姜启源 数学模型第五版-第1章
数学模型姜启源 ppt课件
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介
数模学习(姜启源笔记)
天大万门数模写在开始今天第一次归纳、复习,整理思路重点,从最后两章(除了“其他模型”)开始,想可能印象比较深刻。
可实际开始总结才发现对于知识的理解和掌握还有很大差距,自己也是自学看书,非常希望各位提出宝贵意见,内容、学习方法经验上的都是~~ 整本书读下来感觉思路、数学都有很大拓展,总结起来有一下几个特点:一,“实际—>模型”的建模过程很关键,本书的模型很多虽然所谓“简单”、“假设多”,但简化分析中,还真难找到比它更合适、更合理、更巧妙的建模、假设了;二,模型求解之后的处理,许多地方似乎求解完毕可以结束,但却都未戛然而止,而是进一步“结果分析”、“解释”,目的不一,要看进程而定,有的促进了模型的改进,有的对数学结果做出了现实对应的解释(这一点建模过程中也经常做,就是做几步解释一下实际意义),也还有纯数学分析的,这些都是很重要的,在我看来,这本书中的许多模型、论文似乎到了“结果分析”这一步才刚刚开始,前面的求解似乎是家常便饭了;三,用各种各样的数学工具、技巧、思想来建模的过程,这本书读下来愈发觉得线性代数、高等数学基础的重要性,同时书中也设计到了一些(虽是浅浅涉及)新的数学知识和技巧,许多我在读的过程中只是试图了解这个思想,而推导过程未能花很多时间琢磨,但即便如此,还是让我的数学知识有了很大的拓展(作为工科专业学生)。
从上周六继续自学《数学模型》开始一周,比预期的时间长了许多,但是过程中我觉得即便如此也很难领会完整这本书的内容。
最近学习任务比较多,所以两天前快看完时到现在一直未能做个小结,从今天起每天做2章的小结,既是复习总结重点,也是请诸位同学指教、提意见交流——毕竟自己领会很有限。
也可以作为未读过、准备读这本书的同学的参考~第1章建立数学模型关键词:数学模型意义特点第1章是引入的一章,对数学模型的意义来源,做了很好的解释。
其实数学模型也是模型的一种,是我们用来研究问题、做实验的工具之一,只不过它比较“理论”、“摸不着”而已。
姜启源数学建模资料
姜启源数学建模资料简单的优化模型3.1 3.2 3.3 3.4 存贮模型生猪的出售时机森林救火最优价格3.5 血管分支3.6 消费者均衡3.7 冰山运输<i>姜启源数学建模资料</i>静态优化模型现实世界中普遍存在着优化问题静态优化问题指最优解是数不是函数静态优化问题指最优解是数(不是函数不是函数) 建立静态优化模型的关键之一是根据建模目的确定恰当的目标函数求解静态优化模型一般用微分法<i>姜启源数学建模资料</i>问题3.1存贮模型配件厂为装配线生产若干种产品,配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费。
备要付生产准备费,产量大于需求时要付贮存费。
该厂生产能力非常大,即所需数量可在很短时间内产出。
生产能力非常大,即所需数量可在很短时间内产出。
已知某产品日需求量100件,生产准备费5000元,贮存费件生产准备费已知某产品日需求量元每日每件1元试安排该产品的生产计划,每日每件元。
试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小。
),每次产量多少一次(生产周期),每次产量多少,使总费用最小。
不只是回答问题,而且要建立生产周期、要不只是回答问题,而且要建立生产周期、产量与需求量、准备费、贮存费之间的关系。
求需求量、准备费、贮存费之间的关系。
<i>姜启源数学建模资料</i>问题分析与思考日需求100件,准备费5000元,贮存费每日每件元。
件准备费日需求元贮存费每日每件1元每天生产一次,每次每天生产一次,每次100件,无贮存费,准备费件无贮存费,准备费5000元。
元每天费用5000元元每天费用10天生产一次,每次天生产一次,天生产一次每次1000件,贮存费件贮存费900+800+…+100 =4500 准备费5000元,总计元,准备费元总计9500元。
元平均每天费用950元元平均每天费用50天生产一次,每次天生产一次,天生产一次每次5000件,贮存费件贮存费4900+4800+…+100 =*****元,准备费元准备费5000元,总计元总计*****元。
数学模型课后答案姜启源
