材料力学 第09章 压杆稳定

合集下载

材料力学第九章压杆稳定

材料力学第九章压杆稳定

明显的弯曲变形,丧失了承载能力.
(Buckling of Columns)
构件的承载能力
① 强度 ② 刚度 ③ 稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全可 靠地工作.
(Buckling of Columns) 二、工程实例(Example problem)
(Buckling of Columns)
w
x
sin kl 0 y
B
讨论: 若
A 0, w 0
则必须 sin kl 0 kl nπ(n 0,1,2,)
(Buckling of Columns)
k2 F kl nπ(n 0,1,2,) EI
F
n2π l
2 2
EI
(n 0,1,2,)
令 n = 1, 得
Fcr
2 EI l2
E π σp
206109 100 200 106
当 <1 但大于某一数值 2的压杆不能应用欧拉公式,此
时需用经验公式.
(Buckling of Columns) 三. 常用的经验公式 ( The experimental formula)
直线公式 或 令
σcr a b s
a s
b
σmax
FN max A
[σ]
例如:一长为300mm的钢板尺,横截面尺寸为 20mm 1
mm.钢的许用应力为[]=196MPa.按强度条件计算得钢板尺所
能承受的轴向压力为 [F] = A[] = 3.92 kN
实际上,其承载能力并不取决于轴向压缩的抗压强度,而是
与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然发
支承情况 两端铰支 一端固定,另一端铰支 两端固定 一端固定,另一端自由

材料力学第9章 压杆稳定

材料力学第9章 压杆稳定

第9章 压杆稳定 图9-6
第9章 压杆稳定
9.2.3 两端非铰支细长压杆的临界载荷 1.一端固定一端自由的细长压杆的临界载荷 图9-7所示为一端固定、一端自由的长为l的细长压杆。
当轴向压力F=Fcr时,该杆的挠曲轴与长为2l的两端铰支细 长压杆的挠曲轴的一半完全相同。因此,如果二杆各截面的 弯曲刚度相同,则临界载荷也相同。所以,一端固定一端自 由、长为l的细长压杆的临界载荷为
第9章 压杆稳定
9.2.2 大挠度理论与实际压杆 式(9-1)与式(9-2)是对于理想压杆根据小挠度挠
曲轴近似微分方程得到的。如果采用大挠度挠曲轴的微分方
程 ddx1xM ExI进行理论分析,则轴向压力F与压杆最
大挠度wmax之间存在着如图9-6中的曲线AB所示的确定关 系,其中A点为曲线的极值点,相应之载荷Fcr即为上述欧拉 临界载荷。
Fcr
2 EI
2l 2
(9-3)
第9章 压杆稳定
图9-7
第9章 压杆稳定
2.两端固定的细长压杆的临界载荷 图9-8所示为两端固定的长为l的细长压杆,当轴向压 力F=Fcr时,该杆的挠曲轴如图9-8(a)所示,在离两固定端 各l/4处的截面A、B存在拐点,A、B截面的弯矩均为零。因 此,长为l/2的AB段的两端仅承受轴向压力Fcr(见图9-8 (b)),受力情况与长为l/2的两端铰支压杆相同。所以,两 端固定的压杆的临界载荷为
Fcr
2EI
0.5l 2
(9-4)
第9章 压杆稳定
图9-8
第9章 压杆稳定
3.一端固定一端铰支的细长压杆的临界载荷 图9-9所示为一端固定一端铰支的长为l的细长压杆, 在微弯临界状态,其拐点与铰支端之间的正弦半波曲线长为

材料力学-第9章压杆的稳定问题

材料力学-第9章压杆的稳定问题

0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
π 2 n 2 EI l2
最小临界载荷
FPcr π 2 EI 2 l
第9章 压杆的稳定问题
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上 正弦半波的长度,称为有效长度(effective length); 为反映不同 支承影响的系数,称为长度系数(coefficient of 1ength),可由屈 曲后的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度 的比值确定。
d2w M ( x) - EI 2 dx
d2w 2 k w0 2 dx
k2 FP EI
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
d2w 2 k w0 2 dx
k2
FP EI
微分方程的解
w =Asinkx + Bcoskx
边界条件
w ( 0 ) = 0 , w( l ) = 0
第9章 压杆的稳定问题
临界应力与临界应力总图
对于某一压杆,当分叉载荷 FP 尚未算出时,不 能判断压杆横截面上的应力是否处于弹性范围;当 分叉载荷算出后,如果压杆横截面上的应力超过弹 性范围,则还需采用超过比例极限的分叉载荷计算 公式。这些都会给计算带来不便。 能否在计算分叉载荷之前,预先判断哪一类压 杆将发生弹性屈曲?哪一类压杆将发生超过比例极 限的非弹性屈曲?哪一类不发生屈曲而只有强度问 题?回答当然是肯定的。为了说明这一问题,需要 引进长细比(slenderness)的概念。

材料力学压杆稳定

材料力学压杆稳定

D 0, C 1 l 2
3
x 0, w
1 Fa l 2
3 EIl
3EI Fcr al
§14.7 纵横弯曲旳概念
❖9.15
作业9-2
在图示铰接杆系ABC中,AB和BC皆为细长压杆, 且截面相同,材料一样。若因在ABC平面内失稳而 破坏,并要求0<</2,试拟定F为最大值时旳角。
Fcr
2 EI ( l )2
截 面
F
F



