幂的运算易错、常考题型精编版

合集下载

【中考数学】 幂的运算易错压轴解答题专题练习(及答案)

【中考数学】 幂的运算易错压轴解答题专题练习(及答案)

【中考数学】幂的运算易错压轴解答题专题练习(及答案)一、幂的运算易错压轴解答题1.我们约定,如: .(1)试求和的值;(2)想一想,是否与相等,并说明理由.2.阅读理解:我们知道一般地,加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算;如我们规定式子23=8可以变形为log28=3,log525=2也可以变形为52=25.在式子23=8中,3叫做以2为底8的对数,记为log28.一般地,若a n=b(a>0且a≠1,b>0),则叫做以a为底b的对数,记为log a b ,即log a b=n.根据上面的规定,请解决下列问题:(1)计算:log3 1=________, log2 32=________, log216+ log24 = ________,(2)小明在计算log1025+log104 的时候,采用了以下方法:设log1025=x, log104=y∴ 10x=25 10y=4∴ 10x+y=10x×10y=25×4=100=102∴ x+y=2∴ log1025+log104=2通过以上计算,我们猜想log a M+ log a N等于多少,请证明你的猜想. 3.已知3a=4,3b=5,3c=8.(1)填空:32a=________;3b+c的值为________;(2)求32a﹣3b的值.4.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.5.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)6.求代数式的值:(1)已知,,求的值.(2)已知,,求,的值.7.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.8.综合题(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.9.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.10.综合题(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.11.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.12.我们规定:,例如,请解决以下问题:(1)试求的值;(2)想一想与相等吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:根据题中的新定义得: 1012 脳 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算解析:(1)解:根据题中的新定义得: 1012 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算可得答案;(2)根据,可得同底数幂的乘法,根据同底数幂的乘法,可得答案. 2.(1)0;5;6(2)解:loga(M·N)| logaM+ logaN= loga(M·N),证明:设logaM=x, logaN=y∴ ax=M, ay=N∴ ax+y=ax×a解析:(1)0;5;6(2)解:log a(M·N)| log a M+ log a N= log a(M·N),证明:设log a M=x, log a N=y∴ a x=M, a y=N∴ a x+y=a x×a y=M·N∴log a(M·N)= x+y∴log a M+ log a N =x+y= log a(M·N)【解析】【解答】解:(1)∵,,,∴log3 1=0,log2 32=5,log216+ log24 =4+2=6故答案为:0;5;6.【分析】(1)根据题意,利用对数的逆运算计算即可;(2)设log a M=x,log a N=y,根据对数的定义可得a x=M, a y=N,然后根据同底数幂乘法的逆用可得a x+y=M·N,再将其写成对数的形式即可证出结论.3.(1)16;40(2)解:32a−3b=32a÷33b=(3a)2÷(3b)3=42÷53= 16125 .【解析】【解答】解:(1)32a=(3a)2=42=16;3b+c=3b•解析:(1)16;40(2)解:32a−3b=32a÷33b=(3a)2÷(3b)3=42÷53=.【解析】【解答】解:(1)32a=(3a)2=42=16;3b+c=3b•3c=5×8=40;【分析】(1)直接利用幂的乘方运算法则计算得出答案,直接利用同底数幂的乘法运算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则进而计算得出答案.4.(1)解:原方程等价于2x+1=23 ,x+1=3,解得x=2(2)解:原方程等价于34x=38 ,4x=8,解得x=2【解析】【分析】(1)根据同底数幂相乘,解析:(1)解:原方程等价于2x+1=23,x+1=3,解得x=2(2)解:原方程等价于34x=38,4x=8,解得x=2【解析】【分析】(1)根据同底数幂相乘,底数不变,指数相加,可得出x的值。

【中考数学】幂的运算易错压轴解答题练习题(附答案)

【中考数学】幂的运算易错压轴解答题练习题(附答案)

【中考数学】幂的运算易错压轴解答题练习题(附答案)一、幂的运算易错压轴解答题1.阅读材料,根据材料回答:例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3=[(-2)×3]×[(-2)×3]×[(-2)×3]=[(-2)×3]3=(-6)3=-216.例如2:86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)=(8×0.125)6=1.(1)仿照上面材料的计算方法计算:;(2)由上面的计算可总结出一个规律:(用字母表示)a n·b n=________;(3)用(2)的规律计算:-0.42018× × .2.阅读理解:我们知道一般地,加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算;如我们规定式子23=8可以变形为log28=3,log525=2也可以变形为52=25.在式子23=8中,3叫做以2为底8的对数,记为log28.一般地,若a n=b(a>0且a≠1,b>0),则叫做以a为底b的对数,记为log a b ,即log a b=n.根据上面的规定,请解决下列问题:(1)计算:log3 1=________, log2 32=________, log216+ log24 = ________,(2)小明在计算log1025+log104 的时候,采用了以下方法:设log1025=x, log104=y∴ 10x=25 10y=4∴ 10x+y=10x×10y=25×4=100=102∴ x+y=2∴ log1025+log104=2通过以上计算,我们猜想log a M+ log a N等于多少,请证明你的猜想.3.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.4.已知, .(1)填空: =________; =________.(2)求m与n的数量关系.5.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.6.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)7.综合题(1)填空:21﹣20=2(________), 22﹣21=2(________), 23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。

最新中考数学 幂的运算易错压轴解答题(及答案)

最新中考数学 幂的运算易错压轴解答题(及答案)

最新中考数学幂的运算易错压轴解答题(及答案)一、幂的运算易错压轴解答题1.阅读材料,根据材料回答:例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3=[(-2)×3]×[(-2)×3]×[(-2)×3]=[(-2)×3]3=(-6)3=-216.例如2:86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)=(8×0.125)6=1.(1)仿照上面材料的计算方法计算:;(2)由上面的计算可总结出一个规律:(用字母表示)a n·b n=________;(3)用(2)的规律计算:-0.42018× × .2.我们约定,如: .(1)试求和的值;(2)想一想,是否与相等,并说明理由.3.若 (a > 0,且a≠1,m、n 是整数),则 m = n.你能利用上面的结论解决下面的问题吗?(1)如果2×8x ×16x =229 ,求x的值;(2)如果,求x的值.4.规定两数a,b之间的一种新运算※,如果a c=b,那么a※b=c.例如:因为52=25,所以5※25=2,因为50=1,所以5※1=0.(1)根据上述规定,填空:2※8=________2※=________.(2)在运算时,按以上规定:设4※5=x,4※6=y,请你说明下面这个等式成立:4※5+4※6=4※30.5.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.6.(1)已知,,求的值;(2)已知,,求的值.7.(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现: ________(4)利用以上的发现计算: .8.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)9.阅读理解:乘方的定义可知:(个相乘).观察下列算式回答问题:(7个3相乘)(7个4相乘)(7个5相乘)(1) ________;(2) ________;(3)计算:.10.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)11.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.12.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为log(即=3)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题:(1)计算以下各对数的值:=________ ;=________ ;=________ .(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=________ (a>0,且a≠1,M>0,N>0)(4)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:(2)(ab)n(3)解:-0.42018× × (32)2019=52【解析】【解答】解:(2)根据题意可得:;故答案为:;【分析】(解析:(1)解:(2)(3)解:-0.42018× ×【解析】【解答】解:(2)根据题意可得:;故答案为:;【分析】(1)根据积的乘方法则的逆用计算即可求解;(2)根据题意找到规律即可;(3)逆用积的乘方法则及同底数幂的乘法法则的逆用计算即可求解.2.(1)解:根据题中的新定义得: 1012 脳 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算解析:(1)解:根据题中的新定义得: 1012 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算可得答案;(2)根据,可得同底数幂的乘法,根据同底数幂的乘法,可得答案.3.(1)解:∵2×8x×16x=229 ,∴2×(23)x×(24)x=229 ,∴21+3x+4x=229 ,∴1+3x+4x=29,7x=28解得x=4.(2)解解析:(1)解:∵2×8x×16x=229,∴2×(23)x×(24)x=229,∴21+3x+4x=229,∴1+3x+4x=29,7x=28解得x=4.(2)解:∵,∴(33x)−2×(32)2=3−8,∴3−6x+4=3−8,∴−6x+4=−8,-6x=-12解得x=2.【解析】【分析】(1)根据2×8x×16x=229,可得21+3x+4x=229,所以1+3x+4x=29,据此求出x的值是多少即可.(2)根据,可得3−6x+4=3−8,所以−6x+4=−8,据此求出x的值是多少即可.4.(1)3;-4(2)解:设4※5=x,4※6=y,4※30=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即4※5+4※6=4※30.【解析:(1)3;-4(2)解:设4※5=x,4※6=y,4※30=z,则4x=5,4y=6,4z=30,4x×4y=4x+y=30,∴x+y=z,即4※5+4※6=4※30.【解析】【解答】(1)23=8,2※8=3,2﹣4=,2※=﹣4,故答案为:3;﹣4【分析】(1)根据规定的两数之间的运算法则解答;(2)根据积的乘方法则,结合定义计算.5.(1)解:∵m+4n-3=0,∴m+4n=3, = = 2m+4n = 23 =8(2)解:原式= x6n-2x4n = (x2n)3-2(x2n)2 =64﹣2×16=64﹣32=32解析:(1)解:∵m+4n-3=0,∴m+4n=3, = = = =8(2)解:原式= = =64﹣2×16=64﹣32=32【解析】【分析】(1)根据幂的运算法则变形后,代入已知即可得到结论;(2)原式变形后代入计算即可求出值.6.(1)解:∵, ax=5∴ ay=5(2)解:【解析】【分析】(1)利用同底幂乘法的逆用,可得ax+y=ax·ay=25,代入数据计算可得ay=5,从而求出ax+ay解析:(1)解:∵,∴(2)解:【解析】【分析】(1)利用同底幂乘法的逆用,可得a x+y=a x·a y=25,代入数据计算可得a y=5,从而求出a x+a y的值.(2)利用同底幂乘法的逆用及幂乘方的逆用,可得102α+2β=(10α)2(10β)2,代入数据计算即可.7.(1)=(2)解:计算得 (54)3=12564 , (45)-3=12564∴ (54)3=(45)-3(3)=(4)解:利用以上的发现计算: =【解析】解析:(1)=(2)解:计算得,∴(3)=(4)解:利用以上的发现计算: =【解析】【分析】(1)类比题干中乘方的运算即可得;(2)类比题干中分数的乘方计算方法计算后即可得;(3)根据(1)、(2)的规律即可得;(4)逆用积的乘方将原式变形为 = ,再利用同底数幂进行计算可得8.(1)49(2)kn+2017【解析】【解答】(1)∵h(1)= 23 ,∴h(2)=h(1+1)=h(1)h(1)=23×23=49(2)∵h(1)=k(k≠0),h(m+n)=解析:(1)(2)k n+2017【解析】【解答】(1)∵h(1)= ,∴h(2)=h(1+1)=h(1)h(1)=×=(2)∵h(1)=k(k≠0),h(m+n)= h ( m ) • h ( n )∴h ( n ) • h ( 2017 ) =k n•k2017=k n+2017故答案为:;k n+2017【分析】(1)根据新定义运算,先将h(2)转化为h(1+1),再根据h(m+n)= h ( m ) • h ( n ),即可得出答案。