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
数学模型姜启源答案
数学模型姜启源答案【篇一:姜启源课后习题】xt>第1章建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n名商人带n名随从过河,船每次能渡k人过河,试讨论商人们能安全过河时,n与k应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。
问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的logistic模型为dn11dt?25n?25?106n2,如果不考虑该市的流动人口的影响以及非正常死亡。
设该市1990年人口总数为8000000人,试求该市在未来的人口总数。
当t??时发生什么情况。
1.7 假设人口增长服从这样规律:时刻t的人口为x(t),最大允许人口为xm,t到t??t时间内人口数量与xm?x(t)成正比。
试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。
1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间?1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层?1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。
水库的水可以通过河床的渗透和水面的蒸发流失。
如果要你建立一个数学模型来预测任何时刻水塔的水位,你需要哪些信息?第2章初等模型2.1 学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍。
数学模型姜启源-(第五版)名师公开课获奖课件百校联赛一等奖课件
例2 奶制品旳生产销售计划 在例1基础上深加工
12h 1桶 牛奶 或
3kgA1 1kg 2h, 3元
获利24元/kg 0.8kgB1
获利44元/kg
8h
4kgA2
50桶牛奶, 480h
1kg 2h, 3元
获利16元/kg 0.75kgB2
获利32净利润最大
Objective value:
3460.800
Total solver iterations:
2
Variable
Value Reduced
Cost
X1 0.000000
1.680000
X2 168.0000
0.000000
X3 19.20230
0.000000
X4 0.000000
0.000000
O
c l5
l3 D x1
z=0 z=2400
在B(20,30)点得到最优解.
目的函数和约束条件是线性函数 可行域为直线段围成旳凸多边形 目旳函数旳等值线为直线
最优解一定在凸多边 形旳某个顶点取得.
模型求解
软件实现
LINGO
model: max = 72*x1+64*x2; [milk] x1 + x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100; end
决策 变量
目的 函数
8h
4kg A2
1kg
2h, 3元
出售x1 kg A1, x2 kg A2,
获利16元/kg
0.75kg B2
获利32元/kg
x3 kg B1, x4 kg B2
第一章数学建模概述
1数学建模概述⏹ 数学模型 ⏹ 数学建模过程 ⏹ 数学建模示例⏹ 建立数学模型的方法和步骤 ⏹数学模型的分类1数学模型模型:是我们对所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质,模拟不一定是对实体的一种仿造,也可以是对某些基本属性的抽象。
直观模型: 实物模型,主要追求外观上的逼真。
物理模型:为一定目的根据相似原理构造的模型,不仅可以显示原型的外形或某些特征,而且可以进行模拟试验,间接地研究原型的某些规律。
思维模型,符号模型,数学模型 数学模型:1)近藤次郎(日)的定义:数学模型是将现象的特征或本质给以数学表述的数学关系式。
它是模型的一种。
2)本德(美)的定义:数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的简化的数学结构。