同 ,
1.5l
2l




顺 l 3l
2l
序 。
(1)
(4)
F
F
F
4l
5l
3l
2.8l
2.5l
1.5l
(2)
(3)
(5)
Fcr
2 EI ( l )2
图示托架中AB杆旳直径
d=30mm,长度l=800mm,
两端可视为铰支,材料为
F
A3钢,s=240MPa。试求
第九章 压杆稳定
§9.1 压杆稳定旳概念 §9.2 两端铰支细长压杆旳临界压力 §9.3 其他支座条件下细长压杆旳临界压力 §9.4 欧拉公式旳合用范围 经验公式 §9.5 压杆旳稳定校核 §9.6 提升压杆稳定性旳措施 §9.7 纵横弯曲旳概念
§9.1 压杆稳定旳概念
1. 平衡旳稳定性
a)稳定平衡
B = 0 sinkl=0 kl = n k = n/l
F
k 2 EI
n
2
EI
l
Fcr
2 EI l2
w
A
sin
x
l
§9.3 其他支座条件下细长压杆 旳临界压力

材料力学_压杆稳定

材料力学_压杆稳定

π 2E λp = σp
欧拉公式仅适用于细长压杆的稳定计算
对Q235 钢,E=200GPa,σp=200MPa,则 , ,
200 × 109 λp = π ≈ 100 6 200 × 10
9.2 压杆的临界应力
二,临界应力总图 大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): 细长压杆
σ cr σs
π 2 EI π 2E Fcr σ cr = = = 2 A (l / i )2 A(l )
其中

λ=
l
i
压杆的柔度或 压杆的柔度或长细比 欧拉临界应力
i=
I A
π 2E σ cr = 2 λ
(λ = λmax )
π 2E π 2E σ cr = 2 ≤ σ p λ ≥ λ σp
大柔度压杆(细长压杆 : 大柔度压杆 细长压杆): λ ≥ λ p 细长压杆
σp
σ cr = σ s
σcr = a1 b1λ
2
π 2E σ cr = 2 λ
直线经验公式: 直线经验公式:
(λ ≥ λ p )
σ cr = a bλ
σ cr = π E λ2
2
中柔度压杆(中长压杆 中柔度压杆 中长压杆) 中长压杆
σ cr = a bλ (λs ≤ λ ≤ λ p )
σ cr ≤ σ s (σ b ) λs =
2
d y = M ( x) = M B + FBy (l x) Fy 2 dx
2
k2 =
F EI ~ M M= B F
y
A
y (0) = 0 y′(0) = 0 y (l ) = 0 y′(l ) = 0 ~ ~ B + M + F l = 0 0 1 1 l ~ k 0 0 1 A k F = 0 =0 ~ sin kl cos kl 1 0 A sin kl + B cos kl + M = 0 ~ k cos kl k sin kl 0 1 kA cos kl kB sin kl F = 0 kl sin = 0 or Det = k[kl sin kl 2(1 cos kl )] 2 kl kl kl kl kl = 2k sin ( kl cos 2 sin ) = 0 (kl cos 2 sin ) = 0 2 2 2 2 2

材料力学 第九章 压杆稳定

材料力学 第九章 压杆稳定
cr s p
cr s cr a b
cr
小柔度杆 中柔度杆
O
π2 E
2
大柔度杆
2
1

l
i
大柔度杆—发生弹性失稳 中柔度杆—发生非弹性失稳 小柔度杆—不发生失稳,而发生强度失效
Fuzhou University
杆类型
大柔度杆
定义
1
临界力
π EI Fcr ( l ) 2
n 0,1, 2

n 1
π 2 EI Fcr 2 l
细长压杆的临界载荷的欧 拉公式 (两端铰支)
Fuzhou University
材料力学课件
w A sin kx B co s kx
kl n , n 0,1, 2
F x l w F x
取 n 1
π 2 EI Fcr 2 l
2
临界应力
cr π2E性质Fra bibliotek2
稳定 稳定 强度
中柔度杆 2 1 Fcr A(a b ) 小柔度杆
cr a b
2
Fcr A s
cr s

l
i
1 π
i
E
I A
1.0, 0.5, 0.7, 2.0
a s 2 b
Fcr
Fcr
π 2 EI
2l
2
π 2 EI
0.7l
2
π 2 EI Fcr 2 (l )
欧拉公式的普遍形式
Fuzhou University
材料力学课件 讨论:

π 2 EI Fcr ( l )2

材料力学第九章 压杆稳定

材料力学第九章 压杆稳定

02
创新研究方法与手段
积极探索新的实验技术和数值模拟方法,提高压杆稳定研究的精度和可
靠性。
03
拓展应用领域
将压杆稳定研究成果应用于更多领域,解决实际工程问题,推动科学技
术进步。
THANKS
感谢观看
稳定性取决于压杆的初始弯曲程度、压力的大小 和杆件的材料特性。
当压杆受到微小扰动时,如果能够恢复到原来的 平衡状态,则称其为稳定;反之,则为不稳定。
压杆的临界载荷
临界载荷是指使压杆由稳定平衡 状态转变为不稳定平衡状态的载
荷。
当压杆所受压力小于临界载荷时, 压杆保持稳定平衡状态;当压力 大于临界载荷时,压杆将失去稳
相应措施进行解决。
建筑结构中的压杆问题
02
高层建筑、大跨度结构等建筑中的梁、柱等部件可能发生失稳,
需要加强设计和施工控制。
压力容器中的压杆问题
03
压力容器中的管道、支撑部件等可能发生失稳,需要采取相应
的预防和应对措施。
05
压杆稳定的未来发展与展望
压杆稳定研究的新趋势
跨学科交叉研究
压杆稳定与材料科学、计算科学、工程结构等领域相互渗透,形 成多学科交叉的研究趋势。
工程中常见的压杆问题
1 2
细长杆失稳
细长杆在压力作用下容易发生弯曲,导致失稳。
短粗杆失稳
短粗杆在压力作用下可能发生局部屈曲,导致失 稳。
3
弹性失稳
材料在压力作用下发生弹性变形,当压力超过某 一临界值时,杆件发生失稳。
解决压杆失稳的方法与措施
加强材料质量
选择优质材料,提高材料的弹 性模量和抗拉强度,以增强压
材料力学第九章 压杆稳 定
• 引言 • 压杆稳定的基本理论 • 压杆稳定的实验研究 • 压杆稳定的工程应用 • 压杆稳定的未来发展与展望

材料力学 第九章 压杆稳定分析

材料力学 第九章 压杆稳定分析

我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
几点重要说明:
1. 所有稳定问题(包括后续内容)均需首先计算λ以界定压 杆的属性。
2. 对一般金属材料,作如下约定:
A. λp≈100;λs≈60。故:
i
二、压杆的分类
1、大柔度杆:
cr
2E 2
P
2E P
P
100
满足 P 的杆称为大柔度杆(或 细长杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
2、中柔度杆─λP>λ≥λS,即: P<≤S
直线型经验公式: cr ab
crab s
a s
b
s
60
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr

l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
工程实例
目录
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡

材料力学 第九章 压杆稳定

材料力学  第九章 压杆稳定

点名
二、 欧拉公式的应用范围
(Applicable range for Euler’s formula)
只有在 cr P 的范围内,才可以用欧拉公式计算压杆的 临界压力 Fcr(临界应力 cr )。
cr
2E 2
P

2E
P
令1
E
P
点名
即 ≥ 1(大柔度压杆或细长压杆),为欧拉公式的适用范围。 1 的大小取决于压杆材料的力学性能。例如,对于Q235钢, 可取 E=206GPa,P=200MPa,得
构件的承载能力
①强度 ②刚度 ③稳定性
点名
工程中有些构 件具有足够的强度、 刚度,却不一定能 安全可靠地工作。
点名
二、工程实例(Example problem)
点名
点名
内燃机、空气压缩机的连杆
点名
点名
点名
点名
三、失稳破坏案例 (bucking examples)
案例1、上世纪初,享有盛誉的美国桥梁学家库柏(Theodore Cooper)在圣劳伦斯河上建造魁比克大桥(Quebec Bridge) 1907年8月29日,发生稳定性破坏,85位工人死亡,成为上世纪 十大工程惨剧之一.
A杆先失稳
点名
例题2 压杆截面如图所示。两端为柱形铰链约束,若绕 y 轴失
稳可视为两端固定,若绕 z 轴失稳可视为两端铰支。已知,杆长
l=1m ,材料的弹性模量E=200GPa,p=200MPa。
求压杆的临界应力。
z
解: 1
E 99
P
y
30mm
iy
Iy A
1 (0.03 0.023 )
Mechanics of Materials

材料力学:第九章 压杆稳定问题

材料力学:第九章 压杆稳定问题
绞),I 应取最小的形心主惯矩,得到直杆的
实际临界力
若杆端在不同方向的约束情况不同, I 应取挠 曲时横截面对其中性轴的惯性矩。即,此时要 综合分析杆在各个方向发生失稳时的临界压力, 得到直杆的实际临界力(最小值)。
求解临界压力的方法:
1. 假设直梁在外载荷作用下有一个初始的弯曲变形
2. 通过受力分析得到梁截面处的弯矩,并带入挠曲线 的微分方程
P
采用挠曲线近似微分方程得
B
到的d —P曲线。
Pcr A
B'
可见,采用挠曲线近
似微分方程得到的d —P曲
线在压杆微弯的平衡形态
d
下,呈现随遇平衡的假象。
大挠度理论、小挠度理论、实际压杆
欧拉公式
在两端绞支等截面细长中心受压直杆
的临界压力公式中
2EI
Pcr l 2
形心主惯矩I的选取准则为
若杆端在各个方向的约束情况相同(如球形
P
压杆稳定性的概念
当P较小时,P
Q
P
当P较大时,
P Q
稳定的平衡态
P
撤去横向力Q 稳定的


P定

P P
临界压力
Pcr


撤去横向力Q 不稳定的
定 的
P

不稳定的平衡态
压杆稳定性的概念
压杆稳定性的工程实例
细长中心受压直杆临界 力的欧拉公式
细长中心受压直杆临界力的欧拉公式
压杆的线(性)弹性稳定性问题
利用边界条件
得 w D,
xl
Dcos kl 0
若解1
D0
表明压杆未发生失稳
w(x) Asin kx B cos kx D