中考数学 幂的运算易错压轴解答题(附答案)

中考数学 幂的运算易错压轴解答题(附答案)

中考数学幂的运算易错压轴解答题(附答案)一、幂的运算易错压轴解答题1.我们约定,如: .(1)试求和的值;(2)想一想,是否与相等,并说明理由.2.若 (a > 0,且a≠1,m、n 是整数),则 m = n.你能利用上面的结论解决下面的问题吗?(1)如果2×8x ×16x =229 ,求x的值;(2)如果,求x的值.3.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式________;(2)求证:log a=log a M-log a N(a>0,a≠1,M>0,N>0),(3)拓展运用:计算log69+log68-log62=________.4.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________;log216=________;log264=________.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m•a n=a m+n以及对数的定义证明(3)中的结论.5.(1)已知,,求的值;(2)已知,,求的值.6.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如,等.类比有理数的乘方,记作④,读作“ 的圈4次方”,一般地,我们把()记作ⓝ,读作“a的圈n次方”.(1)直接写出计算结果:2③= ________,④=________.(2)有理数的除方可以转化为乘方幂的形式.如④= == = ,直接将下列的除方形式写成乘方幂的形式:④=________;5ⓝ=________.(3)计算:.7.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n, 4n)=(3,4),小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)8.综合题(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.9.综合题。

初中数学试卷幂的运算易错压轴解答题题分类汇编(附答案)

初中数学试卷幂的运算易错压轴解答题题分类汇编(附答案)

初中数学试卷幂的运算易错压轴解答题题分类汇编(附答案)一、幂的运算易错压轴解答题1.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(1)解方程:log x4=2;(2)log28=________(3)计算:(lg2)2+lg2•1g5+1g5﹣2018=________(直接写答案)2.若 (a > 0,且a≠1,m、n 是整数),则 m = n.你能利用上面的结论解决下面的问题吗?(1)如果2×8x ×16x =229 ,求x的值;(2)如果,求x的值.3.(1)已知,,求的值;(2)已知,,求的值.4.整式乘法和乘法公式(1)计算:(﹣x)2(2y)3(2)化简:(a+1)2+2(a﹣1)(a+1)+(a﹣1)2(3)如果(x+1)(x2+ax+b)的乘积中不含x2项和x项,求下面式子的值:(a+2b)(a+b)﹣2(a+b)2(4)课本上,公式(a﹣b)2=a2﹣2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,已知(a+b)3=a3+3a2b+3ab2+b3,则(a﹣b)3=________.5.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)6.综合题(1)填空:21﹣20=2(________), 22﹣21=2(________), 23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。

幂的运算 常见易错知识点总结

幂的运算 常见易错知识点总结

幂的运算 常见易错知识点总结幂的运算是整式乘除的基础,由于对幂的运算法则理解不够深刻,概念模糊,互相混淆,常会导致各种错误,现就幂的运算中经常出现的失误,分类剖析如下,希望同学们能引以为鉴:一、同底数幂相乘例1、计算:(1);(2);(3);3x x ⋅42)()(x x -⋅-34x x ⋅错解:(1); (2)=;3303x xx x ==⋅+42)()(x x -⋅-=-6)(x 6x -(3)=;34x x ⋅1234x x =⨯分析:(1)是由于把的指数误以为是0导致错误;x (2)偶数次幂应为正,混淆了与的区别导致错误;6)(x -6x -(3)同底数幂相乘,应底数不变,指数相加,与幂的乘方运算法则相混淆致错正解:(1)=; (2)=;3x x ⋅431x x=+42)()(x x -⋅-66)(x x =- (3)=34x x ⋅734x x =+二、同底数幂相除例2、计算:(1);(2);(3);(4)a a ÷535)()(x x -÷-n n a a 48÷22++÷n n x x 错解:(1)=; (2)=;a a ÷5505a a=-35)()(x x -÷-2)(x -=2x - (3)=; (4)=n n a a 48÷2a 22++÷n n x x 00=x 分析:(1)由于把的指数误以为是0导致错误;a (2)偶数次幂应为正,混淆了与的区别导致错误;2)(x -2x - (3)同底数幂相除,应底数不变,指数相减,而不是指数相除;(4)(≠0)而不是为010=x x 正解:(1)=; (2)=;a a ÷5415a a=-35)()(x x -÷-22)(x x =- (3)=; (4)=n n a a 48÷n n n x x 448=-22++÷n n x x 10=x三、幂的乘方例3、计算:(1);(2);(3);32)(x 25)(a 23)(b -错解:(1)=; (2)=32)(x 532x x=+25)(a 2552a a = (3);623)(b b -=-分析:(1)幂的乘方,应是底数不变,指数相乘,而不是指数相加;(2)幂的乘方,应是底数不变,指数相乘,而不是指数乘方;(3)偶数次幂应为正,根据乘方的意义 23)(b -)()(33b b -⋅-=正解:(1)=; (2)=32)(x 632x x=⨯25)(a 1025a a =⨯ (3)=;23)(b -)()(33b b -⋅-=6b 四、积的乘方例4、计算:(1);(2);(3);32)4(xy -43)(ab -23)3(ab -错解:(1)=; (2)=;32)4(xy -6312y x -43)(ab -12ab - (3)=;23)3(ab -923229)3(2b a b a =-分析:(1)系数也应乘方为,而不是3)4(-3)4(⨯- (2)积的乘方,应把积中的每个因式分别乘方,再把所得的结果相乘,因此也应4次方;a - (3)积的乘方,应把积中的每个因式分别乘方,再把所得的结果相乘,的23b 次方应为,而不是;23)(b 23b 正解:(1)=;(2)=32)4(xy -63323364)()4(y x y x -=-43)(ab -;124434)()(b a b a =- (3)=;23)3(ab -6223229)()3(b a b a =-五、与幂有关的问题例5、(1) ;(2)如果,则的值为=-0)2(a 1)12(2=-+a a a错解:(1)1; (2)如果,则的值为;=-0)2(a 1)12(2=-+a a a 2- 分析:(1)题设中没有指明底数是否为0;)2(-a (2)考虑问题欠周全,只考虑到指数,而没有考虑到底数,应分情况讨论正解:(1)当≠0时,1;当=0时,无意义;2-a =-0)2(a 2-a 0)2(-a (2)分情况讨论:①指数+2=0,即时,底数≠0,这时值为1;a 2-=a 12-a ②底数=1,即=1时,指数+2=3,这时值也为1;12-a a a ③底数,即=0时,指数+2=2,这时值同样也为1;112-=-a a a 所以的取值应为、0、1a 2- “幂的混合运算”思路点拨一、基本混合运算的思路例1 计算:3(x )-2(x · x )+x ·x +x· x · x .465331113203解:原式=3x -2(x )+x +x =3x .2483242424评注:对混合运算题目进行运算时,要严格按运算顺序和运算法则进行,计算过程中有同类项时,一定要合并同类项 .二、去括号的思路例2 计算:[-(-xy )].234解法一:[ -(-xy )]=(-1)4(-xy )=(-xy )234212212 =(-x )(y )=x y.122121224解法二:[-(-xy )]=[-(-x )y ]234364 =(x y )=x y .3641224评注: 去多重括号有两种方法,一是由外向里一层一层去括号 . 如上面的第一种解法;二是由里向外一层一层去括号,如上面的第二种解法 .但不管运用哪一种方法,都必须特别注意根据括号前面的符号和乘方的次数确定每一步运算结果的符号 .三、条件求值问题的思路例3 已知2x +5y -3=0,求4·32.x y 解:因为4·32 =(2) ·(2 5)=2·2=2,x y 2x y x 2y 5y x 52+又因为2x +5y -3=0,所以2x +5y =3,所以,原式=2=8 .3评注:对于条件求值问题,要注意当给出的代数式中的幂不是同底数幂时,如4·32x ,要先化成同底数幂,再逆用运算法则代入计算 .y 四、多项式底数运算的思路例4 (x +y )÷(x +y ).3+m 2解:原式=(x +y )=(x +y ).23-+m 1+m 评注: 底数是多项式时,要把它看作一个不可分割的整体来对待,在整个运算过程和运算结果中这个整体都不分开 .。

