附技术的发展趋势随着科学技术的不断发展,现代离子交换与吸附技术也在不断创新与改进。
以下是几个主要的发展趋势:1.新型材料的研发:研究人员正在不断开发新型离子交换树脂和吸附材料,以提高其选择性、吸附容量和再生性能,满足不同领域对分离与纯化的需求。
2.多功能材料的设计:研究人员正在致力于设计具有多种功能的离子交换与吸附材料,如具有吸附和催化功能的复合材料,以提高材料的综合性能。
土壤离子吸附和交换
第七章土壤离子吸附与交换第一节土壤胶体一、土壤胶体土壤胶体是土壤中高度分散的部分,是土壤中最活跃的物质,其重要性犹如生物中的细胞,土壤的许多理、化现象,例如土粒的分散与凝聚、离子吸附与交换、酸碱性、缓冲性、粘结性、可塑性等都与胶体的性质有关。
所以,只有深入研究土壤胶体的性质,才能了解土壤理、化现象发生的本质。
二、土壤胶体的种类和构造在胶体化学中,一般指分散相物质的粒径在1—100毫微米之间的为胶体物质,而土壤胶体微粒直径的上限一般取2000毫微米。
1.胶体的种类土壤胶体按其成分和特性,主要有三种:1)土壤矿质胶体:包括次生铝硅酸盐(伊利石、蒙脱石、高岭石等)、简单的铁、铝氧化物、二氧化硅等。
2)有机胶体:包括腐殖质、有机酸、蛋白质及其衍生物等大分子有机化合物。
3)有机-无机复合胶体:土壤有机胶体与矿质胶体通过各种键(桥)力相互结合成有机-无机复合胶体。
在土壤中有机胶体和无机胶体很少单独存在,只要存在这两类胶体,它们的存在状态总是有机-无机复合胶体。
2.土壤胶体的构造胶体的构造有两种形式。
若胶体内部组成的分子或离子排列组合有严格规律的为晶形胶粒;若排列无严格规律的则属非晶形胶粒。
土壤无机胶体多属晶形胶体,有机胶体多属非晶质胶体。
土壤胶体微粒构造,从内向外可分为几个圈层:胶核是胶粒的核心,土壤胶体胶核的成分由二氧化硅、氧化铁、氧化铝、次生铝硅酸盐腐殖质等的分子团所组成的微粒核。
微粒核表面的分子向溶液介质解离而带有电荷,形成一个内离子层;在内离子层外面,由于电性吸引,形成带有相反电荷的外离子层。
这两个电性相反组成的电层,称为双电层。
在双电层中,由于内离子层决定着胶体的电位,故又称决定电位离子层;双电层的外层,由于其电荷符号与内层相反,故又称反离子层,亦称补偿离子层。
补偿离子层的离子,因距离内层远近不同,所受的电性引力的大小也不同。
距离近者受吸引力大,不能自由活动,这一部分的离子层,称为非活性补偿离子层。
7第七章 土壤阳离子交换性能的分析
① Ca2+、Mg2+ 的总量 以铬黑T为指示剂(加缓冲液) ② Ca2+的量 Ca指示剂,用NaOH调pH>10,使Mg沉淀。
注意:
三乙醇胺:掩蔽剂,排除Fe3+、Al3+等的干扰。 盐酸羟胺:保持还原条件,防止铬黑T被氧化失效(在碱性液
中,铬黑T易氧化而褪色 )
酸度控制(pH):单测Ca2+时, pH>10.