3)姜启源(中)的定义:是指对于现实世界的某一特定对象,为了某个特定的目的,做出一些必要的简化和假设,运用 适当的数学工具得到一个数学结构。
数学结构:是指数学符号、数学关系式、数学命题、图形图表等,这些基于数学思想与方法的数学问题。
总之,数学模型是对实际问题的一种抽象,基于数学理论和方法,用数学符号、数学关系式、数学命题、图形图表等来刻画客观事物的本质属性与其内在联系。
古希腊时期:“数理是宇宙的基本原理”。
文艺复兴时期:应用数学来阐明现象“进行尝试”。
微积分法的产生,使得数学与世界密切联系起来,用公式、图表、符号反映客观世界越来越广泛,越来越精确。
费马(P.Fermal 1601-1665)用变分法表示“光沿着所需时间最短的路径前进”。
牛顿(Newton 1642-1727)将力学法则用单纯的数学式表达,如,牛顿第二定律:结合开普勒三定律得出万有引力定律航行问题:甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船速、水速各多少?用y x ,分别代表船速、水速,可以列出方程解方程组,得221r m m G F =ma F =⎩⎨⎧=⋅-=⋅+75050)(75030)(y x y x 小时)(千米小时)(千米/5/20==y x答:船速、水速分别为20千米/小时、5千米小时。
数学模型第五版姜启源课件
数学模型第五版姜启源课件1. 引言数学模型是一种以数学方法描述、分析和解决实际问题的工具。
它是现代科学、工程和社会学科中不可或缺的一部分。
姜启源的《数学模型》是国内外广泛采用的教材之一,这份课件是对第五版《数学模型》的经典章节进行概要的总结和讲解。
2. 背景与目的数学模型的研究对象可以是自然界的现象、社会经济问题或工程技术等。
通过建立数学模型,我们可以更好地理解问题的本质,并探索解决问题的方法。
数学模型的建立需要一定的理论基础和技巧,本课件旨在帮助读者快速掌握数学模型的基本概念和建模方法。
3. 数学模型的基本概念数学模型是对实际问题进行抽象和描述的数学形式。
它由问题的假设、变量、关系和约束等要素组成。
本部分介绍了数学模型的基本概念,包括:3.1 假设与逼近数学模型的建立需要对实际问题进行适当的假设和逼近。
假设是对问题中不确定因素的简化和规定,而逼近是对问题中不精确因素的近似和描述。
3.2 变量与参数变量是数学模型中描述问题状态的符号,它可以是数值、向量、矩阵等。
参数是数学模型中的固定值,它们可以是已知的或未知的。
3.3 关系与方程关系是数学模型中描述变量之间相互关系的数学表达式。
方程是关系中等号左右两边相等的表达式。
3.4 约束条件与目标函数约束条件是数学模型中描述问题限制条件的不等式或等式。
目标函数是数学模型中描述问题目标的数学表达式。
4. 常见的数学模型本部分介绍了一些常见的数学模型及其应用场景,包括:4.1 线性模型线性模型是最简单的数学模型之一,它的关系和约束条件可以表示为线性方程或线性不等式。
线性模型广泛应用于经济学、管理学、物理学、工程学等领域。
4.2 非线性模型非线性模型是一类不满足线性关系的数学模型。
它的关系和约束条件可以表示为非线性方程或非线性不等式。
非线性模型常用于生物学、化学、地球物理学等领域的研究。
4.3 动态模型动态模型是描述系统随时间变化的数学模型。
它可以采用微分方程、差分方程或积分方程等形式进行建模。
《数学模型》(第五版)-姜启源-第2章
初等模型
• 研究对象的机理比较简单
• 用静态、线性、确定性模型即可达到建模目的
可以利用初等数学方法来构造和求解模型
如果用初等和高等的方法建立的模型,其应用效果
差不多,那么初等模型更高明,也更受欢迎.
尽量采用简单的数学工具来建模
第
二
章
初
等
模
型
双层玻璃窗的功效
划艇比赛的成绩
实物交换
汽车刹车距离与道路通行能力
外
T2
墙
T1 Ta
Ta Tb k Tb T2
Q1 k1
k2
1
d
d
l
T1 T2
k1
l
Q1 k1
, sh , h
d ( s 2)
k2
d
建模 记单层玻璃窗传导的热量Q2
T1 T2
T1 T2
Q1 k1
Q2 k1
d ( s 2)
2d
室
内
T1
2d
Q2
Q1
1
l
, h
Q2 8h 1
d
取 h=l/d=4, 则 Q1/Q2
即双层玻璃窗与同样多材
料的单层玻璃窗相比,可
减少97%的热量损失.