材料力学上册第九章压杆稳定

材料力学上册第九章压杆稳定

一、工程实例
压力机的压杆
Mechanics of Materials
网架结构中的杆
桥墩
Mechanics of Materials
铁塔中的杆
Mechanics of Materials
Mechanics of Materials
航 天 飞 机 发 射 架 中 的 杆 件
Mechanics of Materials
第九章 压杆稳定
§9-1 压杆稳定性的概念 §9-2 细长中心受压直杆临界力的欧拉公式 §9-3 不同杆端约束下细长压杆临界力的欧拉
公式·压杆的长度因数 §9-4 欧拉公式的应用范围·临界应力总图 §9-5(9-6)压杆的稳定计算·压杆的合理截面
§9-1 压杆稳定的概念
Mechanics of Materials
压杆可能在低应力情况下发生弯曲 —失稳破坏
Mechanics of Materials
鱼洞长江大桥边 跨现浇支架失稳
Mechanics of Materials
稳定计算的重要性
Mechanics of Materials
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

《材料力学》第九章 压杆稳定

《材料力学》第九章 压杆稳定

精确的挠曲线微分方程, 间确定的关系: 采用精确的挠曲线微分方程 可以得出F与 间确定的关系 采用精确的挠曲线微分方程,可以得出 与δ间确定的关系:
δ =
2 2l
π
F 1 F − 1 1 − − 1 F cr 2 F cr
精确解的F与 的关系如 所示。 在临界点 附近较为平坦, 的关系如AC所示 在临界点A附近较为平坦 精确解的 与δ的关系如 所示。AC在临界点 附近较为平坦, 且于直线AB相切 随着压力逐渐减小趋近于F 相切。 中点挠度δ趋 且于直线 相切。随着压力逐渐减小趋近于 cr时,中点挠度 趋 近于零。可见F 正是压杆直线平衡和曲线平衡的分界点。 近于零。可见 cr正是压杆直线平衡和曲线平衡的分界点。 注意现象:曲线AC在为临界点 附近较为平坦, 在为临界点A附近较为平坦 注意现象:曲线 在为临界点 附近较为平坦,当F略高于 略高于 Fcr时,挠度 急剧增加。如F=1.152Fcr时,δ=0.297l≈0.30l。这样 挠度δ急剧增加 急剧增加。 。 大的变形,除了比例极限很高的金属丝可以实现外, 大的变形,除了比例极限很高的金属丝可以实现外,实际压杆一 般不能承受,在达到如此大的变形之前, 般不能承受,在达到如此大的变形之前,杆件早已发生塑性变形 甚至折断。工程中常见的压杆一般都是小变形的,所以, 甚至折断。工程中常见的压杆一般都是小变形的,所以,在小挠 度的情况下,由欧拉公式确定的临界力是有实际意义的。 度的情况下,由欧拉公式确定的临界力是有实际意义的。 以上讨论是对理想压杆 理想压杆——认为压杆轴线是理想直线,压力 认为压杆轴线是理想直线, 以上讨论是对理想压杆 认为压杆轴线是理想直线 作用线与轴线重合,材料是均匀的。实际压杆是有缺陷的, 作用线与轴线重合,材料是均匀的。实际压杆是有缺陷的,这些 缺陷相当于压力有一个偏心距,使压杆很早就出现弯曲变形。 缺陷相当于压力有一个偏心距,使压杆很早就出现弯曲变形。所 实验结果略如曲线OF示 折线OAB可看作是它的极限情况, 可看作是它的极限情况, 以,实验结果略如曲线 示,折线 可看作是它的极限情况 说明理想压杆作为实际压杆的分析模型有实际意义。 说明理想压杆作为实际压杆的分析模型有实际意义。

材料力学第9章 压杆稳定(土木)

材料力学第9章 压杆稳定(土木)

2.1922年冬天下大雪,美国华盛 . 年冬天下大雪, 年冬天下大雪 顿尼克尔卜克尔剧院由于屋顶结 构中的一根压杆超载失稳,造成 构中的一根压杆超载失稳, 一根压杆超载失稳 剧院倒塌, 余人。 剧院倒塌,死98人,伤100余人。 人 余人
3.2000年10月25日 . 年 月 日 上午10时 分 上午 时30分,在南京 电视台演播中心演播厅 屋顶的浇筑混凝土施工 顶的浇筑混凝土施工 中,因脚手架失稳,造 脚手架失稳, 成演播厅屋顶模板倒塌, 成演播厅屋顶模板倒塌, 死5人,伤35人。 人 人
欧拉公式与精确解曲线 精确解曲线
F =1.152F 时,
cr
δ ≈ 0.3l
理想受压直杆 非理想受压直杆
y
适用条件: 适用条件: •理想压杆(轴线为直线,压力与 理想压杆(轴线为直线, 理想压杆 轴线重合,材料均匀) 轴线重合,材料均匀) •线弹性,小变形 线弹性, 线弹性 •两端为铰支座 两端为铰支座
hb3 Iz = = 32cm 4 12
µl
iz =
Iz 32 = = 1.155cm A 4× 6
x
h
µ z = 0.5,
0.5 × 2 λz = = = 86.6 −2 iz 1.155 ×10
A3钢的λs= 61.6, λs<λ< λp,属于中 钢的 , 长压杆稳定问题。 长压杆稳定问题。 由表9-2查得 由表 查得: 查得
挠曲线的近似微分方程 挠曲线的近似微分方程
d w M =− dx EI
2
2
d w Fw =− 2 dx EI
引入记号
2
F w′′ + w = 0 EI
F k = EI
2
w′′ + k w = 0

