魏县第一中学高二数学周考2

合集下载

2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】

2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。

河北省魏县一中10-11学年高二3月份月考(数学)

河北省魏县一中10-11学年高二3月份月考(数学)

高二第一次月考数学试题一、选择题1 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A '0()f xB '02()f xC '02()f x - D 02 一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒B 6米/秒C 5米/秒D 8米/秒 3 若()sin cos f x x α=-,则'()f α等于( )A s i n αB c o s αC s i n c o s αα+D 2s i n α4 曲线2xy x =-在点(1,1)-处的切线方程为 ()2A y x =- ()32B y x =-+ ()23C y x =- ()21D y x =-+5 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A 充分条件B 必要条件C 充要条件D 必要非充分条件6 曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A (1,0)B (2,8)C (1,0)和(1,4)--D (2,8)和(1,4)-- 7 函数x x y ln =的最大值为( )A 1-e B e C 2e D 310 8 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是 A ),3[]3,(+∞--∞U B ]3,3[- C ),3()3,(+∞--∞U D)3,3(-9 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )10 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A 1个B 2个C 3个D 4个11 函数x x y ln =的单调递减区间是( )A.(1-e ,+∞)B.(-∞,1-e )C.(0,1-e )D.(e ,+∞)12 已知直线l 与抛物线C ,当直线l 从0l 开始在平面上绕O 点按逆时针方向匀速旋0( )二、填空题13. 函数2cos y xx =+在区间[0,]2π上的最大值是14 函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________ 15. 321()252f x x x x =--+,当]2,1[-∈x ,()f x m <恒成立,实数m 的取值范围为 16 如果函数()y f x =的导函数()y f x '=的图像如右图所示,给出下列判断: (1) 函数()y f x =在区间(4,5)内单调递增; (2) 函数()y f x =在区间(12-,2)内单调递增; (3) 当x =12-时,函数()y f x '=有极大值; (4) 当x =2时,函数()y f x =有极小值。