玻璃电极与泥糊接触
土壤pH(活性酸)的测定
操作步骤 仪器校准 测定 注释(P165)
二、土壤交换酸的测定 (容量指标)
土壤用一种盐溶液处理,然后用标准碱滴定滤液中的酸,称 总酸度,包括活性酸和潜在酸。
BaCl2-TEA法 潜在总酸度 1N 中性NH4OAc 交换酸总量 1N KCl或0.2M CaCl2 盐可提取酸度 NaOAc(用于强酸性土,Al3+) 土壤水解性总酸度
(5)EDTA—铵盐快速法(中性、酸性、石灰性土壤都适用)
0.5M EDTA和1N NH4OAc配合液作交换剂 ,EDTA与阳离 子(Ca、Mg)形成络合物,NH4+再代换。
二、CEC的测定(NH4OAc淋洗法)
原理:
第一步进行完后:
NH4+交换,查Ca2+:确保所有交换 性阳离子已被置换完全; 乙醇洗余NH4+ ,查NH4+:确保乙醇 把多余的NH4OAc淋洗液去除完; (1)
溶解: K2CO3 …+ 2HCl(过量) → 2KCl+CO2↑+H20 滴定: HCl (过量)+ NaOH → NaCl + H20 问题讨论:
1. 其他碳酸盐类(Fe,Al)也会消耗HCl,结果偏大。
第7章 离子交换技术 2005.06
第7章离子交换技术知识点:离子交换树脂的分类及其定义,离子交换树脂的合成(学生自学),离子交换树脂的理化性能和测定方法,离子交换过程的理论基础,离子交换过程的选择性,树脂和操作条件的选择及运用举例。
重点:离子交换树脂的分类,概念及其适用范围,离子交换树脂的理化性能和测定方法,格雷戈公式的推导和离子交换机理及其数学表达式,离子交换速度的影响因素的影响情况,离子交换过程的运用学理论和使离子层分层明显的三种常用方法,能够熟练地据实际情况选择合适的树脂和操作方式。
难点:离子交换过程的理论基础和选择性,格雷戈公式的推导和离子交换机理及其数学表达式。
1离子交换树脂基础离子交换技术是利用离子交换剂与各种离子的作用力强弱差异,选择性地吸附或释放特定的离子,从而达到去除杂质、富集或纯化目标生化物质的目的。
在生物医药工业中,广泛用于提取抗生素、氨基酸、有机酸等小分子物质,特别是抗生素的生产。
例如,链霉素、西索米星、卡那霉素、庆大霉素、土霉素、红霉素、林可霉素、麦迪霉素、螺旋霉素等均可用离子交换法进行提取。
近年来由于基因工程和蛋白质工程的迅猛发展,离子交换技术也逐渐大量用于蛋白质、核酸和多糖等生物大分子的分离纯化,但主要是以离子交换层析的方法来纯化蛋白质。
原则上,在某一条件下,只要目标生化物质能离子化,就可以采用离子交换技术进行提取、分离和纯化。
常用的离子交换剂有两类:疏水结构离子交换剂和亲水结构离子交换剂。
前者即通常所说的离子交换树脂,主要以苯乙烯等材料为原料,经人工合成固态高分子化合物为疏水性骨架,具有机械强度高,遇水膨胀率低,交换容量大等特点,抗生素等小分子物质宜用疏水性结构的离子交换剂分离;后者主要以葡聚糖、纤维素、琼脂糖等多糖为亲水性骨架,连接上可以进行离子交换的基团,蛋白质等生物大分子宜选择亲水性结构的离子交换剂。
纯化蛋白质类药物常用CM型阳离子交换剂或DEAE型阴离子交换剂。
离子交换树脂是一种不于一般的酸碱和有机溶剂,也不熔融固态高分子化合物,不但稳定性好,而且具有可离子交换的多功能基。
7第七章 土壤阳离子交换性能的分析
三、交换性盐基总量及组成测定
几个概念