结果分析
Q1/Q2
0.06
0.03
0.02
O
2
4
Q1/Q2所以如此小,是由于层间空气的热传导系
数k2极低, 而这要求空气非常干燥、不流通.
房间通过天花板、墙壁、…损失的热量更多.
vm
vm=vf/2 ~最大流量时的速度
0
km
kj
密度k
0
姜启源报告
——《数学模型》(第五版) 简介
dx rx dt
清华大学 姜源
jiangqy@
• 数学建模教材的发展和存在的问题 • 《数学模型》(第五版)的定位与特色
• 《数学模型》(第五版)的内容和课件
预告 姜启源、谢金星、叶俊编写的《数学模型》
max U ( x1 , x2 ,, xn ) s.t.
n
px
i 1
i i
s
诚恳希望提出宝贵意见
谢 谢 大 家!
《数学模型》第五版的内容安排
• 全书共含案例约90个,其中新案例约30个 (包括全国竞赛赛题8个),改编约10个. • 全书共含习题约230个,其中复习题约占1/3, 放在每一节后面,训练题约占2/3,放在每 一章后面. 《数学模型(第五版)习题参考解答》 同时出版.
与教材配套的数字课程
• 拓展案例约60个:来自编者在数学建模、数
• 2011年后建模和实验教材出版的数量渐缓.
数学建模课程和教材存在的问题
• 案例研究是数学建模的主要教学形式,但是 陈旧、偏难的案例对学生的吸引力下降. • 模型求解的数学方法过多,案例成为方法的
应用题,向传统的数学课程和教材靠拢,失
去引入数学建模教学的初衷.
• 成为建模竞赛的培训手段,课程只为参赛者
1987 年 出 版 的 《 数 学模型》(第一版)
数学建模教材的发展
• 1992年开始举办的全国大学生数学建模竞赛 对课程教学和教材建设起了巨大的推动作用. • 竞赛培训内容逐渐成为数学建模教材的重要 组成部分. • 1999年数学实验课程和教材开始出现,2000 年后建模与实验结合的课程和教材逐渐增多. • 2001-2010年是建模和实验教材飞速发展的十 年,这类教材出版了200本以上.
数学模型..姜启源共127页
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
数学模型..姜启源ቤተ መጻሕፍቲ ባይዱ
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
数学模型姜启源课件第一章
数学模型姜启源课件第一章1. 引言数学模型是数学和实际问题之间的桥梁,通过建立合适的数学模型,我们可以更好地理解和解决实际问题。
本课程旨在介绍数学模型的基本原理和方法,帮助学生学习如何应用数学模型来解决实际问题。
在本章中,我们将首先介绍数学模型的基本概念和分类。
然后,我们将讨论数学模型的建立过程和解决方法。
最后,我们将通过几个具体案例来说明数学模型在实际问题中的应用。
2. 数学模型的概念和分类2.1 数学模型的定义数学模型是利用数学语言和符号来描述和分析实际问题的工具。
它可以是一个公式、一个方程、一个图表或者更复杂的数学结构。
数学模型能够将实际问题的复杂性简化,并提供一种定量的方法来研究问题。
2.2 数学模型的分类数学模型可以根据其特征和用途进行分类。
常见的数学模型分类包括:•线性模型:模型中的变量和参数之间的关系为线性关系。
•非线性模型:模型中的变量和参数之间的关系为非线性关系。
•离散模型:模型中的变量和参数取有限个或可数个值。
•连续模型:模型中的变量和参数可以取任意实数值。
•动态模型:模型中的变量和参数随时间变化。
•静态模型:模型中的变量和参数不随时间变化。
3. 数学模型的建立过程3.1 问题的描述数学模型的建立首先需要明确问题的目标和约束条件。
问题描述应该清晰明确,包含必要的数据和信息。
3.2 变量的选择通过分析问题,确定和描述影响问题的因素。
这些因素可以成为模型中的变量,用来表示问题的不同方面和特征。
3.3 建立数学关系根据变量的选择,建立模型中各变量之间的数学关系。
这些关系可以通过物理定律、统计分析或者经验公式来确定。
3.4 模型的求解利用数学工具和方法,对建立的数学模型进行求解,得到问题的解析解或数值解。
求解过程中需要考虑求解方法的合理性和稳定性。