魏县第一中学校2018-2019学年上学期高二数学12月月考试题含解析

魏县第一中学校2018-2019学年上学期高二数学12月月考试题含解析

魏县第一中学校2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化2. 设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9 C .S 8D .S 73. 设i 是虚数单位,是复数z 的共轭复数,若z=2(+i ),则z=( )A .﹣1﹣iB .1+iC .﹣1+iD .1﹣i4. 已知集合A={y|y=x 2+2x ﹣3},,则有( )A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ5. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b << 6. sin570°的值是( )A .B .﹣C .D .﹣7. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 8. 已知函数f (x )=,则=( )A.B.C .9D .﹣99. 设n S 是等差数列{}n a 的前项和,若5359a a =,则95SS =( ) A .1 B .2 C .3 D .410.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )A .只有减区间没有增区间B .是f (x )的增区间C .m=±1D .最小值为﹣311.设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0D .412.已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a二、填空题13.不等式的解集为 .14.某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单 位:小时)间的关系为0ektP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1%的污染物,则需要___________小时.【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用. 15.若函数f (x )=,则f (7)+f (log 36)= .16.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.17.等比数列{a n }的前n 项和S n =k 1+k 2·2n (k 1,k 2为常数),且a 2,a 3,a 4-2成等差数列,则a n =________. 18.已知函数f (x )=x 2+x ﹣b+(a ,b为正实数)只有一个零点,则+的最小值为 .三、解答题19.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.20.如图,在三棱柱ABC﹣A1B1C1中,底面△ABC是边长为2的等边三角形,D为AB中点.(1)求证:BC1∥平面A1CD;(2)若四边形BCCB1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值.121.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:①假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.22.已知,且.(1)求sinα,cosα的值;(2)若,求sinβ的值.23.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.24.已知函数f(x)=e﹣x(x2+ax)在点(0,f(0))处的切线斜率为2.(Ⅰ)求实数a的值;(Ⅱ)设g(x)=﹣x(x﹣t﹣)(t∈R),若g(x)≥f(x)对x∈[0,1]恒成立,求t的取值范围;(Ⅲ)已知数列{a n}满足a1=1,a n+1=(1+)a n,求证:当n≥2,n∈N时f()+f()+L+f()<n•()(e为自然对数的底数,e≈2.71828).魏县第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.2.【答案】C【解析】解:∵S16<0,S17>0,∴=8(a8+a9)<0,=17a9>0,∴a8<0,a9>0,∴公差d>0.∴S n中最小的是S8.故选:C.【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.3.【答案】B【解析】解:设z=a+bi(a,b∈R),则=a﹣bi,由z=2(+i),得(a+bi)(a﹣bi)=2[a+(b﹣1)i],整理得a2+b2=2a+2(b﹣1)i.则,解得.所以z=1+i.故选B.【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题.4.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.5.【答案】A【解析】试题分析:2223534,4,5a b c===,由于4xy=为增函数,所以a b>.应为23y x=为增函数,所以c a>,故b a c<<.考点:比较大小.6.【答案】B【解析】解:原式=sin(720°﹣150°)=﹣sin150°=﹣.故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.7.【答案】C【解析】考点:茎叶图,频率分布直方图.8.【答案】A【解析】解:由题意可得f()==﹣2,f[(f()]=f(﹣2)=3﹣2=,故选A.9.【答案】A【解析】1111]试题分析:199515539()9215()52a aS aa aS a+===+.故选A.111]考点:等差数列的前项和.10.【答案】B【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,则f(0)=|m|﹣1=0,则m=1或m=﹣1,当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,作出函数f(x)的图象如图:则函数在上为增函数,最小值为﹣2,故正确的是B,故选:B【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.11.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f(0)+f(0)=f(0+0)=f(0),所以,f (0)=0; 再令y=﹣x ,则f (x )+f (﹣x )=f (0)=0, 所以,f (﹣x )=﹣f (x ), 所以,函数f (x )为奇函数. 又f (3)=4,所以,f (﹣3)=﹣f (3)=﹣4, 所以,f (0)+f (﹣3)=﹣4. 