交换性盐基:指土壤胶体吸附的碱金属( K+、Na+ ) 和碱土金属( Ca2+、Mg2+ ) 交换性盐基总量:各交换性盐基离子的总和 土壤盐基饱和度:土壤交换性盐基总量与CEC之比。 B.S.=交换性盐基总量/ CEC*100%
1.盐基总量的测定 A)总和法: K+、Na+、Ca2+、Mg2+ 相加 K+、Na+,火焰光度计法 Ca2+、Mg2+ ,离子色谱法(ICP)或原子吸收法(AAS)
浸出液
CH3COONH4 →NH3↑+CH3COOH →2CO2+2H2O 2CH3COOK 2CH3COONa Ca(CH3COO)2 Mg(CH3COO)2 K2CO3 +O2→ Na2CO3 +CO2↑+ 6H2O CaCO3 MgCO3
溶解: K2CO3 …+ 2HCl(过量) → 2KCl+CO2↑+H2O 滴定: HCl(过量)+ NaOH → NaCl + H2O 操作步骤:P160
操作步骤:P157-158
测交换性盐基
倒出上清液,收 集于250ml量瓶中 离心管中土样
称2mm风干土 2.0-5.0g于 100ml离心管中
加少量乙酸铵液,橡皮头玻 棒搅拌成均匀的泥浆状,再 加乙酸铵液至60ml,充分搅 拌均匀,玻棒用乙酸铵洗净
离心
检查,无Ca 2+
如此反复处 理3-5次 检查,无NH4+ 弃去乙醇液 加液体石蜡 2ml,氧化镁 1g,蒸馏 加少量无水乙醇,橡 皮头玻棒搅拌成均匀 的泥浆状,再加乙醇 至60ml,充分搅拌均 匀,洗去土粒表面多 余的乙酸铵
吸附与离子交换
吸附是放热过程,低温有利于吸附,升温 有利于脱附.
吸附工艺和设备
间歇式
操 作 方 式
连续式
将料液和吸附剂放在容器内搅拌,平衡后排 出吸余液
固定床 移动床
吸附剂固定填放在吸附柱(或 塔)中
在操作过程中定期地将接近饱 和的一部分吸附剂从吸附柱中 排出,并同时将等量的新鲜吸 附剂加入柱中
流化床
吸附与离子交换
概述
吸附(定义)
一种物质从一相转移到另外一相的现象称为吸附 物质从流体相浓缩到固体表面
固—液界面上的吸附: 吸附剂:具有吸附能力的固体物质。 吸附质:被吸附的物质。
典型பைடு நூலகம்吸附过程包括四个步骤:
待分离的料液 通入吸附剂
吸附质被吸附 在吸附剂表面
吸附质解吸 吸附剂再生
料液流出
吸附: 典型的表面现象
吸附剂在吸附柱内处于膨胀状态, 悬浮于由下而上的水流中
吸附工艺
一、间歇吸附
吸附过程计算
Y0
W
W (Y0 Y1) L(X1 X0)
X0 Y1
A
Y0
-L / W
Y1
B
Y
X1
X0 X1
X 图 13- 3 单 级 吸 附 操 作 流 程
W—溶液中溶剂的质量,kg L—吸附剂的质量,kg;
吸附工艺
大孔吸附树脂
极性大孔吸附树脂 (硫氧基、酰胺、N-O基、磺酸基)
酰胺基团 硫氧基团 N-O基团
大孔吸附树脂
吸附性原理
树脂本身具有吸附性 吸附力是范德华力或氢键作用的结果
筛选性原理
树脂为多孔性结构,具有分子筛的作用
有机化合物根据吸附力的不同及分子量的 大小,在树脂的吸附机理和筛分原理作用 下实现分离。
第七章 吸附
a-与最大吸附量有关的常数;
b-与吸附能有关的常数。
2.B.E.T. 等温式
B.E.T.模型假定在原先被吸附的分子上面仍可吸附另外的
分子,同发生多分子层吸附;而且不一定等第一层吸满后再
吸附第二层;对每一单层却可用Langmuir式描述,第一层