中考数学 幂的运算易错压轴解答题专题练习(附答案)

中考数学 幂的运算易错压轴解答题专题练习(附答案)

中考数学幂的运算易错压轴解答题专题练习(附答案)一、幂的运算易错压轴解答题1.我们约定,如: .(1)试求和的值;(2)想一想,是否与相等,并说明理由.2.阅读理解:我们知道一般地,加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算;如我们规定式子23=8可以变形为log28=3,log525=2也可以变形为52=25.在式子23=8中,3叫做以2为底8的对数,记为log28.一般地,若a n=b(a>0且a≠1,b>0),则叫做以a为底b的对数,记为log a b ,即log a b=n.根据上面的规定,请解决下列问题:(1)计算:log3 1=________, log2 32=________, log216+ log24 = ________,(2)小明在计算log1025+log104 的时候,采用了以下方法:设log1025=x, log104=y∴ 10x=25 10y=4∴ 10x+y=10x×10y=25×4=100=102∴ x+y=2∴ log1025+log104=2通过以上计算,我们猜想log a M+ log a N等于多少,请证明你的猜想. 3.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________;log216=________;log264=________.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m•a n=a m+n以及对数的定义证明(3)中的结论.4.化简下列多项式:(1)(2)(3)若,求的值.(4)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),其中x=﹣2.5.计算:(1) =________.(2) =________.6.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.7.综合题(1)已知x = ,y = ,求(n为正整数)的值;(2)观察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…,探索以上式子的规律,试写出第n个等式,并运用所学的数学知识说明你所写式子的正确性.8.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.9.计算(1)|﹣1|+(﹣2)3+(7﹣π)0﹣()﹣1(2)(﹣a2)3﹣6a2•a4(3)3x﹣2(x﹣1)﹣3(x+1)(4)(m4)2+m5•m3+(﹣m)4•m4.10.阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________,log216=________,log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.11.先阅读下列材料,再解答后面的问题.材料:一般地,n个相同因数相乘,记为a n,如23=8,此时3叫做以2为底8的对数,记为log(即=3)一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为(即).如34=81,4叫做以3为底81的对数,记为.问题:(1)计算以下各对数的值:=________ ;=________ ;=________ .(2)观察(Ⅰ)中三数4、16、64之间满足怎样的关系?、、之间又满足怎样的关系?(3)由(2)的结果,你能归纳出一个一般性的结论吗?+=________ (a>0,且a≠1,M>0,N>0)(4)根据幂的运算法则a m•a n=a m+n以及对数的含义证明上述结论.12.请阅读材料:①一般地,n个相同的因数a相乘:记为a n,如23=8,此时,指数3叫做以2为底8的对数,记为(即=3).②一般地,若a n=b(a>0且a≠1,b>0),则指数n叫做以a为底b的对数,记为(即=n),如34=81,则指数4叫做以3为底81的对数,记为(即=4).(1)计算下列各对数的值:log24________ ; log216=________ ; log264=________ .(2)观察(1)题中的三数4、16、64之间存在的关系式是________ ,那么log24、log216、log264存在的关系式是________(3)由(2)题的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________ (a>0且a≠1,M>0,N>0)(4)请你运用幂的运算法则a m•a n=a m+n以及上述中对数的定义证明(3)中你所归纳的结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:根据题中的新定义得: 1012 脳 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算解析:(1)解:根据题中的新定义得: 1012 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算可得答案;(2)根据,可得同底数幂的乘法,根据同底数幂的乘法,可得答案. 2.(1)0;5;6(2)解:loga(M·N)| logaM+ logaN= loga(M·N),证明:设logaM=x, logaN=y∴ ax=M, ay=N∴ ax+y=ax×a解析:(1)0;5;6(2)解:log a(M·N)| log a M+ log a N= log a(M·N),证明:设log a M=x, log a N=y∴ a x=M, a y=N∴ a x+y=a x×a y=M·N∴log a(M·N)= x+y∴log a M+ log a N =x+y= log a(M·N)【解析】【解答】解:(1)∵,,,∴log3 1=0,log2 32=5,log216+ log24 =4+2=6故答案为:0;5;6.【分析】(1)根据题意,利用对数的逆运算计算即可;(2)设log a M=x,log a N=y,根据对数的定义可得a x=M, a y=N,然后根据同底数幂乘法的逆用可得a x+y=M·N,再将其写成对数的形式即可证出结论.3.(1)2;4;6(2)解:由题意可得,4×16=64,log24、log216、log264之间满足的关系式是log24+log216=log264(3)logaMN(4)证明:设l解析:(1)2;4;6(2)解:由题意可得,4×16=64,log24、log216、log264之间满足的关系式是log24+log216=log264(3)log a MN(4)证明:设log a M=m,log a N=n,∴M=a m, N=a n,∴MN=a m+n,∴log a M+log a N=log a MN.【解析】【解答】解:(1)log24=log222=2,log216=log224=4,log264=log226=6,故答案为:2,4,6;(3)猜想的结论是:log a M+log a N=log a MN,故答案为:log a MN;【分析】(1)根据题意可以得到题目中所求式子的值;(2)根据题目中的式子可以求得它们之间的关系;(3)根据题意可以猜想出相应的结论;(4)根据同底数幂的乘法和对数的性质可以解答本题.4.(1)解: =(2)解:原式=(3)解:∵2x+5y=3, ∴原式=(4)解:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣解析:(1)解: =(2)解:原式=(3)解:∵2x+5y=3, ∴原式=(4)解:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1)=4x2﹣4x+1﹣9x2+1+5x2﹣5x=﹣9x+2,当x=﹣2时,原式=﹣9×(﹣2)+2=20.【解析】【分析】(1)利用多项式乘以多项式,完全平方公式将多项式展开、然后去括号、合并即可.(2)利用平方差公式,完全平方公式去括号,然后合并即可.(3)根据幂的乘方的性质,将原式变形,然后整体代入计算即可.(4)利用完全平方公式、平方差公式、单项式乘以多项式将原式展开并去括号,合并即化为最简,然后将x值代入计算即可.5.(1)(x-y)5(2)【解析】【解答】(1)原式= = ;(2)原式= = .故答案为:.【分析】(1)根据同底幂相乘,底数不变,指数相加计算即可;(2)将多解析:(1)(2)【解析】【解答】(1)原式= = ;(2)原式= = .故答案为:.【分析】(1)根据同底幂相乘,底数不变,指数相加计算即可;(2)将多项式的每一项分别除以2x2即可.6.(1)解:原方程等价于2x+1=23 ,x+1=3,解得x=2;(2)解:原方程等价于34x=38 ,4x=8,解得x=2.【解析】【分析】(1)根据am=an(解析:(1)解:原方程等价于2x+1=23,x+1=3,解得x=2;(2)解:原方程等价于34x=38,4x=8,解得x=2.【解析】【分析】(1)根据a m=a n(a>0且a≠1,m、n是正整数),则m=n,可得答案;(2)根据a m=a n(a>0且a≠1,m、n是正整数),则m=n,可得答案.7.(1)解:原式=(-5)2×(-5)2n×(- 15 )2n=25[(-5)×(- 15 )]2n=25(2)解:规律:(2n+1)2-(2n-1)2=8n.验证:(2n+1)2-(2n解析:(1)解:原式=(-5)2×(-5)2n×(- )2n=25[(-5)×(- )]2n=25(2)解:规律:(2n+1)2-(2n-1)2=8n.验证:(2n+1)2-(2n-1)2=[(2n+1)+(2n-1)] [(2n+1)-(2n-1)] =4n×2=8n【解析】【分析】(1)将x、y的值代入代数式,得出(-5)2×(-5)2n×(- 1 5 )2n,再利用同底数幂的乘法法则及积的乘方法则计算即可。

最新中考数学 幂的运算易错压轴解答题专题练习(及答案)

最新中考数学 幂的运算易错压轴解答题专题练习(及答案)

最新中考数学幂的运算易错压轴解答题专题练习(及答案)一、幂的运算易错压轴解答题1.我们约定,如: .(1)试求和的值;(2)想一想,是否与相等,并说明理由.2.规定两数a,b之间的一种新运算※,如果a c=b,那么a※b=c.例如:因为52=25,所以5※25=2,因为50=1,所以5※1=0.(1)根据上述规定,填空:2※8=________2※=________.(2)在运算时,按以上规定:设4※5=x,4※6=y,请你说明下面这个等式成立:4※5+4※6=4※30.3.整式乘法和乘法公式(1)计算:(﹣x)2(2y)3(2)化简:(a+1)2+2(a﹣1)(a+1)+(a﹣1)2(3)如果(x+1)(x2+ax+b)的乘积中不含x2项和x项,求下面式子的值:(a+2b)(a+b)﹣2(a+b)2(4)课本上,公式(a﹣b)2=a2﹣2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,已知(a+b)3=a3+3a2b+3ab2+b3,则(a﹣b)3=________.4.解答题(1)若3a=5,3b=10,则3a+b的值.(2)已知a+b=3,a2+b2=5,求ab的值.5.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.6.求代数式的值:(1)已知,,求的值.(2)已知,,求,的值.7.综合题(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.8.我们规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求12*3和2*5的值;(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.9.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)10.综合题(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.11.综合题(1)已知x = ,y = ,求(n为正整数)的值;(2)观察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…,探索以上式子的规律,试写出第n个等式,并运用所学的数学知识说明你所写式子的正确性.12.综合题。