北大材料力学-第九章压杆稳定

北大材料力学-第九章压杆稳定
有限元法
利用计算机仿真技术,建立压杆的有限元模型,通 过模拟压杆在不同受力状态下的响应,确定临界载 荷和失稳形式。
不同材料和截面形状的压杆稳定性
材料性质
不同材料的弹性模量、泊松比等 参数对压杆的稳定性有显著影响 。
截面形状
不同截面形状的压杆在相同外力 作用下的稳定性不同,例如圆形 截面、方形截面和工字形截面等 。
根据压杆的长度、截面尺寸和 材料属性等因素,通过欧拉公 式计算临界载荷,判断压杆是 否稳定。
经验公式
根据工程实践经验,总结出一 些经验公式,用于估算临界载 荷和稳定性。
试验法
通过试验测试压杆的临界载荷 和失稳形式,直接判断其稳定 性。
有限元分析
利用有限元分析软件模拟压杆 的受力状态和变形过程,评估 其稳定性。
02
压杆的临界载荷
欧拉公式
欧拉公式是计算等直压杆临界载荷的首要公式,它 表示压杆临界载荷与柔度之间的关系。
公式表达为:Fcr = π²EI/(μ²L₀),其中Fcr为临界载 荷,E为弹性模量,I为横截面惯性矩,μ为长度系数, L₀为压杆长度。
欧拉公式适用于细长等直压杆,当压杆长度与直径 之比大于或等于40时,才可视为细长杆。
当压杆受到周期性外力作用时, 会发生弯曲振动。
弯曲振动会导致压杆的应力波动, 从而影响其稳定性。
弯曲振动频率和振幅对压杆的稳 定性有重要影响,频率越高、振
幅越大,压杆越容易失稳。
弯曲振动对压杆稳定性的影响
弯曲振动会改变压杆 内部的应力分布,从 而影响其稳定性。
通过控制弯曲振动频 率和振幅,可以有效 提高压杆的稳定性。
优化结构设计
通过对压杆结构的合理设计, 如改变截面形状、增加支撑等 方式,提高压杆的稳定性。

材料力学-压杆稳定

材料力学-压杆稳定

18
例题 9-1
解: 1. 建立压杆挠曲的近似微分方程 根据该压杆失稳后符合杆端约束条件的挠曲线的大致形状 可知,任意x 横截面上的弯矩为
M x Fcrd w
杆的挠曲线近似微分方程则为
EIw M ( x)Fcr d w
将上式改写为
w Fcr w Fcr d
(1)
EI EI
2l 2
p 2E hb3
12
2l 2
p 2Eh4
384l 2
Fcr
2
p 2EI
2l 2
p 2E hh3
12
2l 2
p 2Eh4
48l 2
p 2Eh4
Fcr
2
Fcr
1
48l 2
p 2Eh4
8
384l 2
练习2 由Q235钢加工成的工字型截面杆,两端为柱形铰。
在xy平面内失稳时,杆端约束情况接近于两端铰支,z = 1,
第 9 章 压杆稳定
1
§9–1 压杆稳定的概念
一、引言:
第二章中,轴向拉、压杆的强度条件为
max
FN max A
[ ]
例:一长为300mm的钢板尺,横截面尺寸为 20mm 1mm 。
钢的许用应力为[]=196MPa。按强度条件计算得钢板尺所能
承受的轴向压力为
[F] = A[] = 3.92 kN
w d sin πx
l
可见此时的挠曲线为半波正弦曲线。
15
需要指出的是,尽管上面得到了A=d,但因 为杆在任意微弯状态下保持平衡时d为不确
定的值,故不能说未知量A已确定。 事实上,在推导任何杆端约束情况的细长中 心压杆欧拉临界力时,挠曲线近似微分方程 的通解中,凡与杆的弯曲程度相关的未知量 总是不确定的。

材料力学-第9章压杆的稳定问题

材料力学-第9章压杆的稳定问题

0 1 0 sinkl coskl
sinkl 0
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI 由此得到临界载荷
2
kl nπ, n 1, 2 ,,
FPcr
第9章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
微分方程的解 w =Asinkx + Bcoskx 边界条件 w ( 0 ) = 0 , w( l ) = 0
0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B 不全为零的条件是他们的系数行列式等于零:
FP F FP P
FP>FPcr :在扰动作用下, 直线平衡构形转变为弯曲平 衡构形,扰动除去后, 不能恢复到直线平衡构形, 则称原来的直线平衡构形 是不稳定的。
第9章 压杆的稳定问题
压杆稳定的基本概念
当压缩载荷大于一定的数值时,在任意微小的外界扰动下, 压杆都要由直线的平衡构形转变为弯曲的平衡构形,这一过程 称为屈曲(buckling)或失稳(lost stability)。对于细长压杆, 由于屈曲过程中出现平衡路径的分叉,所以又称为分叉屈曲 (bifurcation buckling)。 稳定的平衡构形与不稳定的平衡构形之间的分界点称为临 界点(critical point)。对于细长压杆,因为从临界点开始, 平衡路径出现分叉,故又称为分叉点。临界点所对应的载荷称 为临界载荷(critical load)或分叉载荷(bifurcation load), 用FP表示。
第9章 压杆的稳定问题
压杆稳定的基本概念
在很多情形下,屈曲将导致构件失效,这种失 效称为屈曲失效(failure by buckling)。由于屈曲 失效往往具有突发性,常常会产生灾难性后果,因 此工程设计中需要认真加以考虑。