吸附是靠吸附剂与吸附质间的分子引力,而第二层以后是靠
吸附质分子间的引力,这两类引力不同,因此它们的吸附热
由图可见,在PH7.5~9.5的范围内,吸附去除率较高。 在吸附操作中,应保证吸附剂与吸附质有足够的接触时间。 另外,吸附剂的脱附再生,溶液的组成和浓度及其他因素也 影响吸附效果。
四、吸附动力学 1.水膜内的物质迁移速度
由Fick定律,水膜内的传质速度NA由下式结出:
(7-12)
式中 D——溶质在水膜中的扩散系数,m2/L; δ——水膜厚度,m; kf——水膜传质系数,m/L; c——水中溶质的浓度,kg/m3; ci——颗粒表面的溶质浓度,kg/m3。
二、吸附平衡与吸附等温式
吸附过程中,固、液两相经过充分的接触后,最终将达 到吸附与脱附的动态平衡。达到平衡时,单位吸附剂所 吸附的物质的数量称为平衡吸附量,常用qe(mg/g)表示。
将平衡吸附量qe与相应的平衡浓度ce作图得吸附等温线。
I型的特征是吸附量有一极限值。可以理解为吸附剂的 所有表两都发生单分子层吸附,达到饱和时,吸附量趋 于定值。Ⅱ型是非常普通的物理吸附、相当于多分子层 吸附,吸附质的极限值对应于物质的溶解度。Ⅲ型相当 少见,其特征是吸附热等于或小于纯吸附质的溶解热。 Ⅳ型及Ⅴ型反映了毛细管冷凝现象和孔容的限制,由于 在达到饱和浓度之前吸附就达到平衡,因而显出滞后效 应。
树脂吸附剂的结构容易人为控制,因而它具有适应性大、 应用范围广、吸附选择性特殊、稳定性高等优点,并且再生 简单,多数为溶剂再生。树脂吸附剂最适宜于吸附处理废水 中微溶于水.极易溶于甲醇、丙酮等有机溶剂,分子量略大 和是极性的有机物。如脱酚、除油、脱色等。
第七章 吸附与离子交换
离子交换剂
阳离子交换剂(cation 阳离子交换剂(cation exchanger) 对阳离子具有交换能力, 对阳离子具有交换能力,活性基团为酸性 阴离子交换剂(anion 阴离子交换剂(anion exchanger) 对阴离子具有交换能力, 对阴离子具有交换能力,活性基团为碱性
离子交换剂
强酸性阳离子交换剂: 强酸性阳离子交换剂: 活性剂团:磺酸基( );次甲磺酸基 次甲磺酸基( 活性剂团:磺酸基(-SO3H);次甲磺酸基( -CH2SO3H) pH范围:电离程度大,不受pH影响。 1~ pH范围:电离程度大,不受pH影响。pH 1~14 范围 pH影响 交换反应:中和,转型, 交换反应:中和,转型,复分解 树脂类型: 树脂类型:氢型和钠型
离子交换剂: 离子交换剂:离子交换纤维素
特点: 特点:
为开放的长链骨架, 为开放的长链骨架,大分子物质能自由地在其 中扩散和交换,亲水性强,表面积的, 中扩散和交换,亲水性强,表面积的,易吸附 大分子物质。交换基团稀疏, 大分子物质。交换基团稀疏,对大分子实际交 换容量大。 换容量大。 吸附力弱,交换和吸附条件缓和, 吸附力弱,交换和吸附条件缓和,不易引起变 性。 分辨力强,能分离复杂的生物大分子混合物。 分辨力强,能分离复杂的生物大分子混合物。
㈡ 吸 附 类 型
化学吸附
化学吸附是吸附剂表面活性点与溶质之间 发生化学结合、产生电子转移的现象; 发生化学结合、产生电子转移的现象; 作用力: 作用力:库仑力 特点:吸附热较大;由于发生化学反应, 特点:吸附热较大;由于发生化学反应, 需一定的活化能;选择性较强; 需一定的活化能;选择性较强;单分子层 吸附;解析较困难, 吸附;解析较困难,脱附时需采用破坏化 学结合的化学试剂为洗脱剂。 学结合的化学试剂为洗脱剂。