4. 数学模型的求解方法4.1 解析解法解析解法是指通过数学推导和计算,得到数学模型的解析表达式。
这种方法可以提供问题的准确解,但通常只适用于简单的数学模型。
数学模型程序代码-Matlab-姜启源-第一章-建立数学模型
数学模型程序代码-M a t l a b-姜启源-第一章-建立数学模型-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 建立数学模型1.(求解,编程)如何施救药物中毒p10~11人体胃肠道和血液系统中的药量随时间变化的规律(模型):d ,(0)1100d (,0)d ,(0)0d xx x ty x y y tλλμλμ⎧=-=⎪⎪>⎨⎪=-=⎪⎩ 其中,x (t )为t 时刻胃肠道中的药量,y (t )为t 时刻血液系统中的药量,t =0为服药时刻。
1.1(求解)模型求解p10~11要求:① 用MATLAB 求解微分方程函数dsolve 求解该微分方程(符号运算)。
② 用MATLAB 的化简函数simplify 化简所得结果。
③ 结果与教材P11上的内容比较。
提示:dsolve 和simplify 的用法可用help 查询。
建议在命令窗口中操作。
1.2(编程)结果分析p11已知λ=0.1386, μ=0.1155,将上题中得到x (t )和y (t )两条曲线画在同一个图形窗口内。
参考图形如下。
MATLAB命令plot, fplot, hold on/off, grid on/off, xlabel, ylabel, text 。
★ 编写的程序和运行结果:2.(编程,验证)商人们怎样安全过河p8~9三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人们怎样才能安全渡河呢?[模型构成]决策:每一步(此岸到彼岸或彼岸到此岸)船上的人员。
要求:在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
x k第k次渡河前此岸的商人数y k第k次渡河前此岸的随从数x k , y k=0,1,2,3; k=1,2,⋯过程的状态s k=(x k , y k)允许状态集合S={(x, y)|x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}u k第k次渡船上的商人数v k第k次渡船上的随从数u k , v k=0,1,2; k=1,2,⋯决策d k=(u k , v k)允许决策集合D={(u , v)|u+v =1, 2}状态转移律s k+1=s k+(-1)k d k[多步决策问题]求d k∈D(k=1, 2, ⋯, n), 使s k∈S, 并按转移律由s1=(3,3) 到达s n+1=(0,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3
问题
建模示例之一 包饺子中的数学
通常,1kg馅, 1kg面, 包100个饺子. 今天,馅比 1kg多, 1kg面不变, 要把馅包完.
应多包几个(每个小些), 还是少包几个(每个大些)?
分析
直观认识——“大饺子包的馅多”! 但是:“用的面皮也多”!
需要比较:饺子从小变大时馅和面增加的数量关系.
C
C´ B´ B A´
O
A
x
D´
D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
正方形ABCD 绕O点旋转
模型建立
地面为连续曲面 椅子在任意位置 至少三只脚着地 椅子旋转900, 对 角线AC和BD互换 f() , g()是连续函数 对任意, f(), g() 至少一个为0 g(0)=0,f(0) > 0, f(/2)=0, g(/2)>0.
不平的地面上的椅子, 通常三只脚着地—— 放不稳! 挪动几下,使四只脚着地——椅子放稳!
讨论椅子能放稳的条件.
椅子能在不平的地面上放稳吗
模型假设
四腿一样长,椅脚与地面点接触,四脚连线呈正方形. 地面高度连续变化,可视为数学上的连续曲面. 地面相对平坦,椅子在任意位置至少三只脚着地.