故选:B .【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题.12.【答案】C【解析】解:由题意f (x )=f (|x|). ∵log 43<1,∴|log 43|<1;2>|ln |=|ln3|>1;∵|0.4﹣1.2|=|1.2|>2∴|0.4﹣1.2|>|ln |>|log 43|.又∵f (x )在(﹣∞,0]上是增函数且为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴c <a <b . 故选C二、填空题13.【答案】 (0,1] .【解析】解:不等式,即,求得0<x ≤1,故答案为:(0,1].【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.14.【答案】15【解析】由条件知5000.9e k P P -=,所以5e 0.9k-=.消除了27.1%的污染物后,废气中的污染物数量为00.729P ,于是000.729e kt P P -=,∴315e 0.7290.9e kt k--===,所以15t =小时.15.【答案】 5 .【解析】解:∵f (x )=,∴f (7)=log 39=2,f (log 36)=+1=,∴f (7)+f (log 36)=2+3=5.故答案为:5.16.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d .考点:数列与不等式综合. 17.【答案】【解析】当n =1时,a 1=S 1=k 1+2k 2,当n ≥2时,a n =S n -S n -1=(k 1+k 2·2n )-(k 1+k 2·2n -1)=k 2·2n -1, ∴k 1+2k 2=k 2·20,即k 1+k 2=0,① 又a 2,a 3,a 4-2成等差数列. ∴2a 3=a 2+a 4-2, 即8k 2=2k 2+8k 2-2.② 由①②联立得k 1=-1,k 2=1, ∴a n =2n -1. 答案:2n -118.【答案】 9+4.【解析】解:∵函数f (x )=x 2+x ﹣b+只有一个零点,∴△=a ﹣4(﹣b+)=0,∴a+4b=1, ∵a ,b 为正实数,∴+=(+)(a+4b )=9++≥9+2=9+4当且仅当=,即a=b时取等号,∴+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题.三、解答题19.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.20.【答案】【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,∵D为AB的中点,∴DO∥BC1,∵BC1⊄平面A1CD,DO⊂平面A1CD,∴BC1∥平面A1CD.解:∵底面△ABC是边长为2等边三角形,D为AB的中点,四边形BCCB1是正方形,且A1D=,1∴CD⊥AB,CD==,AD=1,∴AD2+AA12=A1D2,∴AA1⊥AB,∵,∴,∴CD⊥DA1,又DA1∩AB=D,∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,∵矩形BCC1B1,∴BB1⊥BC,∵BC∩CD=C∴BB1⊥平面ABC,∵底面△ABC是等边三角形,∴三棱柱ABC﹣A1B1C1是正三棱柱.以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为θ,则sinθ===.∴直线A1D与平面CBB1C1所成角的正弦值为.21.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N +≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++==22.【答案】【解析】解:(1)将sin +cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos 2=1+sin α=,∴sin α=,∵α∈(,π),∴cos α=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin (α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.23.【答案】【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,∴AD⊥平面PAB.又PB⊂平面PAB,∴AD⊥PB.(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,当M为PD的中点时,EM∥AD,∴EM⊥平面PAB,∵EM⊂平面BEM,∴平面BEM⊥平面PAB.此时,.(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点.∴FM∥PC.∵AB∥FD,FD=AB,∴ABFD为平行四边形.∴AD∥BF,又∵EM∥AD,∴EM∥BF.∴B,E,M,F四点共面.∴FM⊂平面BEM,又PC⊄平面BEM,∴PC∥平面BEM.【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.24.【答案】【解析】解:(Ⅰ)∵f(x)=e﹣x(x2+ax),∴f′(x)=﹣e﹣x(x2+ax)+e﹣x(2x+a)=﹣e﹣x(x2+ax﹣2x﹣a);则由题意得f′(0)=﹣(﹣a)=2,故a=2.(Ⅱ)由(Ⅰ)知,f(x)=e﹣x(x2+2x),由g(x)≥f(x)得,﹣x(x﹣t﹣)≥e﹣x(x2+2x),x∈[0,1];当x=0时,该不等式成立;当x∈(0,1]时,不等式﹣x+t+≥e﹣x(x+2)在(0,1]上恒成立,即t≥[e﹣x(x+2)+x﹣]max.设h(x)=e﹣x(x+2)+x﹣,x∈(0,1],h′(x)=﹣e﹣x(x+1)+1,h″(x)=x•e﹣x>0,∴h′(x)在(0,1]单调递增,∴h′(x)>h′(0)=0,∴h(x)在(0,1]单调递增,∴h(x)max=h(1)=1,∴t≥1.(Ⅲ)证明:∵a n+1=(1+)a n,∴=,又a1=1,∴n≥2时,a n=a1••…•=1••…•=n;对n=1也成立,∴a n=n.∵当x∈(0,1]时,f′(x)=﹣e﹣x(x2﹣2)>0,∴f(x)在[0,1]上单调递增,且f(x)≥f(0)=0.又∵f()(1≤i≤n﹣1,i∈N)表示长为f(),宽为的小矩形的面积,∴f()<f(x)dx,(1≤i≤n﹣1,i∈N),∴[f()+f()+…+f()]=[f()+f()+…+f()]<f(x)dx.又由(Ⅱ),取t=1得f(x)≤g(x)=﹣x2+(1+)x,∴f(x)dx≤g(x)dx=+,∴[f()+f()+…+f()]<+,∴f()+f()+…+f()<n(+).【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.。