食品分离技术自测题
食品分离技术自测题第一章绪论一名词解释1.平衡分离过程2.速率控制过程二、填空1、食品分离过程是熵的过程,必须外加能量才能进行。
2、食品分离通常来说要达到下列两个目的:,.3、随着社会地发展和技术的进步,工业上形成的分离技术越来越多,但从本质上来说,所有分离技术都可分为和传质分离两大类。
传质分离又分为和4、食品分离技术按分离性质可分为和两大类5、食品分离技术按分离方法可分为、、三、判断题1、分离剂是分离过程的推动力或辅助物质,它包括质量分离剂和能量分离剂。
()2、机械分离过程的分离对象是有两相组成的混合物。
()3、单元操作侧重分离方法的共性规律,而分离过程则侧重分离方法的个性规律。
()四、选择题1、以下不属于传质分离过程的是A过滤B超滤C蒸馏D萃取2、以下不属于平衡分离过程的是A离子交换B色谱C结晶D干燥五、简答题1、分离过程有哪些基本原则?2、食品分离过程特点是什么?3、评价一种食品分离技术的优良,可从哪几方面来考虑?4、简述食品分离技术在食品工业中的重要性。
第二章细胞的破碎与细胞分离一、名词解释凝聚絮凝差速离心分离:离心速度逐渐提高,样品中组分按大小先后沉降。
区带离心分离:借助离心管中的梯度介质,经高速离心将样品中组分分离。
二、选择题1、丝状(团状)真菌适合采用()破碎。
A、珠磨法B、高压匀浆法C、A与B联合D、A与B均不行2、适合小量细胞破碎的方法是()A高压匀浆法B.超声破碎法C.高速珠磨法D.高压挤压法3、发酵液的预处理方法不包括()A.加热B絮凝C.离心D.调pH4、下列物质属于絮凝剂的有()。
A、明矾B、石灰C、聚丙烯类D、硫酸亚铁5、哪种细胞破碎方法适用工业生产()A.高压匀浆B超声波破碎C.渗透压冲击法D.酶解法6、高压匀浆法破碎细胞,不适用于()A.酵母菌B大肠杆菌C.巨大芽孢杆菌D.青霉三、判断题1.细胞破碎时破碎率越大,细胞中大分子目的物得率越高。
()2.G-菌细胞膜网状结构不及G+菌的坚固,故较易破碎。
离子交换与吸附
离子交换与吸附
离子交换是指利用离子交换膜、离子交换树脂等介质,以一定的压力或电势使溶液中的离子交换,以实现分离、纯化、浓缩等操作的技术。
离子交换主要有催化离子交换、离子交换吸附、离子交换沉淀法等,是应用范围最广的分离纯化技术。
吸附是指溶液中的某种微粒以极薄介质覆盖表面,形成微膜,使溶液中的某些离子或分子吸附到表面上的一种物理现象。
一般来说,吸附必须要有一个吸附介质,它是把吸附的物质物理地粘附在它的表面上。
吸附可以用于分离、纯化某些物质,也可以用于修饰试管、滤纸等,大大增加试管、滤纸的选择性。
水质工程学 第七章 离子交换、其它相转移方法
qB / q0 K • cB / c0 1 qB / q0 1 cB / c0
(8—5)
式中qB/q0称为树脂的失效度;cB/c0为溶液中离子残留率。若以 qB/q0为纵坐标,以cB/c0为横坐标,作图可得某一K值下的等价 离子交换理论等温平衡线。
离子交换速度
离子交换过程: ①离子从溶液主体向颗粒表面扩散,穿过颗粒表面液膜。 ②穿过液膜的离子继续在颗粒内交联网孔中扩散,直至达到