模型建立
椅子位置 利用正方形(椅脚连线)的对称性. 用表示椅子位置. 四只脚着地 椅脚与地面距离为零 距离是的函数. 四个距离 (四只脚) 对称性 两个距离
模 型 构 成
尽量采用简单的数学工具
数学建模的一般步骤 模型 求解 模型 分析 模型 检验 各种数学方法、软件和计算机技术. 如结果的误差分析、统计分析、 模型对数据的稳定性分析. 与实际现象、数据比较, 检验模型的合理性、适用性.
模型应用
数学建模的全过程
现 实 世 界
现实对象的信息
验证 现实对象的解答
路障间距建模过程的基本、关键步骤 • 作出简化、合理的假设(等加速和等减速行驶). • 利用问题蕴含的内在规律(时间、距离、速度、
加速度之间的物理关系).
• 根据测试数据估计模型的参数(加速度和减速度).
路障设计中还有可用数学建模研究的问题吗?
1.5 建模示例之三 椅子能在不平的地面上放稳吗 问题
数学建模
建立数学模型的全过程
(包括表述、求解、解释、检验等)
1.2 数学建模的重要意义
数学建模历史悠久 欧几里德 《几何原本》 阿基米德 伽利略 牛顿 浮力定律 落体定律 万有引力定律
光反射定律
杠杆原理
惯性原理 微积分
直到20世纪后半叶数学建模才逐渐得到普遍重视 和广泛应用,并且进入大学的课堂.
科技进步与社会发展的推动
数学建模的能力 想象力 洞察力 判断力 创新意识
比较广博的数学知识 深入实际调查研究的决心和能力 • 如何学习数学建模 学别人的模型(学习、分析、改进、推广)
做自己的模型(实际题目,参加竞赛)
学别人的模型
对于案例——椅子能在不平的地面上放稳吗, 在学懂的基础上可以作哪些研究?
1. 模型假设中哪些条件是本质的, 哪些是非本质的? 地面高度连续 是 椅子至少三只脚着地 是 椅脚连线呈正方形 非 四脚连线呈长方形可以吗? 2. 建模的关键是什么? 变量表示椅子的位置.
一定能找到四只脚着地的稳定点.
1.6 数学建模的基本方法和步骤
数学建模的基本方法 机理分析 对客观事物特性的认识 内部机理的数量规律 对量测数据的统计分析 与数据拟合最好的模型 机理分析建立模型结构, 测试分析确定模型参数. 白箱
测试分析
黑箱
灰箱
二者结合
机理分析主要通过案例研究学习.建模主要指机理分析.
( x y ) 30 750 ( x y ) 50 750
求解
x=20 y =5
答:船速为20km/h.
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数)
• 用符号表示有关量(x, y分别表示船速和水速) • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程)
数学模型的分类
应用领域 数学方法 表现特性 人口、交通、经济、生态、… 初等数学、微分方程、规划、统计、…
确定和随机
离散和连续
静态和动态
线性和非线性
建模目的
了解程度
描述、优化、预报、决策、…
白箱 灰箱 黑箱
1.8 怎样学习数学建模—— 学习课程和参加竞赛
数学建模与其说是一门技术,不如说是一门艺术. 技术大致有章可循. 艺术无法归纳成普遍适用的准则. • 着重培养数学建模的意识和能力 数学建模的意识 对于日常生活和工作中那些需要 或者可以用数学知识分析、解决的实际问题,能够 敏锐地发现并从建模的角度去积极地思考、研究.