第8章 幂的运算 全章高频考点专练(3种专练4个题型6个易错4种思想)解析版

第8章 幂的运算 全章高频考点专练(3种专练4个题型6个易错4种思想)解析版

第8章幂的运算全章高频考点专练(3种专练4个题型6个易错4种思想)【知识导图】【知识清单】专练1:运用幂的运算法则巧计算题型1.逆用同底数幂的乘法法则进行计算1.(2024春•江都区月考)若23y =,218x y +=,则2x =.【分析】逆用同底数幂的乘法法则计算即可.【解答】解:218x y += ,2218x y ∴⋅=,23y = ,3218x ∴⨯=,26x ∴=.故答案为:6.【点评】本题考查了同底数幂的乘法法则,熟练掌握运算法则是解题的关键.2.(2024春•灌云县月考)若35m =,36n =,则3m n +的值是.【分析】逆向运用同底数幂的乘法法则计算即可.【解答】解:35m = ,36n =,3335630m n m n +∴=⨯=⨯=.故答案为:30.【点评】本题主要考查了同底数幂的乘法,熟记幂的运算法则是解答本题的关键.3.(2023春•靖江市期末)已知3m a =,2n a =,则m n a +=.【分析】根据同底数幂的乘法,可得答案.【解答】解:326m n m n a a a +==⨯= ,故答案为:6.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.4.(2023春•建邺区期中)我们约定a ☆1010a b b =⨯,如2☆2353101010=⨯=.(1)试求12☆3和4☆8的值;(2)()a b +☆c 是否与a ☆()b c +相等?并说明理由.【分析】(1)12☆123153101010=⨯=;4☆4881010=⨯(1分)1210=;(2)因为()a b +☆101010a b c a b c c +++=⨯=,a ☆()101010a b c a b c b c ++++=⨯=,即证明()a b +☆c 与a ☆()b c +相等.【解答】解:(1)12☆123153101010=⨯=;4☆48128101010=⨯=;(2)相等,理由如下:()a b + ☆101010a b c a b c c +++=⨯=,a ☆()101010abc a b c b c ++++=⨯=,()a b ∴+☆c a =☆()b c +.【点评】本题考查了同底数幂运算,熟练运用公式是解题的关键.题型2.运用幂的乘方法则进行计算类型1.直接运用幂的乘方法则求字母的值5.(2024春•吴江区月考)在幂的运算中规定:若(0x y a a a =>且1a ≠,x 、y 是正整数),则x y =.利用上面结论解答下列问题:(1)若693x =,求x 的值;(2)若213318x x ++-=,求x 的值.【分析】(1)根据693x =,得26(3)3x =即2633x =得26x =,计算即可.(2)根据213318x x ++-=,得2333318x x ⋅-⋅=,故6318x ⨯=,33x =,计算即可.本题考查了幂的乘方,同底数幂的乘法的逆应用,熟练掌握公式计算即可.【解答】解:(1)693x = ,26(3)3x ∴=,2633x ∴=,26x ∴=,解得3x =.(2)213318x x ++-= ,2333318x x ∴⋅-⋅=,6318x ∴⨯=,33x ∴=,解得1x =.【点评】本题考查幂的乘方与积的乘方、同底数幂的乘法,熟练掌握运算法则是解题的关键.6.(2024春•滨海县月考)已知3x a =,2y a =,求:①x y a +的值;②32x y a +的值.【分析】①运用同底数幂乘法运算即可得到x y a +的值;②运用同底数幂乘法和幂的乘方运算即可得到32x y a +的值.【解答】解:①3x a = ,2y a =,x y x ya a a +∴=⋅32=⨯6=;②3x a = ,2y a =,3232x y x ya a a +∴=⋅32()()x y a a =⋅3232=⨯274=⨯108=.【点评】本题主要考查了同底数幂乘法和幂的乘方,正确掌握相关的运算法则是解题的关键.类型2.逆用幂的乘方法则求字母式子的值7.(2024春•丹阳市月考)(1)若2530x y +-=,求432x y ⋅的值.(2)若n 为正整数,且24n x =,求3222(3)4()n n x x -的值.【分析】(1)先根据同底数幂乘法和幂的乘方法则变形,再把253x y +=代入行计算即可;(2)先根据幂的乘方的运算法则变形,再把24n x =代入计算即可.【解答】解:(1)2525432222x y x y x y +⋅=⋅=,2530x y +-= ,253x y ∴+=,∴原式328==.(2)24n x = ,3222(3)4()n nx x ∴-6494n nx x =-23229()4()n n x x =-329444=⨯-⨯512=.【点评】本题考查幂的运算,掌握幂的乘方,积的乘方,同底数幂的乘法法则是解题的关键.8.(2024春•滨海县月考)(1)已知839279m m ⨯⨯=,求m 的值;(2)已知2540x y ++=,求432x y ⨯的值.【分析】(1)利用“同底数幂乘法”、“幂的乘方”分别将等式的左右两边化简成底数为3的指数幂形式,得出m 的方程,即可求得m 的值;(2)将432x y ⨯变形为底数为2的指数幂形式,再结合已知条件即可求解.【解答】解:(1)839279m m ⨯⨯= ,23163333m m ∴⨯⨯=,即151633m +=,1516m ∴+=.解得:3m =;(2)2540x y ++= ,254x y ∴+=-,∴252541432222216x y x y x y +-⨯=⨯===.【点评】本题考查了同底数幂乘法、幂的乘方等运算,掌握将指数幂化为相同的底数是关键.题型3.逆用积的乘方法则进行计算9.(2024春•东台市月考)已知:13273234x x +-=,求x 的值.【分析】先根据幂的乘方的逆运算把原式变形为12727234x x +-=,进而根据同底数幂乘法的逆运算法则得到2627234x ⨯=,进一步变形得到3233x =,则32x =,解得23x =.【解答】解:13273234x x +-= ,1327(3)234x x +∴-=,12727234x x +∴-=,272727234x x ∴⨯-=2627234x ∴⨯=,279x ∴=,32(3)3x ∴=,3233x ∴=,32x ∴=,∴23x =.【点评】本题主要考查了幂的乘方的逆运算,同底数幂乘法的逆运算,熟练掌握相关运算法则是关键.题型4.运用同底数幂的除法法则解方程10.(2022秋•翠屏区期末)阅读理解:在学习同底数幂的除法公式(0)m n m n a a a a -÷=≠时,有一个附加条件m n >,即被除数的指数大于除数的指数.仿照以上公式,我们研究m n =和m n <时,同底数幂的除法.当被除数的指数等于除数的指数时,我们易得222205555-÷==或222255515÷==,即051=;同理可得,当0a ≠时,55550a a a a -÷==或55551a a a a ÷==.由此启发,我们规定:01(0)a a =≠.当被除数的指数小于除数的指数时,我们易得242425555--÷==或22442515555÷==,即22155-=;同理可得,当0a ≠时,58583a a a a --÷==或558831a a a a a ÷==,即331a a -=.由此启发,我们规定:1(0p pa a a -=≠,p 是正整数).根据以上知识,解决下列问题:(1)填空:0(3)π-=,23-=;(2)若211228m m -÷=,求m 的值;(3)若2(1)1x x +-=,求x 的值.【分析】(1)根据零指数幂,负整数指数幂的运算法则计算即可;(2)根据同底数幂的除法运算法则即可得出答案;(3)分三种情况:①当11x -=,且2x +为任意数时,原方程成立;②当11x -=-,且2x +为偶数时,原方程成立;③当20x +=,且10x -≠时,原方程成立,解方程即可.【解答】解:(1)0(3)1π-=,2139-=,故答案为:1,19;(2)212m m--12m -=32-=,13m ∴-=-,故2m =-;(3)分三种情况:①当11x -=,且2x +为任意数时,原方程成立.解得2x =,②当11x -=-,且2x +为偶数时,原方程成立.解得0x =,③当20x +=,且10x -≠时,原方程成立.解得2x =-,综上所述,2x =-或0或2.【点评】本题考查零指数幂,负整数指数幂的运算法则,同底数幂的除法,正确理解题意是解题的关键.专练2:幂的运算之误区易错点1.混淆运算法则11.(2024春•滨海县月考)计算:(1)26()()x x x -⋅⋅-;(2)2432()x x x ⋅+;(3)656652()(4)(2)0.25125-⨯-⨯⨯;(4)232432(2)(3)x x x x -+⋅--.【分析】(1)利用同底数幂的乘法运算法则计算即可;(2)利用同底数幂的乘法、幂的乘方运算法则计算即可;(3)利用幂和乘方运算法则计算即可;(4)利用积的乘方、幂的乘方、同底数幂的乘法运算法则计算即可.【解答】解:(1)26()()x x x -⋅⋅-26x x x =-⋅⋅9x =-;(2)2432()x x x ⋅+246x x x =⋅+66x x =+62x =;(3)656652()(4)(2)0.25125-⨯-⨯⨯65665121()4((1254=⨯⨯⨯6551211((412544=⨯⨯⨯⨯14=;(4)232432(2)(3)x x x x -+⋅--66689x x x =-+-616x =-.【点评】本题考查积的乘方、幂的乘方、同底数幂的乘法,掌握它们的运算法则是本题的关键.易错点2.符号辩别不清12.(2023春•灌云县月考)计算2022202340.75()3⨯-的结果是()A .43B .43-C .0.75D .0.75-【分析】根据积的乘方的逆运算即可求出答案.【解答】解:2022202340.75()3⨯-20222022344()()433=-⨯⨯2022344(433=-⨯⨯43=-.故选:B .【点评】本题考查了积的乘方,有理数的乘方,有理数的乘法等知识点,能正确运用()m m m a b ab ⋅=进行计算是解此题的关键.13.(2023春•邗江区月考)计算:202120221(2)()2-⨯=.【分析】逆用同底数幂的乘法法则,先把20221()2写成202111(22⨯的形式,再逆用积的乘方法则计算求值.【解答】解:202120221(2)()2-⨯20212021112()22=-⨯⨯202111(2)22=-⨯⨯112=-⨯12=-.故答案为:12-.【点评】本题考查了整式的运算,掌握同底数幂的乘法法则、积的乘方法则是解决本题的关键.易错点3.忽略指数“1”14.(2020春•滨海县期中)计算2a a ⋅结果正确的是()A .a B .2a C .3a D .4a 【分析】根据同底数幂的乘法法则计算即可.【解答】解:2123a a a a +⋅==.故选:C .【点评】本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.易错点4.不能灵活运用整体思想15.(2023春•盐城月考)若927819a b c ⋅÷=,则234a b c +-的值为.【分析】利用幂的乘方的法则,同底数幂的乘法的法则,同底数幂的除法的法则对已知条件进行整理,从而可求解.【解答】解:927819a b c ⋅÷=,23423333a b c ⋅÷=,234233a b c +-=,2342a b c ∴+-=,故答案为:2.【点评】本题主要考查同底数幂的除法,同底数幂的乘法,幂的乘方,解答的关键是对相应的运算法则的掌握.16.(2024春•江都区月考)若2540x y +-=,试求432x y ⨯的值.【分析】将432x y ⨯写成以2为底幂的乘法,再将a 与b 的数量关系代入计算即可.【解答】解:2540x y +-= ,254x y ∴+=,432x y∴⨯2522x y=⨯252x y+=42=16=.【点评】本题考查幂和乘方与积的乘方、同底数幂的乘法,掌握其运算法则是解题的关键.易错点5.不能灵活运用转化思想17.(2024春•滨海县月考)已知3x a =,2y a =,则23x y a +=.【分析】利用同底数幂的乘法和幂的乘方运算法则将23x y a +整理,再将已知条件代入计算即可.【解答】解:3x a = ,2y a =,23x ya +∴23x ya a =⋅23()()x y a a =⋅2332=⋅72=.故答案为:72.【点评】本题考查幂的乘方与积的乘方、同底数幂的乘法,掌握其运算法则是解题的关键.易错点6.用科学计数法表示较小的数时指数出错18.(2024春•东海县月考)有一种病毒,其直径为0.0000078米,将0.0000078用科学记数法表示为.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000078用科学记数法表示为67.810-⨯,故答案为:67.810-⨯.【点评】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.(2023春•泰兴市期末)近来,中国芯片技术获得重大突破,7nm 芯片已经量产,一举打破以美国为首的西方世界的技术封锁,已知70.0000007nm cm =,则0.0000007用科学记数法表示为.【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【解答】解:70.0000007710-=⨯.故答案为:7710-⨯.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.专练3:思想方法荟萃题型1.方程思想20.(2023春•工业园区校级月考)若(0m n a a a =>且1a ≠,m 、n 是正整数),则m n =.利用上面的结论解决下面的问题:(1)如果212482x x ⨯⨯=,求x 的值;(2)如果22343515a a a ++-⋅=,求a 的值.【分析】(1)根据幂的乘方与积的乘方,同底数幂的乘法法则,进行计算即可解答;(2)根据幂的乘方与积的乘方,同底数幂的乘法法则,进行计算即可解答.【解答】解:(1)212482x x ⨯⨯= ,23212(2)(2)2x x ∴⨯⨯=,23212222x x ∴⨯⨯=,1232122x x ++∴=,152122x +∴=,1521x ∴+=,解得:4x =,x ∴的值为4;(2)22343515a a a ++-⋅= ,234(35)15a a +-∴⨯=,2341515a a +-∴=,234a a ∴+=-,解得:3a =,a ∴的值为3.【点评】本题考查了幂的乘方与积的乘方,同底数幂的乘法,熟练掌握它们的运算法则是解题的关键.21.(2023春•工业园区期中)若(0m n a a a =>,1a ≠,m 、n 都是正整数),则m n =,利用上面结论解决下面的问题:(1)如果32232x ⋅=,求x 的值;(2)如果528162x x ÷⋅=,求x 的值;(3)若52m x =-,325m y =-,用含x 的代数式表示y .【分析】(1)利用同底数幂的乘法法则,进行计算即可解答;(2)利用同底数幂的除法,同底数幂的乘法法则,进行计算即可解答;(3)利用幂的乘方与积的乘方法则,进行计算即可解答.【解答】解:(1)32232x ⋅= ,3522x +∴=,35x ∴+=,2x ∴=,x ∴的值为2;(2)528162x x ÷⋅= ,3452(2)(2)2x x ∴÷⋅=,3452222x x ∴÷⋅=,134522x x -+∴=,1345x x ∴-+=,解得:4x =,x ∴的值为4;(3)52m x =- ,25m x ∴+=,325my ∴=-23(5)m=-23(5)m =-23(2)x =-+2344x x =---241x x =---,即241y x x =---.【点评】本题考查了幂的乘方与积的乘方,同底数幂的除法,同底数幂的乘法,列代数式,熟练掌握它们的运算法则是解题的关键.题型2.转化思想22.(2023春•溧阳市校级月考)若21m x =+,34m y =+.(1)请用含x 的代数式表示y ;(2)如果4x =,求此时y 的值.【分析】(1)将4m 变形,转化为关于2m 的形式,然后再代入整理即可;(2)把4x =代入解得即可.【解答】解:(1)2242(2)m m m == ,21m x =+,21m x ∴=-,43m y =+ ,2(1)3y x ∴=-+,即224y x x =-+;(2)把4x =代入22412y x x =-+=.【点评】本题考查幂的乘方的性质,解决本题的关键是利用幂的乘方的逆运算,把含m 的项代换掉.题型3.分类讨论思想23.(2022秋•惠济区期中)本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:m a 与(0n a a ≠,m ,n 都是正整数)叫做同底数幂,同底数幂除法记作m n a a ÷.运算法则如下:,,11,m n m nm n m n m n n m m n a a a a a m n a a m n a a a --⎧⎪>÷=⎪÷==÷=⎨⎪⎪<÷=⎩当时当时当时.根据“同底数幂除法”的运算法则,回答下列问题:(1)填空:3211()()33÷=13,2455÷=;(2)如果0x >,且21228x x ÷=,求出x 的值;(3)如果2212(2)(2)1x x x +-÷-=,则x =.【分析】(1)根据同底数幂的除法的法则进行运算即可;(2)把等式左右两边进行整理,从而可得到关于x 的等式,则可求解;(3)利用同底数幂的除法的法则对等式左边进行整理,可得到关于x 的等式,从而可求解.【解答】解:(1):3211()()33÷321(3-=13=;2455÷4215-=215=125=;故答案为:13;125;(2)21228x x ÷= ,2322x x --∴=,得:23x x -=-,解得:3x =;(3)2212(2)(2)1x x x +-÷-= ,22120(2)(2)x x x +-∴-=-得22120x +-=,解得:5x =,当21x -=时,得3x =,当21x -=-时,得1x =.故答案为:1或3或5.【点评】本题主要考查有理数的混合运算,解答的关键是对同底数幂的除法的法则的掌握与应用.题型4.逆用公式法24.(2023春•高港区期中)若2m a =,3n a =,则2m n a +=.【分析】根据同底数幂的乘法与幂的乘方的性质,即可得222()m n m n m n a a a a a +=⋅=⋅,又由2m a =,3n a =,即可求得答案.【解答】解:2m a = ,3n a =,2222()2312m n m n m n a a a a a +∴=⋅=⋅=⨯=.故答案为:12.【点评】此题考查了同底数幂的乘法与幂的乘方的性质.此题难度适中,注意掌握积的乘方法则:()(n n n ab a b n =是正整数)与同底数幂的乘法法则:(m n m n a a a m +⋅=,n 是正整数),注意公式的逆用.。