《材料力学》第九章 压杆稳定

《材料力学》第九章  压杆稳定

第九章 压杆稳定§9—1 概述短粗压杆——[]σσ≤=AF Nmax (保证具有足够的强度) 细长压杆——需考虑稳定性。

一、压杆稳定性的概念:在外力作用下,压杆保持原有直线平衡状态的能力。

二、压杆的稳定平衡与不稳定平衡:三、临界的平衡状态:给干扰力时,在干扰力给定的位置上平衡;无干扰力时,在原有的直线状态上平衡。

(它是稳定与不稳定的转折点)。

压杆的临界压力:Fcr ( 稳定平衡的极限荷载)四、判断压杆稳定的标志——F cr稳定的平衡状态——cr F F 临界的平衡状态——cr F F =不稳定的平衡状态(失稳)——cr F F§9—2 两端铰支细长压杆的临界力假定压力以达到临界值,杆已经处于微弯状态且服从虎克定律,如图,从挠曲线入手,求临界力。

①、弯矩:w F x M cr -=)(②、挠曲线近似微分方程:w F x M w EI cr -=='')( 即,0=+''w EIF w cr令 EIF k cr =202=+''w k w ③、微分方程的解:kx B kx A w cos sin += ④、确定微分方程常数:0)()0(==L w w )sin (.0sin 0,B kx w kL ===→πn Kl =(n=0、1、2、3……)EIF L n k cr==∴π222L EI n F cr π=→临界力 F c r 是微弯下的最小压力,故,只能取n=1 ;且杆将绕惯性矩最小的轴弯曲。

2min2cr F L EI π=∴§9—3 其它支承下细长压杆的临界力2min2)(l EI F cr μπ=——临界力的欧拉公式(μ——长度系数,L ——实际长度,μL ——相当长度) 公式的应用条件:1、理想压杆;2、线弹性范围内;【例】:试由挠曲线近似微分方程,导出下述细长压杆的临界力公式。

解:变形如图,其挠曲线近似微分方程为:0)(m w F x M w EI cr -==''EI F k cr =2:令 crF m k w k w EI 022=+'' kx d kx c w sin cos += 边界条件为:.0,;0,0='==='==w w L x w w x, 2,,00πn kL F m d c cr=-== 为求最小临界力, “ n ”应取除零以外的最小值,即取:π2=kL所以,临界力为:2222)2/(4L EIL EI F cr ππ== (μ=0.5)【例】:求下列细长压杆的临界力。

12 材料力学第九章 压杆稳定

12 材料力学第九章 压杆稳定

令 L
i
即: cr
2E 2
i I A
26
说明:挠曲线的近似微分方程建立在胡克定律基础上,因此
只有材料在线弹性范围内工作时,即只有cr≤p时,欧拉公
式才能适用。
实验表明: 粗短压杆没有失稳现象; 中等长度的压杆失稳时的临界力,与欧拉公式计算的临界
力并不符合; 细长压杆失稳时的临界力,可以用欧拉公式来计算。
式中nst为稳定安全系数,通常nst随着柔度的增大而增大。
稳定安全系数一般比强度安全系数要大些。例如对于一 般钢构件,其强度安全系数规定为1.4~1.7,而稳定安全系 数规定为1.5~2.2,甚至更大。
37
稳定性计算主要解决三方面的问题: (1) 稳定性校核; (2) 选择截面; (3) 确定许用荷载。 注意:截面的局部削弱对整个杆件的稳定性影响不大,因

2E p
E
p
p
28
二、中小柔度杆的临界应力计算
1. 直线型经验公式
①P<<S 时: crab c rabs
as
b
s
s P的杆为中柔度 界杆 应, 力其 用临 经验
②S< 时:
crs
S的杆为小柔度 界杆 应, 力其 为临 屈服
29
表9−2 一些常用材料的a、b、p、s值
材料
a (MPa) b (MPa)
固定,长度系数2=0.5,惯性半径
iy
Iy
h3b /12b 40
薄壁容器 失稳
浅拱失稳
17
§9–2 细长压杆临界力的欧拉公式
一、两端铰支压杆的临界力: 假定压力已达到临界值,杆已经处于微弯状态,如图,
从挠曲线入手,求临界力。

材料力学第九章-压杆稳定

材料力学第九章-压杆稳定
Iy Iz
按照 Iy计算临界压力。
工程力学
例 按照 Iy计算临界压力。
F b z
h l
π 2 EI π 2 200 10 3 48 10 4 Fcr N 2 2 ( l ) (2 2500 )
37860N 37.86kN

y
h b 60mm
bh3 60 4 Iy Iz mm 108 10 4 mm 12 12
工程力学
三、其它支承情况下细长压杆的临界力 不同约束形式 压杆的临界力,可 以用类似的方法求 解微分方程导出。 但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l
F
F
一端固定,一端自由, 长为l 的的压杆的挠曲线 和两端铰支,长为2l的 压杆的挠曲线的上半部 分相同。则临界压力:
工程力学
二、稳定性问题的分类 1.压杆的稳定性。2.板壳的稳定性。 本课程只讨论压杆的稳定性。
三、压杆的稳定与失稳 1.压杆的稳定性: 压杆维持其原有直线平衡状态的能力
2.压杆的失稳: 压杆丧失其原有直线平衡状态,不能稳定地工作。
工程力学
四、压杆失稳的原因 1)杆轴线本身不直(有初曲率); 2)加载偏心; 3)压杆的材质不均匀;
4)外界干扰力。 五、失稳现象的特点 1.多样性。(如扭转、弯曲失稳,板、壳、柱) 2.整体性。构件失稳引起受力重新分配。整体失效、 整体分析。 3.破坏的突然性。应力在弹性范围,类似脆性破坏。
工程力学
• 1907年加拿大
魁北克大桥在 剪彩前突然坍 塌,600米长, 19000吨重的大
桥和86名建桥
3、中柔度杆的经验公式 对于 < p的压杆,其临界应力大于材料的比例极限,欧拉 公式已经不适用。