0 6.8
路障间距的设计
建模
加速行驶:距离s1,时间t1, 加速度a1 减速行驶:距离s2,时间t2, 减速度a2
限速 vmax
1 2 1 2 s1 a1t1 , s 2 a 2 t 2 2 2
vmax a1t1 , vmax a2t 2
2 vmax 1 1 ( ) s s1 s2 2 a1 a2
相邻路障间行驶总距离
给定vmax,由测试数据估计a1,a2,
s = 路障间距
计算
6 5 4 3 2 1 0 0 10
测试数据作图
加速行驶
5 40
20 30
大致线性关系
7 6 5 4 3 2
t = cv+d
1m/s= 3.6km/h
v
30 40
t
t
减速行驶
7
v
40
1 0 0 10
40
20
d1 , d2 ≈ 0
n1=100, n2=50 n2v2= n1 / n2 2 1.4
总面积S一定,单个饺子面积为 原来2倍, 所包的饺子馅是原来的 2倍
n1v1=1(kg), n2v2=?
50个饺子能包1.4kg馅.
讨论
若100个饺子包1kg馅, 50个饺子能包1.4kg馅.
饺子数量减少一倍,真的就能多包40%的馅吗? 饺子越大,面皮 应该越厚. “皮的厚度一样”的 假设值得探讨!
表述
数学模型 求解
解释
数学模型的解答
数 学 世 界
两次“翻译”
将实际问题“翻译”成数学问题. 将数学解答“翻译”回实际对象.
实践
理论
实践
1.7 数学模型的特点和分类 数学模型的特点
模型的逼真性和可行性 模型的渐进性 模型的非预制性 模型的条理性 模型的技艺性 模型的局限性
模型的强健性
模型的可转移性
• 计算机技术的出现和迅速发展,为数学建模的应用 提供了强有力的工具. • 高新技术中数学建模与科学计算是必不可少的手段 ——数学科学是关键的、普遍的、可应用的技术. • 数学迅速进入一些诸如经济、生态、人口、地质等 领域,为数学建模开拓了许多新的处女地. 数学建模引入教学顺应时代发展的潮流
数学建模的具体应用
1.4 建模示例之二 路障间距的设计 背景 校园、居民小区道路需要限制车速——设置路障 问题 限制车速≤40km/h, 相距多远设置一个路障? 分析
汽车过路障时速度接近零, 过路障后加速. 车速达到40km/h时让司机看到下一路障而
减速, 至路障处车速又接近零.
如此循环以达到限速的目的.
路障间距的设计
• 求解得到数学解答(x=20, y=5)
• 回答原问题(船速为20km/h)
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling) 数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学表述.
已知:f() , g()连续, 对任意, f() • g()=0 ,
且 g(0)= f(/2)= 0, f(0) > 0 , g(/2)>0. 证明:存在0,使f(0) = g(0) = 0.
模型求解
一种简单的证明方法
1)令 h()= f()–g(), 则 h(0)>0,h(/2)<0. 2)由 f, g 连续可得 h连续. 3)据连续函数的基本性质, 必存在0 ( 0< 0 < /2) , 使h(0)=0, 即 f(0) = g(0) . 4)因为 f(0) • g(0)=0, 所以 f(0) = g(0) = 0. 结论:在模型假设条件下,将椅子绕中心旋转,
~ 实物模型
~ 物理模型 ~ 符号模型
模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物. 模型集中反映了原型中人们需要的那一部分特征.
你碰到过的数学模型——“航行问题”
甲乙两地相距750km,船从甲到乙顺水航行需30h, 从乙到甲逆水航行需50h,问船的速度是多少? 用 x 表示船速,y 表示水速,列出方程:
数学建模的一般步骤 模型准备 模型检验 模型假设 模型分析 模型构成 模型求解
模型应用
模 型 准 备 了解实际背景 搜集有关信息 明确建模目的 形成一个 比较清晰 掌握对象特征 的问题
数学建模的一般步骤
模 型 假 设 针对问题特点和建模目的 作出合理的、简化的假设 在合理与简化之间作出折中 用数学的语言、符号描述问题 发挥想像力 使用类比法
估算
5 3.6 c1 0.45 (s2/m) 40
c2
7 3.6 0.63 (s2/m) 40
a1=1/c1,a2=-1/c2 vmax=11.1(m/s)
1 1 s ( ) ≈ 66.5 设计路障间距67m 2 a1 a2