中考数学 幂的运算易错压轴解答题100

中考数学 幂的运算易错压轴解答题100

中考数学幂的运算易错压轴解答题100一、幂的运算易错压轴解答题1.解答下列问题(1)已知2x=3,2y=5,求2x+y的值;(2)已知3m=4,3n=2,求的值;(3)若,求的值.2.阅读材料,根据材料回答:例如1:(-2)3×33=(-2)×(-2)×(-2)×3×3×3=[(-2)×3]×[(-2)×3]×[(-2)×3]=[(-2)×3]3=(-6)3=-216.例如2:86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)=(8×0.125)6=1.(1)仿照上面材料的计算方法计算:;(2)由上面的计算可总结出一个规律:(用字母表示)a n·b n=________;(3)用(2)的规律计算:-0.42018× × .3.我们约定,如: .(1)试求和的值;(2)想一想,是否与相等,并说明理由.4.(1)观察:,,我们发现________;(2)仿照(1),请你通过计算,判断与之间的关系;(3)我们可以发现: ________ ()m(ab≠0);(4)计算: .5.阅读理解:我们知道一般地,加减运算是互逆运算,乘除运算也是互逆运算;其实乘方运算也有逆运算;如我们规定式子23=8可以变形为log28=3,log525=2也可以变形为52=25.在式子23=8中,3叫做以2为底8的对数,记为log28.一般地,若a n=b(a>0且a≠1,b>0),则叫做以a为底b的对数,记为log a b ,即log a b=n.根据上面的规定,请解决下列问题:(1)计算:log3 1=________, log2 32=________, log216+ log24 = ________,(2)小明在计算log1025+log104 的时候,采用了以下方法:设log1025=x, log104=y∴ 10x=25 10y=4∴ 10x+y=10x×10y=25×4=100=102∴ x+y=2∴ log1025+log104=2通过以上计算,我们猜想log a M+ log a N等于多少,请证明你的猜想. 6.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式________;(2)求证:log a=log a M-log a N(a>0,a≠1,M>0,N>0),(3)拓展运用:计算log69+log68-log62=________.7.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.8.整式乘法和乘法公式(1)计算:(﹣x)2(2y)3(2)化简:(a+1)2+2(a﹣1)(a+1)+(a﹣1)2(3)如果(x+1)(x2+ax+b)的乘积中不含x2项和x项,求下面式子的值:(a+2b)(a+b)﹣2(a+b)2(4)课本上,公式(a﹣b)2=a2﹣2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,已知(a+b)3=a3+3a2b+3ab2+b3,则(a﹣b)3=________.9.(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现: ________(4)利用以上的发现计算: .10.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)11.求代数式的值:(1)已知,,求的值.(2)已知,,求,的值.12.一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n 叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15(2)解:∵3m=4,3n=2,∴ ===16÷8×3=6(3)解:=解析:(1)解:∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15(2)解:∵3m=4,3n=2,∴ ===16÷8×3=6(3)解:===∵,∴,∴原式=2×2+29=33.【解析】【分析】(1)根据同底数幂的乘法法则计算即可;(2)根据幂的乘方以及同底数幂的乘法、除法法则计算即可;(3)先利用完全平方公式和多项式乘多项式法则化简,再由可得,代入计算即可.2.(1)解:(2)(ab)n(3)解:-0.42018× × (32)2019=52【解析】【解答】解:(2)根据题意可得:;故答案为:;【分析】(解析:(1)解:(2)(3)解:-0.42018× ×【解析】【解答】解:(2)根据题意可得:;故答案为:;【分析】(1)根据积的乘方法则的逆用计算即可求解;(2)根据题意找到规律即可;(3)逆用积的乘方法则及同底数幂的乘法法则的逆用计算即可求解. 3.(1)解:根据题中的新定义得: 1012 脳 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算解析:(1)解:根据题中的新定义得: 1012 103=1015;(2)解:相等,理由如下:∵∵∴ =【解析】【分析】(1)根据题干提供的新定义运算法则,直接计算可得答案;(2)根据,可得同底数幂的乘法,根据同底数幂的乘法,可得答案. 4.(1)=(2)∵,,∴ 543= ;(3)=(4)解:【解析】【分析】(1)(2)根据有理数乘方运算的方法及负指数的意义计算出结果后,就会发现,它们的值相等;(解析:(1)=(2)∵,,∴=;(3)=(4)解:【解析】【分析】(1)(2)根据有理数乘方运算的方法及负指数的意义计算出结果后,就会发现,它们的值相等;(3)通过观察即可发现:若果底数互为倒数,指数互为相反数的两个式子计算的结果是相等的,从而即可得出答案;(4)首先根据(3)的结论将转化为,然后根据同底数幂的乘法法则的逆用将变形为,进而再利用积的乘方法则的逆用即可简化运算算出结果.5.(1)0;5;6(2)解:loga(M·N)| logaM+ logaN= loga(M·N),证明:设logaM=x, logaN=y∴ ax=M, ay=N∴ ax+y=ax×a解析:(1)0;5;6(2)解:log a(M·N)| log a M+ log a N= log a(M·N),证明:设log a M=x, log a N=y∴ a x=M, a y=N∴ a x+y=a x×a y=M·N∴log a(M·N)= x+y∴log a M+ log a N =x+y= log a(M·N)【解析】【解答】解:(1)∵,,,∴log3 1=0,log2 32=5,log216+ log24 =4+2=6故答案为:0;5;6.【分析】(1)根据题意,利用对数的逆运算计算即可;(2)设log a M=x,log a N=y,根据对数的定义可得a x=M, a y=N,然后根据同底数幂乘法的逆用可得a x+y=M·N,再将其写成对数的形式即可证出结论.6.(1)4=log381(或log381=4)(2)证明:设logaM=m,logaN=n,则M=am,N=an,∴ MN = aman =am-n,由对数的定义得m-n=loga MN解析:(1)4=log381(或log381=4)(2)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴==a m-n,由对数的定义得m-n=log a又∵m-n=log a M-log a N∴log a =log a M-log a N(3)2【解析】【解答】(1)由题意可得,指数式34=81写成对数式为:4=log381,故答案为:4=log381(或log381=4)。

初中数学试卷分类汇编幂的运算易错压轴解答题(及答案)

初中数学试卷分类汇编幂的运算易错压轴解答题(及答案)

初中数学试卷分类汇编幂的运算易错压轴解答题(及答案)一、幂的运算易错压轴解答题1.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值2.(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现: ________(4)利用以上的发现计算: .3.综合题(1)填空:21﹣20=2(________), 22﹣21=2(________), 23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。

4.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.5.算一算,填一填.(1)你发现了吗?()2= × ,()﹣2 = ,由上述计算,我们发现()2________()﹣2(2)仿照(1),请你通过计算,判断与之间的关系.(3)我们可以发现:()﹣m________ (ab≠0).(4)计算:()﹣2.6.阅读理解:乘方的定义可知:(个相乘).观察下列算式回答问题:(7个3相乘)(7个4相乘)(7个5相乘)(1) ________;(2) ________;(3)计算:.7.综合题。

(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.8.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.9.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.10.综合题。

中考数学 幂的运算易错压轴解答题专题练习(及答案)50

中考数学 幂的运算易错压轴解答题专题练习(及答案)50

中考数学幂的运算易错压轴解答题专题练习(及答案)50一、幂的运算易错压轴解答题1.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(1)解方程:log x4=2;(2)log28=________(3)计算:(lg2)2+lg2•1g5+1g5﹣2018=________(直接写答案)2.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为 ________ .(只要写出一个即可)(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值②若三个实数x,y,z满足2x×4y÷8z= ,x2+4y2+9z2=44,求2xy-3xz-6yz的值3.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式________;(2)求证:log a=log a M-log a N(a>0,a≠1,M>0,N>0),(3)拓展运用:计算log69+log68-log62=________.4.阅读下列材料,并解决后面的问题.材料:我们知道,n个相同的因数a相乘记为a n,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________;log216=________;log264=________.(2)通过观察(2)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?(3)由(2)题猜想,你能归纳出一个一般性的结论吗?log a M+log a N=________(a>0且a≠1,M>0,N>0),(4)根据幂的运算法则:a m•a n=a m+n以及对数的定义证明(3)中的结论.5.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.6.(1)已知,,求的值;(2)已知,,求的值.7.解答题(1)若3a=5,3b=10,则3a+b的值.(2)已知a+b=3,a2+b2=5,求ab的值.8.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n, 4n)=(3,4),小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)9.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.10.算一算,填一填.(1)你发现了吗?()2= × ,()﹣2 = ,由上述计算,我们发现()2________()﹣2(2)仿照(1),请你通过计算,判断与之间的关系.(3)我们可以发现:()﹣m________ (ab≠0).(4)计算:()﹣2.11.阅读理解:乘方的定义可知:(个相乘).观察下列算式回答问题:(7个3相乘)(7个4相乘)(7个5相乘)(1) ________;(2) ________;(3)计算:.12.我们规定:,例如,请解决以下问题:(1)试求的值;(2)想一想与相等吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:∵logx4=2,∴x2=4,∴x=2或x=-2(舍去)(2)3(3)-2017【解析】【解答】(2)解:∵8=23 ,∴log28=3,故答案为3;解析:(1)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(2)3(3)-2017【解析】【解答】(2)解:∵8=23,∴log28=3,故答案为3;( 3 )解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【分析】(1)根据对数的定义,得出x2=4,求解即可;(2)根据对数的定义求解即;;(3)根据log a(M•N)=log a M+log a N求解即可.2.(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac且a+b+c=11, ab+bc+ac=38∴a解析:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)解:①∵(a+b+c) 2=a2+b2+c2+2ab+2bc+2ac且a+b+c=11, ab+bc+ac=38∴a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=112-2×38=45②∵2x×4y÷8z=2x×22y÷23z=2-2∴2x+2y-3z=2-2∴x+2y-3z=-2∵(x+2y-3z)2=x2+4y2+9z2+2(2xy-3xz-6yz)∴(-2) 2=44+2(2xy-3xz-6yz)∴2xy-3xz-6yz=-20【解析】【分析】(1)根据边长为(a+b+c)的正方形面积=边长为a的正方形的面积+边长为b的正方形的面积+边长为c的正方形的面积之和,再加上边长分别为a、b的长方形的面积+边长分别为a、c的长方形的面积+边长分别为c、b的长方形的面积,列式计算即可。

中考数学 幂的运算易错压轴解答题(含答案)100

中考数学 幂的运算易错压轴解答题(含答案)100

中考数学幂的运算易错压轴解答题(含答案)100一、幂的运算易错压轴解答题1.解答下列问题(1)已知2x=3,2y=5,求2x+y的值;(2)已知3m=4,3n=2,求的值;(3)若,求的值.2.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(1)解方程:log x4=2;(2)log28=________(3)计算:(lg2)2+lg2•1g5+1g5﹣2018=________(直接写答案)3.基本事实:若(a>0,且a≠1,m,n都是正整数),则m=n.试利用上述基本事实解决下面的两个问题:(1)如果,求x的值.(2)如果,求x的值.4.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.5.整式乘法和乘法公式(1)计算:(﹣x)2(2y)3(2)化简:(a+1)2+2(a﹣1)(a+1)+(a﹣1)2(3)如果(x+1)(x2+ax+b)的乘积中不含x2项和x项,求下面式子的值:(a+2b)(a+b)﹣2(a+b)2(4)课本上,公式(a﹣b)2=a2﹣2ab+b2是由公式(a+b)2=a2+2ab+b2推导得出的,已知(a+b)3=a3+3a2b+3ab2+b3,则(a﹣b)3=________.6.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n, 4n)=(3,4),小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)7.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)8.(1)已知10m=4,10n=5,求10m+n的值.(2)如果a+3b=4,求3a×27b的值.9.综合题。