孙训方材料力学09压杆稳定

孙训方材料力学09压杆稳定

B
11
材 料 力 学 x
Fcr
Fcr M(x)=Fcr w m w B m x y
l m
m x
B y
m-m 截面的弯矩
M ( x) Fcr w
材 料 力 学
杆的挠曲线近似微分方程
EIw M ( x) Fcr w (a)
''
Fcr M(x)=Fcr w m x m
令 得
Fcr k EI
材 料 力 学
(2)横截面对某一形心主惯性轴的惯性矩 I
若杆端在各个方向的约束情况相同(如球形铰等),则 I 应取最小的形心主惯性矩. 取 Iy 、Iz 中小的一个计算临界力。 若杆端在各个方向的约束情况不同(如柱 形铰),应分别计算杆在不同方向失稳时的临 x y z
界压力。 I 为其相应中性轴的惯性矩。
π 2 EI Fcr ( l )2
l—相当长度
—长度因数
材 料 力 学
π 2 EI Fcr 2 ( l )
讨 论 (1)相当长度 l 的物理意义 压杆失稳时,挠曲线上两拐点间的长度就是压杆的相当 长度 l 。
l是各种支承条件下,细长压杆失稳时,挠曲线中相当
于半波正弦曲线的一段长度。
材 料 力 学
解:
E p π 100 σp
压杆 = 1
i
I A
π( D d ) 1 2 2 64 D d π( D 2 d 2 ) 4 4
4 4

lmin
l
i

4l D2 d 2
2
p 100
2
100 0.05 0.04 1.6m 41
y yl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以
w
sin kl 0
d
n w n
x
l
Fcr
n
kl nπ (n 0,1,2,)
M(x)
n
l/2
k
B
w
B
x
nπ l
w
15/80
9.2 两端铰支细长压杆的临界载荷
nπ k l
Fcr
A
x
因为n是0,1,2,…等整数中的任一个数, 故理论上是多值的,即使杆件保持为曲线平衡 的压力也是多值的。
9.4 欧拉公式的适用范围与经验公式
9.4.2 经验公式
1 直线公式
s cr a bl
a /MPa 304 461 b /MPa 1.12 2.57
a,b 与材料力学性能有关的常数 材料 Q235钢(ss=235, sb 372) 优质碳钢(ss=306, sb471)
其他材料的参数参见教材

设该杆横截面边长为a,则惯性矩
a a 3 a 4 A2 9002 1012 m 4 I 6.75108 m 4 12 12 12 12 该杆的临界压力
π 2 EI π 2 206109 Pa 6.75108 m 4 95.2 kN Fcr 2 2 2 1.2 m l
压杆丧失直线形式平衡状态的现象称为 丧失稳 定,简称 失稳,也称为屈曲。 当压杆的材料、尺寸和约束情况已经确定时, 临界压力是一个确定的值。因此可以根据杆件的实际 工作压力是否大于临界压力来判断压杆是稳定还是不 稳定。解决压杆稳定的关键问题是确定临界压力。
9/80
9.1 压杆稳定的概念
压杆失稳的特点 压杆失稳后,压力的微小增加将引起弯曲变形的显著增大, 从而使杆件丧失承载能力。因失稳造成的失效,可能导致整个结 构或机器的破坏。细长压杆失稳时,应力并不一定很高,有时甚 至低于比例极限。可见这种形式的失效,并非强度不足,而是稳 定性不够。
根据轴向拉伸与压缩理论,当受拉杆件横截面上的正应力达 到屈服极限或强度极限时,将引起塑性变形或断裂。 长度较小的粗短杆受压时也有类似的现象,例如受压低碳钢 短柱在正应力达到屈服极限时,材料失效,短柱越压越扁;铸铁 短柱受压时将被压碎。这些都是由于强度不足引起的失效。
4/80
9.1 压杆稳定的概念
取一根长为300mm的钢板尺,其横截面尺寸为 20mm×1mm。若 钢的许用应力为[s ]=196MPa。 按照强度条件计算钢尺所能承受的轴向压力:
32/80
9.4 欧拉公式的适用范围与经验公式
9.4.2 经验l
对塑性材料,按直线公式算出的应力最高只能等于ss,否则材料 已经屈服,成了强度问题,即要求

a s s s cr a bl s s l b a ss l ls ls 为使用直线公式的最小柔度 ls b
D
0.7l
0.5l
C
C B
B
B
π2 EI π 2 EI π 2 EI π 2 EI Fcr 2 Fcr Fcr Fcr 2 2 (0.5l ) l (2l )2 (0.7l )
22/80
2l
l
l
l
B
l
9.3 其他支座条件下细长压杆的临界载荷
实际问题中压杆的约束还可能有其他情况,可用不同的长度 因数 m 来反映,这些长度因数的值可从相关设计手册或规范中查 到。
π 2 EI Fcr (0.5l ) 2 π 2 EI Fcr (0.7l )2
π 2 EI Fcr 2 l π2 EI Fcr (2l )2
20/80
9.3 其他支座条件下细长压杆的临界载荷
综合各种不同的约束条件,统一写成如下形式:
π2 EI Fcr 2 ( ml )
上式即为欧拉公式的一般形式。
Fcr
A
二阶常系数线性微分方程的通解
w A sin kx B cos kx
w
式中A,B为积分常数,
Fcr
n
d
n w n
x
n
M(x)
由边界条件确定
l
l/2
x0 w0