⑷ 全名称举例。微孔形态为凝胶型;骨架材料为“苯乙 烯-二乙烯苯”共聚体;活性基团为“强酸”性磺酸基团 (SO3H)的阳离子交换树脂,全名称为“凝胶型苯乙烯 系强酸阳离子交换树脂”。
二、型号
⑴ 有机合成离子交换树脂产品型号的命名原则。有机合成离子交换树脂
产品型号,以三位阿拉伯数字表示,凝胶型树脂的交联度值,用联接 符号所联系的第四位阿拉伯数字表示。 凡属大孔型树脂,在型号前 加“大”字的汉语拼音首位字母“D”。 凡属凝胶型树脂,在型号前 不加任何字母。
ZA
RA RB
(8—1)
离子交换反应公式
K
q0 qc
ZB ZA
1
cB c0
ZB
cB / c0 ZA
•
qB / q0 ZA 1 qB / q0 ZB
(8—2)
式(8-4)适用于各种离子之间的交换。当ZA=ZB=1时,上式简 化为:
2) 第二位数字骨架代号见下表。 第二位数字骨架代号代号0123456 活性基团:苯乙烯系 丙烯酸系 酚醛系 环氧系 乙烯吡啶系 脲醛系 氯乙烯系
3)产品型号举例:001×7 凝胶型苯乙烯系强酸阳离子交换树脂, 交 联度为7%,产品旧型号“732”;D311 大孔型丙烯酸系弱碱阴离子交 换树脂,产品旧型号为“703”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生化分离工程》
Bioseparation Engineering 第7章 吸附与离子交换
生化Байду номын сангаас离过程的一般流程:
原料液 细胞分离(离心,过滤) 路线一 路线二 清液-胞外产物
细胞-胞内产物 路线一B 包含体 溶解(加盐酸胍、脲) 复性
细胞破碎
碎片分离
料液 流出
Step3
吸附质解 吸附
Step4
7.1.2吸附的类型
(1)物理吸附: 由吸附质与吸附剂之间的分子间引力即范德华力所 引起。放热,可逆,单分子层或多分子层,选择性差。 (2)化学吸附: 由吸附质与吸附剂间的化学键所引起,是吸附剂表 面活性点与溶质之间发生化学结合、产生电子转移的现 象。放热量大,单分子层,选择性强。 (3)离子交换吸附: 利用离子交换树脂作为吸附剂,将溶液中的待分离 组分,依据其电荷差异,依靠库仑力吸附在树脂上,然 后利用合适的洗脱剂将吸附质从树脂上洗脱下来,从而 达到分离的目的。吸附剂吸附后同时放出等当量的离子 到溶液中。
表7-4 主要离子交换基团及其结构(1)
表7-4 主要离子交换基团及其结构(2)
常用于蛋白质离子交换的离子交换剂:
表7-5 部分市售离子交换剂的离子交换容量和蛋白质的离子交换容量
离子交换树脂的命名
● ● ● ×●
凝 胶 型
7.1概述
7.1.1什么叫吸附
吸附是利用吸附剂对液体或气体中某一组分具有选择性吸 附的能力,使其富集在吸附剂表面的过程。 吸附过程通常包括: 待分离料液与吸附剂混合、吸附质被吸附到吸附剂表 面、料液流出、吸附质解吸回收等四个过程。
料液与吸 附剂混合
Step1
吸附质 被吸附
Step2
小
大 较小
小
难 难
易
粉末活性炭
锦纶活性炭
图7-1 粉末活性炭和锦纶活性炭的构造
活性炭对物质的吸附规律 活性炭是非极性吸附剂,因此在水中吸附能力大于有 机溶剂中的吸附能力。 针对不同的物质,活性炭的吸附遵循以下规律: ①对极性基团多的化合物的吸附力大于极性基团少的化合 物; ②对芳香族化合物的吸附能力大于脂肪族化合物; ③对相对分子量大的化合物的吸附力大于相对分子量小的 化合物; ④pH 值的影响 ; 碱性、中性吸附,酸性洗脱; 酸性、中性吸附,碱性洗脱。 ⑤温度 未平衡前,随温度升高而增加。