七年级数学试卷幂的运算易错压轴解答题精选附答案

七年级数学试卷幂的运算易错压轴解答题精选附答案

七年级数学试卷幂的运算易错压轴解答题精选附答案一、幂的运算易错压轴解答题1.解答下列问题(1)已知2x=3,2y=5,求2x+y的值;(2)已知3m=4,3n=2,求的值;(3)若,求的值.2.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(1)解方程:log x4=2;(2)log28=________(3)计算:(lg2)2+lg2•1g5+1g5﹣2018=________(直接写答案)3.若 (a > 0,且a≠1,m、n 是整数),则 m = n.你能利用上面的结论解决下面的问题吗?(1)如果2×8x ×16x =229 ,求x的值;(2)如果,求x的值.4.如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个的等式,这个等式可以为________;(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=32,x2+4y2+9z2=45,求2xy﹣3xz﹣6yz的值.5.(1)已知m+4n-3=0,求2m·16n的值.(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.6.(1)已知,,求的值;(2)已知,,求的值.7.规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如,等.类比有理数的乘方,记作④,读作“ 的圈4次方”,一般地,我们把()记作ⓝ,读作“a的圈n次方”.(1)直接写出计算结果:2③= ________,④=________.(2)有理数的除方可以转化为乘方幂的形式.如④= == = ,直接将下列的除方形式写成乘方幂的形式:④=________;5ⓝ=________.(3)计算:.8.综合题(1)填空:21﹣20=2(________), 22﹣21=2(________), 23﹣22=2(________)…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22017+22018。

