已知三角函数值求角知识讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【学习目标】

1、掌握已知三角函数值求角的解题步骤;

2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合

【要点梳理】

要点一:反正弦,反余弦,反正切函数的定义

(1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ⎡⎤

-⎢⎥⎣⎦

上有唯一的x 值

和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ⎡⎤

-⎢⎥⎣⎦

上正弦等于y

的那个角.

(2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =.

(3)一般地,如果tan ()x y y R =∈,且,22x ππ⎛⎫∈- ⎪⎝⎭,那么对每一个正切值y ,在开区间,22ππ⎛⎫

- ⎪⎝⎭

内,

有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22

x y x ππ

=∈-.

要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步:

第一步,决定角可能是第几象限角.

第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x .

第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果.

【典型例题】

类型一:已知正弦值、余弦值,求角

例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】

(1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544π

ππ+

=

,第四象限的角是7244

ππ

π-=. (2)在R 上符合条件的角是所有与

54

π终边相同的角和所有与74π

终边相同的角.因此x 的取值集合为

57|2()|2()44x x k k z x x k k z ππππ⎧⎫⎧⎫=+∈=+∈⎨⎬⎨⎬⎩⎭⎩⎭

. 【总结升华】(1)定象限,根据三角函数值的符号确定角是第几象限角.

(2)找锐角;如果三角函数值为正,则可直接求出对应的锐角1x ,如果三角函数值为负,则求出与其绝对值对应的锐角1x . (3)写形式.根据 ±

,2 - 的诱导公式写出结果.第二象限角:1x π-;第三象限角:1x π+

第四象限角:12x π- .

如果要求出[ 0 ,2 ]范围以外的角则可利用终边相同的角的三角函数值相等写出所有结果.

例2.(1)已知cos x =-0.7660,且x ∈[0,π],求x ; (2)已知cos x =-,且x ∈[0,2π],求x 的取值集合.

【思路点拨】因为所给的余弦值是负数,所以先求出其绝对值对应的锐角,然后再求出其他象限的角. 【解析】

(1)由余弦曲线可知

y =cos x 在[0,π]上是减函数 又由已知cos x =-<0 得x 是一个钝角

又由cos(π-x )=-cos x =0.7660

利用计算器求得π-x =2

∴79

x π=

∴符合条件的有且只有一个角7

9

π.

(2)∵cos x =-0.7660<0,所以x 是第二或第三象限角,由y =cos x 在[0,π]上是减函数 y =cos x 在[π,2π]上是增函数 因为cos(π+29π)=cos(π-2

9

π)= -.

可知:符合条件的角有且只有两个,即第二象限角79π或第三象限角11

9π.

∴所求角x 的集合是{79π,11

9

π}.

举一反三:

【变式1】已知sinX= - ,且X ∈[ 0 ,2π] ,求角X 的取值集合. 【答案】arcsin0.3332π+或2arcsin0.3332π- 【变式2】根据下列条件,求△ABC 的内角A

(1)2

3cos -

=A (2)3sin 5A =

【思路点拨】因为∠A 为△ABC 的内角,所以0<A <π.根据余弦函数在),0(π内是单调递减的,故符合条件的∠A 只有一个,而根据正弦函数的单调性,在),0(π中符合条件的有两个. 【解析】(1)∠A 为△ABC 的内角 ∴0<A <π

∵余弦函数在区间),0(π中为减函数,所以符合条件2

3

cos -

=A 的角A 只有一个 ∵236

cos

=

π

∴2365cos -=π ∴π6

5

=∠A

(2)∵0<A <π,根据正弦函数的单调性,在),0(π内符合条件3

sin 5

A =的角A 有两个 ∵5

3sin )sin(=

=-A A π ∴5

3arcsin 5

3arcsin -=∠=∠πA A 或

类型二:已知正切值,求角

例3.已知.,)3( ]2,0[)2( )2

,2()1(.2tan ααπαπ

παα求角若R ∈∈-

∈-= 【思路点拨】由正切函数的单调性可知,在开区间)2

,2(π

π-

内,符合条件2tan -=α的角只有一个,而在]2,0[πα∈内,符合条件2tan -=α的就有两个.再根据正切函数的周期性可知,第(3)题中符合条件的角α就有无穷多个了.

【解析】(1)由正切函数在开区间)2

,2(π

π-

上是增函数可知;符合2tan -=α的角只有一个,即

arctan(2)α=-

(2)∵,02tan <-=α∴α是第二或第四象限角,又∵]2,0[πα∈,由正切函数在区间),2

(

ππ

]2,2

3

(ππ上是增函数知,符合2tan -=α的角有两个. ∵,2tan )2tan()tan(-==+=+ααπαπ且)0,2

()2arctan(π

-

∈-

∴)2arctan(2)2arctan(-+=-+=παπα或

(3)∵正切函数的最小正周期为π

∴只需在长为一个周期的区间上求出满足条件的α,再加上πk 即可 在(1)中,)2arctan( )2

,2(-=-

∈απ

πα ∴Z R ∈-+=∈k k ),2arctan(,παα 举一反三:

【变式1】(1)已知tan x =31,x ∈(-2π,2

π

),求x . (2)已知tan x =

3

1

,且x ∈[0,2π],求x 的取值集合. 【思路点拨】(1)由正切曲线可知

y =tan x 在(-

2π,2

π

)上是增函数;

相关文档
最新文档