大孔吸附树脂常用的解吸方法 • 低级醇、酮或水溶液解吸 原理:使大孔树脂溶胀,减弱溶质与吸附剂间的相互作 用力。 • 碱解吸附 原理:成盐,主要针对弱酸性溶质 • 酸解吸附——原理同上 • 水解吸附 原理:降低体系中的离子强度,降低溶质的吸附量。
7.1.4.3常用离子交换剂
物理吸附力的本质 • • • • A B C D 定向力 诱导力 色散力 氢键力
范德华力
极性分子的永久偶极静电力 极性分子与非极性分子之间的吸引力 非极性分子之间的引力(瞬间偶极) 介于库仑引力与范德华引力之间的特殊分 子间定向作用力
7.1.3吸附的特点
表7-1 物理吸附与化学吸附的比较
备注:a. 大,对化学键的形成与破裂同化学反应相似;
b. 任何表面上均能吸附各种吸附质,整个表面吸附情况相同; c. 在吸附剂表面,存在有比一般吸附量更多的吸附点; d. 很快达到平衡; e. 只依赖于吸附质的物理化学特性; f. 依赖于吸附质和吸附剂的物理化学特性。
(2)大孔网状吸附剂 • 优点:脱色去臭效果理想;对有机物具有良好的选择 性;物化性质稳定;机械强度好;吸附速度快;解吸、 再生容易。 • 缺点:价格昂贵,吸附效果易受流速以及溶质浓度等 因素的影响。
图7-2 打孔网状吸附剂的微观结构
大孔网状吸附树脂的种类 • 非极性吸附树脂:苯乙烯交联而成,交联剂为二乙烯苯, 又称芳香族吸附剂。 • 中等极性吸附树脂:甲基丙烯酸酯交联而成,交联剂亦为 甲基丙烯酸酯,故又称脂肪族吸附剂。 • 极性吸附剂:丙烯酰胺或亚砜经聚合而成,通常含有硫氧、 酰胺、氮氧等基团。
交联度数值 顺序号 骨架代号 分类代号
001×7:
交联度为7% 顺序号为1 0-苯乙烯系 0-强酸性 001×7-交联度为7%的苯乙烯 系凝胶型强酸性阳离子交换树脂
路线一A
粗分离(盐析、萃取、超过滤等) 纯化(层析、电泳) 脱盐(凝胶过滤、超过滤) 浓缩(超过滤)
精制(结晶、干燥)
7. 吸附与离子交换
7.1概述 7.2吸附过程的理论基础 7.3分批与连续吸附 7.4固定床吸附和膨胀床吸附 7.5离子交换吸附 7.6离子交换吸附的应用 7.7其他类型的吸附
7.1.4.2常用吸附剂
表7-2 生化分离中常用的多孔吸附剂
(1)活 性 炭(Active carbon) 表7-3 三种活性炭相关项目的比较 颗粒大小 表面积 吸附力 吸附量
活性炭种类
洗脱
粉末活性炭 颗粒活性炭
锦纶活性炭
小 较小
大
大 较大
小
大 较小
(1)处理能力较小; (2)吸附过程对溶质的作用较小; (3)可直接从发酵液中分离所需的产物; (4)溶质和吸附剂之间的平衡关系通常是非线性关系。
7.1.4吸附剂与离子交换剂
7.1.4.1吸附剂与离子交换剂通常应具备以下特征 – 对被分离的物质具有较强的吸附能力; – 有较高的吸附选择性; – 机械强度高; – 再生容易、性能稳定; – 价格低廉。
大孔吸附树脂的吸附机理 非离子型共聚物,借助于范德华力从溶液中吸附各 种有机物,其吸附能力与树脂的化学结构、物理性能以 及与溶质、溶剂的性质有关。通常遵循以下规律: – 非极性吸附剂可从极性溶剂中吸附非极性溶质; – 极性吸附剂可从非极性溶剂中吸附极性物质; – 中等极性吸附剂兼有以上两种能力。