七年级数学试卷幂的运算易错压轴解答题精选及答案

七年级数学试卷幂的运算易错压轴解答题精选及答案

七年级数学试卷幂的运算易错压轴解答题精选及答案一、幂的运算易错压轴解答题1.若 (a > 0,且a≠1,m、n 是整数),则 m = n.你能利用上面的结论解决下面的问题吗?(1)如果2×8x ×16x =229 ,求x的值;(2)如果,求x的值.2.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式________;(2)求证:log a=log a M-log a N(a>0,a≠1,M>0,N>0),(3)拓展运用:计算log69+log68-log62=________.3.化简下列多项式:(1)(2)(3)若,求的值.(4)先化简,再求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),其中x=﹣2.4.已知, .(1)填空: =________; =________.(2)求m与n的数量关系.5.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n, 4n)=(3,4),小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)6.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.7.我们知道,同底数幂的乘法法则为: (其中a≠0,m,n为正整数),类似地,我们规定关于任意正整数m,n的一种新运算:h(m+n)= 请根据这种新运算填空:(1)若h(1)= ,则h(2)=________.(2)若h(1)=k(k≠0),那么 ________(用含n和k的代数式表示,其中n为正整数)8.综合题(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.9.综合题(1)已知x = ,y = ,求(n为正整数)的值;(2)观察下列各式:32-12=8×1,52-32=8×2,72-52=8×3,…,探索以上式子的规律,试写出第n个等式,并运用所学的数学知识说明你所写式子的正确性.10.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.11.一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n 叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.12.请阅读材料:①一般地,n个相同的因数a相乘:记为a n,如23=8,此时,指数3叫做以2为底8的对数,记为(即=3).②一般地,若a n=b(a>0且a≠1,b>0),则指数n叫做以a为底b的对数,记为(即=n),如34=81,则指数4叫做以3为底81的对数,记为(即=4).(1)计算下列各对数的值:log24________ ; log216=________ ; log264=________ .(2)观察(1)题中的三数4、16、64之间存在的关系式是________ ,那么log24、log216、log264存在的关系式是________(3)由(2)题的结果,你能归纳出一个一般性的结论吗?log a M+log a N=________ (a>0且a≠1,M>0,N>0)(4)请你运用幂的运算法则a m•a n=a m+n以及上述中对数的定义证明(3)中你所归纳的结论.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:∵2×8x×16x=229 ,∴2×(23)x×(24)x=229 ,∴21+3x+4x=229 ,∴1+3x+4x=29,7x=28解得x=4.(2)解解析:(1)解:∵2×8x×16x=229,∴2×(23)x×(24)x=229,∴21+3x+4x=229,∴1+3x+4x=29,7x=28解得x=4.(2)解:∵,∴(33x)−2×(32)2=3−8,∴3−6x+4=3−8,∴−6x+4=−8,-6x=-12解得x=2.【解析】【分析】(1)根据2×8x×16x=229,可得21+3x+4x=229,所以1+3x+4x=29,据此求出x的值是多少即可.(2)根据,可得3−6x+4=3−8,所以−6x+4=−8,据此求出x的值是多少即可.2.(1)4=log381(或log381=4)(2)证明:设logaM=m,logaN=n,则M=am,N=an,∴ MN = aman =am-n,由对数的定义得m-n=loga MN解析:(1)4=log381(或log381=4)(2)证明:设log a M=m,log a N=n,则M=a m,N=a n,∴==a m-n,由对数的定义得m-n=log a又∵m-n=log a M-log a N∴log a =log a M-log a N(3)2【解析】【解答】(1)由题意可得,指数式34=81写成对数式为:4=log381,故答案为:4=log381(或log381=4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册幂的运算常考题型一.填空题(共27小题)1.(2014•汉沽区一模)计算(2ab2)3的结果等于_________.2.(2006•杭州)计算:(a3)2+a5的结果是_________.3.已知(a﹣3)a+2=1,则整数a=_________.4.若a m=2,a n=3,则a2m+n=_________.5.若3m•32n=81,则m+2n=_________.6.已知3m=a,81n=b,那么3m﹣4n=_________.7.已知:(x+2)x+5=1,则x=_________.8.若(x﹣1)x+1=1,则x=_________.9.多项式﹣5(ab)2+ab+1是_________次_________项式.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=_________.11.若52x+1=125,则(x﹣2)2012+x=_________.12.a m•a n=a m+n也可以写成以a m+n=a m•a n(m、n是正整数),请你思考:已知a m=8,a n=32,则a m+n=_________.13.已知a3n=4,则a6n=_________.14.若x2=24,则x=_________.15.(2008•清远)计算:(π﹣3)0+2﹣1=_________.16.如果2x=5,2y=10,则2x+y﹣1=_________.17.=_________;4101×0.2599=_________.18.(2014•鄞州区模拟)计算2x2•(﹣3x3)的结果是_________.19.如果x n﹣2•x n=x2,则n=_________.20.若2×8n×16n=222,则n=_________.21.若x m=5,x n=7,则x2m+n=_________.22.计算(﹣x)2•(﹣x)3•(﹣x)4=_________.23.化简:y3•(y3)2﹣2•(y3)3=_________.24.若102•10n=102006,则n=_________.25.(2013•资阳)(﹣a2b)2•a=_________.26.(2013•福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是_________.27.(2012•奉贤区三模)计算:(a2)3÷a2=__________.二.解答题(共3小题)28.(2010•漳州)计算:(﹣2)0+(﹣1)2010﹣29.(2010•泰兴市模拟)(1)计算:23+﹣﹣;(2)解方程组:.30.(2009•长沙)计算:(﹣2)2+2×(﹣3)+()﹣12015年01月28日宋仁帅的初中数学组卷参考答案与试题解析一.填空题(共27小题)1.(2014•汉沽区一模)计算(2ab2)3的结果等于8a3b6.考点:幂的乘方与积的乘方.分析:根据积的乘方等于每一个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:原式=23a3b2×3=8a3b6,故答案为:8a3b6.点评:本题考查了积的乘方,积的乘方等于每一个因式分别乘方,再把所得的幂相乘.2.(2006•杭州)计算:(a3)2+a5的结果是a6+a5.考点:幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘计算即可.解答:解:(a3)2+a5=a3×2+a5=a6+a5.点评:本题考查了幂的乘方的性质,熟练掌握运算性质是解题的关键,要注意不是同类项的不能合并.3.已知(a﹣3)a+2=1,则整数a=﹣2、2、4.考点:零指数幂.分析:由于(a﹣3)a+2=1,底数和指数都不确定,所以本题应分三种情况进行讨论.①若a﹣3≠±1时,根据零指数幂的定义,a+2=0,进而可以求出a的值;②若a﹣3=1时,1的任何次幂都等于1;③若a﹣3=﹣1时,﹣1的偶次幂等于1.解答:解:①∵若a﹣3≠±1时,(a﹣3)a+2=1,∴a+2=0,∴a=﹣2.②若a﹣3=1时,1的任何次幂都等于1,∴a=4;③若a﹣3=﹣1时,﹣1的偶次幂等于1,∴a=2;故应填﹣2、2、4.点评:本题主要考查了一些特殊数据的幂的性质,解题的关键是根据所给代数式的特点,分析a的值.4.若a m=2,a n=3,则a2m+n=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法与幂的乘方的性质,即可得a2m+n=a2m•a n=(a m)2•a n,又由a m=2,a n=3,即可求得答案.解答:解:∵a m=2,a n=3,∴a2m+n=a2m•a n=(a m)2•a n=22×3=12.故答案为:12.点评:此题考查了同底数幂的乘法与幂的乘方的性质.此题难度适中,注意掌握积的乘方法则:(ab)n=a n b n(n 是正整数)与同底数幂的乘法法则:a m•a n=a m+n(m,n是正整数),注意公式的逆用.5.若3m•32n=81,则m+2n=4.考点:同底数幂的乘法.分析:根据同底数幂的乘法底数不变指数相加,可得m、n的值,再根据有理数的加法运算,可得答案.解答:解:3m+2n=34,m+2n=4,故答案为:4.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.6.已知3m=a,81n=b,那么3m﹣4n=.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减,可得答案.