B0
14/80
B
w
B
x
w
9.2 两端铰支细长压杆的临界载荷
边界条件
x
xl w0

A sin kl 0
Fcr
A
A 不为 0 若A=0,表明杆为直线, 这与压杆处于微弯平衡状态不符。
第九章 压杆稳定 Chapter 9 Columns
第九章 压杆稳定
9.1 压杆稳定的概念
9.2 两端铰支细长压杆的临界载荷 9.3 其他支座条件下细长压杆的临界载荷 9.4 欧拉公式的适用范围与经验公式 9.5 压杆稳定条件与合理设计 9.6 工程案例
2/80
9.1 压杆稳定的概念
3/80
9.1 压杆稳定的概念
7/80
9.1 压杆稳定的概念
稳定平衡和不稳定平衡的概念
理想压杆: 材料绝对理想;轴线绝对直;压力绝对沿轴线作用。
F小于某个值
F大于某个值
稳定平衡
不稳定平衡
8/80
9.1 压杆稳定的概念
Fcr
临界状态 稳 定 过 平 衡 不 稳 度 定 平 压力 衡 临界压力: Fcr
对应的
压杆失稳与 临界压力
x0 w0 x 0 w 0
B d
Fcr
A 0 (k 0)
w d 1 cosk x
w
dw
x l wd

d d 1 cosk l
π kl 2
x
l
由此
cosk l 0
满足上述条件的最小的根
得到临界力Fcr的欧拉公式
Fcr k EI
该微分方程的通解
x
l
d2w 2 2 k w k d 2 dx
w A sin kx B cos kx d
24/80
式中积分常数A,B 由边界条件确定
9.3 其他支座条件下细长压杆的临界载荷
x
w A sin kx B cos kx d
d
式中积分常数A,B 由边界条件确定
2
π2 EI Fcr (2l )2
25/80
9.3 其他支座条件下细长压杆的临界载荷
在已经导出两 端铰支压杆的临界 压力公式之后,可 以用比较简单的方 法,得到其他约束 条件下的临界力。
F
F
一端固定,一端自 由,长为l 的的压杆的挠 曲线和两端铰支,长为 2l的压杆的挠曲线的上 半部分相同。则临界压 力:
l
2l
π2 EI Fcr (2l )2
同样用比较变形的办法(与两端铰支细长压杆比较),可求 出其他约束情况下压杆的临界力Fcr的欧拉公式。
26/80
9.4 欧拉公式的适用范围与经验公式
27/80
9.4 欧拉公式的适用范围与经验公式
9.4.1 欧拉公式的适用范围
临界应力
Fcr π 2 EI s cr A ( ml ) 2 A
29/80
9.4 欧拉公式的适用范围与经验公式
9.4.1 欧拉公式的适用范围
lp的值与材料的性质有关,材料不同, lp 的值也就不同。
Q235 E = 206 GPa sp = 200 MPa
lp
π2E
sp

π 2 206109 P a 100 6 20010 P a
则用Q235钢制成的压杆只有当lp ≥100 时,才能使用欧拉公 式计算其临界力或临界应力。
I i2 A
由惯性半径公式: i I / A
引入
l
ml
i
π2 E s cr ml 2 则有 ( ) i
l 是一个量纲为1的量,称为柔度或长细比
l 集中反映了压杆的长度、约束条件、截面尺寸和形状等因素 对临界应力scr的影响
临界应力公式改写为:
s cr
π2 E
l2
28/80
9.4 欧拉公式的适用范围与经验公式
应当注意,细长压杆临界力的欧拉公式中,I 是横截面对某一 形心主惯性轴的惯性矩。 若杆端在各个方向的约束情况都相同(如球形铰等),则 I 应取 最小的形心主惯性矩。 若杆端在不同方向的约束情况不同(如柱形铰),则 I 应按计 算的挠曲方向选取横截面对其相应中性轴的惯性矩。
23/80
9.3 其他支座条件下细长压杆的临界载荷
【例9-2】 推导下端固定,上端自由,并在自由端受轴向压力作用的 等直细长压杆临界力Fcr的欧拉公式。 解 由临界力所引起杆的任意横截面x上的弯矩 x
d
M ( x) Fcr (d w)
Fcr
挠曲线微分方程

k2 Fcr EI
d 2 w Fcr (d w) 2 EI dx
w
dw
挠曲线微分方程改写为
w
d
n w n
x
l
Fcr
n
在这些压力中,使杆件保持微小弯 曲的最小压力才是临界压力Fcr
M(x)
n
l/2
只有取n = 1,才使压力为最小值。
B
w
B
x
w
16/80
9.2 两端铰支细长压杆的临界载荷
n 1
x
k
nπ l
Fcr k EI
2
Fcr
求得
A
π 2 EI Fcr 2 l
w
d
n w n
x
w
Fcr d2 w w 2 dx EI
式中 I 为压杆横截面的最小惯性矩
Fcr
n
d
n w n
x
n
M(x)
相关文档
最新文档