解答:解:81n=[(3)4]n=34n,3,故答案为:.点评:本题考查了同底数幂的除法,先算幂的乘方,再算同底数幂的除法.7.已知:(x+2)x+5=1,则x=﹣5或﹣1或﹣3.考点:零指数幂.专题:计算题;分类讨论.分析:根据:a0=1(a≠0),1的任何次方为1,﹣1的偶次方为1,解答本题.解答:解:根据0指数的意义,得当x+2≠0时,x+5=0,解得x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故填:﹣5或﹣1或﹣3.点评:本题的难点在于将幂为1的情况都考虑到.8.若(x﹣1)x+1=1,则x=﹣1或2.考点:零指数幂.专题:计算题;分类讨论.分析:由于任何非0数的0次幂等于1,1的任何次幂都等于1,故应分两种情况讨论.解答:解:当x+1=0,即x=﹣1时,原式=(﹣2)0=1;当x﹣1=1,x=2时,原式=13=1;当x﹣1=﹣1时,x=0,(﹣1)1=﹣1,舍去.故x=﹣1或2.点评:主要考查了零指数幂的意义,既任何非0数的0次幂等于1.注意此题有两种情况.9.多项式﹣5(ab)2+ab+1是四次三项式.考点:幂的乘方与积的乘方;多项式.分析:根据多项式的次数与项数的定义作答.解答:解:∵(ab)2=a2b2,∴多项式﹣5(ab)2+ab+1是四次三项式.点评:本题主要考查了多项式的次数与项数的定义.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,一个多项式含有几项就叫几项式;多项式中次数最高的项的次数叫做多项式的次数.本题运用积的乘方的运算性质将(ab)2写成a2b2,是解题的关键.10.(﹣x)10÷(﹣x)5÷(﹣x)÷x=x3.考点:同底数幂的除法;幂的乘方与积的乘方.分析:先根据有理数乘方的意义计算符号,再利用同底数幂相除,底数不变指数相减进行计算即可得解.解答:解:(﹣x)10÷(﹣x)5÷(﹣x)÷x,=x10÷x5÷x÷x,=x10﹣5﹣1﹣1,=x3.故答案为:x3.点评:本题主要考查了同底数幂相除,底数不变指数相减的性质,计算时要注意符号的处理,这也是本题最容易出错的地方.11.若52x+1=125,则(x﹣2)2012+x=﹣1.考点:幂的乘方与积的乘方.分析:根据幂的乘方底数不变指数相乘,可得x的值,再根据同底数幂的乘法,可得答案.解答:解:52x+1=5×(5x)2=125,(5x)2=25,5x=5.x=1,(x﹣2)2012+x=(﹣1)2012﹣1=﹣1,故答案为:﹣1.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘,注意负数的奇次幂是负数.12.a m•a n=a m+n也可以写成以a m+n=a m•a n(m、n是正整数),请你思考:已知a m=8,a n=32,则a m+n=256.考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变指数相加,可得答案.解答:解:已知a m=8,a n=32,a m+n=a m•a n=8×32=256,故答案为:256.点评:本题考查了同底数幂的乘法,指数相加等于同底数幂的乘法是解题关键.13.已知a3n=4,则a6n=16.考点:幂的乘方与积的乘方.分析:运用幂的乘方的逆运算,把a6n转化为(a3n)2,再把a3n=4,整体代入求值.解答:解:∵a3n=4,∴a6n=(a3n)2=42=16.点评:本题考查幂的乘方的性质,灵活运用幂的乘方(a n)m=a mn进行计算.14.若x2=24,则x=±4.考点:幂的乘方与积的乘方;平方根.专题:计算题.分析:根据已知得出x=±22,求出即可.解答:解:∵x2=24=(22)2,∴x=±22=±4,故答案为:±4.点评:本题考查了平方根和积的乘方、幂的乘方的应用,注意:得出x=±22,而不是22,题目比较好,但是一道比较容易出错的题目.15.(2008•清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.16.如果2x=5,2y=10,则2x+y﹣1=25.考点:同底数幂的除法;同底数幂的乘法.分析:根据同底数幂的除法底数不变指数相减,可得计算结果.解答:解:2x+y﹣1=2x×2y÷2=5×10÷2=25.故答案为:25.点评:本题考查了同底数幂的除法,底数不变指数相减.17.=;4101×0.2599=16.考点:零指数幂;有理数的乘方.专题:计算题.分析:根据数的乘方,零指数幂、积的乘方运算法则计算.解答:解:=+1=;4101×0.2599=42×499×0.2599=16×(4×0.25)99=16×1=16.点评:本题主要考查非0数的零指数幂是1,积的乘方运算的逆运算,熟练掌握运算性质是解决本题的关键.18.(2014•鄞州区模拟)计算2x2•(﹣3x3)的结果是﹣6x5.考点:同底数幂的乘法.专题:计算题.分析:先把常数相乘,再根据同底数幂的乘法性质:底数不变指数相加,进行计算即可.解答:解:2x2•(﹣3x3)=﹣6x5.故答案填:﹣6x5.点评:本题考查了同底数幂的乘法,牢记同底数幂的乘法,底数不变指数相加是解题的关键.19.如果x n﹣2•x n=x2,则n=2.考点:同底数幂的乘法.分析:根据同底数幂的乘法,底数不变,指数相加计算,然后再根据指数相同列式计算即可.解答:解:x n﹣2•x n=x2n﹣2=x2,∵2n﹣2=2,∴n=2.故填2.点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.20.若2×8n×16n=222,则n=3.考点:同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘法法则计算,再根据指数相等列式求解即可.解答:解:∵2×8n×16n=2×23n×24n=21+7n=222;∴1+7n=22,解得n=3.故填3.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.21.若x m=5,x n=7,则x2m+n=175.考点:同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法性质对x2m+n进行分解变形,再把已知条件代入求值即可.解答:解:∵x m=5,x n=7,∴x2m+n=x m•x m•x n=5×5×7=175.故答案为:175.点评:本题考查了同底数幂的乘法性质,熟练掌握性质:同底数幂相乘,底数不变,指数相加是解题的关键.22.计算(﹣x)2•(﹣x)3•(﹣x)4=﹣x9.考点:同底数幂的乘法.分析:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,计算即可.解答:解:(﹣x)2•(﹣x)3•(﹣x)4=(﹣x)2+3+4=(﹣x)9=﹣x9.点评:运用同底数幂的乘法法则时需要注意:(1)三个或三个以上同底数幂相乘时,也具有这一性质:a m•a n•a p=a m+n+p相乘时(m、n、p均为正整数);(2)公式的特点:左边是两个或两个以上的同底数幂相乘,右边是一个幂指数相加.23.化简:y3•(y3)2﹣2•(y3)3=﹣y9.考点:同底数幂的乘法;幂的乘方与积的乘方.分析:运用幂的乘方、同底数幂乘法的运算性质与合并同类项法则计算即可.解答:解:y3•(y3)2﹣2•(y3)3,=y3•y6﹣2•y9,=y9﹣2y9,=﹣y9.故应填﹣y9.点评:本题综合考查同底数幂的乘法和幂的乘方,需熟练掌握且区分清楚,才不容易出错.24.若102•10n=102006,则n=2004.考点:同底数幂的乘法.分析:根据同底数幂相乘,底数不变,指数相加,将指数的关系转化为加减法来计算.解答:解:∵102•10n=102+n,∴2+n=2006,解得n=2004.点评:主要考查同底数幂的乘法性质,熟练掌握性质是解题的关键.25.(2013•资阳)(﹣a2b)2•a=a5b2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据积的乘方以及同底数幂的乘方等知识求解即可求得答案.解答:解:(﹣a2b)2•a=a4b2a=a5b2.故答案为:a5b2.点评:本题考查了积的乘方和同底数幂的乘法运算法则,一定要记准法则才能做题.26.(2013•福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3•(a﹣b)3的值是1000.考点:幂的乘方与积的乘方.专题:计算题;压轴题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.解答:解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.27.(2012•奉贤区三模)计算:(a2)3÷a2=_a4.考点:幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:根据同底数幂的除法,底数不变指数相减和幂的乘方,底数不变指数相乘求解.解答:解:(a2)3÷a2,=a6÷a2,=a6﹣2,=a4.故答案为:a4.点评:此题考查了同底数幂的除法和幂的乘方的相关运算,按先乘方后乘除的顺序运算即可.二.解答题(共3小题)28.(2010•漳州)计算:(﹣2)0+(﹣1)2010﹣考点:负整数指数幂;有理数的乘方;零指数幂.专题:计算题.分析:本题涉及零指数幂、乘方、负整数指数幂三个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+1﹣2=0.故答案为0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、乘方等考点的运算.29.(2010•泰兴市模拟)(1)计算:23+﹣﹣;(2)解方程组:.考点:负整数指数幂;零指数幂;解二元一次方程组.专题:计算题.分析:(1)知道23=8,=1,,=9后,直接解答;(2)本题y的系数相同,可用减法消元.解答:(1)解:原式=8+1﹣﹣9=﹣;(2)解:①﹣②得:x=4代入②得:y=5∴方程组的解为.故答案为﹣、.点评:(1)先算出题中的幂和绝对值,然后进行运算;(2)当未知数的系数相同时,可选用减法消元法求解.30.(2009•长沙)计算:(﹣2)2+2×(﹣3)+()﹣1考点:负整数指数幂.专题:计算题.分析:按照实数的运算法则依次计算:先算乘方,后算乘除,然后算加减.解答:解:∵(﹣2)2=4,()﹣1=3;∴(﹣2)2+2×(﹣3)+()﹣1=4﹣6+3=1.故答案为1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.。

相关文档
最新文档