魏县高中2018-2019学年高二上学期第二次月考试卷数学

魏县高中2018-2019学年高二上学期第二次月考试卷数学

魏县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .2. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或3. 下列哪组中的两个函数是相等函数( )A .()()4f x x =g B .()()24=,22x f x g x x x -=-+C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g4. 已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0},则A ∩(∁R B )=( ) A .{x|x ≤0} B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}5. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )6.已知复数z满足z•i=2﹣i,i为虚数单位,则z=()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i7.已知α∈(0,π),且sinα+cosα=,则tanα=()A.B.C. D.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣19.棱长都是1的三棱锥的表面积为()A.B. C. D.10.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)11.如图,已知正方体ABCD﹣A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5 B.4 C.4D.212.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或2二、填空题13.若函数y=ln (﹣2x )为奇函数,则a= .14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ . 15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 16.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .17.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .18.函数f (x )=x 3﹣3x+1在闭区间[﹣3,0]上的最大值、最小值分别是 .三、解答题19.在直角坐标系xOy 中,曲线C 1的参数方程为C 1:为参数),曲线C 2:=1.(Ⅰ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求C 1,C 2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C 1的异于极点的交点为A ,与C 2的交点为B ,求|AB|.20.设函数.(1)若x=1是f (x )的极大值点,求a 的取值范围.(2)当a=0,b=﹣1时,函数F (x )=f (x )﹣λx 2有唯一零点,求正数λ的值.21.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟 确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分 按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨), 将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.22.已知一个几何体的三视图如图所示. (Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.23.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.24.设不等式的解集为.(1)求集合;(2)若,∈,试比较与的大小。

河北省邯郸市魏县第一中学、曲周县第一中学高二数学上

河北省邯郸市魏县第一中学、曲周县第一中学高二数学上

河北省邯郸市魏县第一中学、曲周县第一中学2015-2016学年高二数学上学期期中联考试题 文一.选择题:本题12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上。

1、设,那么“”是“"的( )A .充分不必要条件 B.必要不充分条件C .充要条件 D.既不充分也不必要条件2、若向量a =(x -1,2),b =(4,y)相互垂直,则9x+3y的最小值为( ) A .4 B .6 C .9 D .123、在等差数列中,若,则的值为( )A .20B .22C .24D .284、已知{}n a 为等差数列,且74321,0,a a a -=-=则公差d =( ) A .-2 B .12-C .12D .25、已知数列-1, 1a ,2a ,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则212b a a -的值为( ) A.错误!未找到引用源。

B. - 错误!未找到引用源。

C.错误!未找到引用源。

或- 错误!未找到引用源。

D.错误!未找到引用源。

6、等比数列中,,,则数列的前项和等于( )A .B .C .D .7、设为等比数列{}的前n 项和,=0,则=( ).A.10B.-5C.9D.-88、已知双曲线221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是( ) A .4 B .14 C .14- D .4- 9、已知椭圆22221(0)x y a b a b+=>>的左焦点为F,右顶点为A,点B 在椭圆上,且BF x ⊥轴,直线AB 交y 轴于点P,若PB AP 2=,则椭圆的离心率是( )A.32 B.22 C.13D.1210、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M(2,y 0).若点M 到该抛物线焦点的距离为3,则|OM|=( ) A .B .C .4D .11、若不等式20ax bx c -+>的解集是1(,2)2-,则以下结论中:①0a >;②0b <; ③0c >;④0a b c ++>;⑤0a b c -+>,正确是 ( ) A . ①②⑤ B .①③⑤ C . ②③⑤ D . ③④⑤12、若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF|+|MA|取得最小值的M 点的坐标为( )A .(0,0)B .C .D .(2,2)第Ⅱ卷 非选择题(共90分)二.填空题:本题4小题,每小题5分,共20分,将答案填在答题卡上相应位置。

高二数学 周测试卷(含答案解析)

高二数学  周测试卷(含答案解析)
(1)求证 ;
(2)求二面角 的平面角的余弦值。(理科做)
求点F到平面ABE的距离。(文科做)
21.已知椭圆 的,离心率为 , 是其焦点,点 在椭圆上。
(Ⅰ)若 ,且 的面积等于 。求椭圆的方程;
(Ⅱ)直线 交椭圆于另一点 ,分别过点 作直线 的垂线,交 轴于点 ,
当 取最小值时,求直线 的斜率。
22.已知函数
(1)曲线 在点 处的切线方程为 ,求 的值;
(2)当 时, ,试求 的取值范围。
参考答案及评分标准
一、选择题:共12小题,每小题5分,共60分.
题号
1
2
3
4
5
6
7
8
9
10
11
12
选项
B
B
A
A
D
A
A
D
B
C
D
C
1.选B.【解析】∵ , ,∴ ,故选B.
2.选B.【解析】∵ ,对应的点为 在第二象限,故选B.
……………………………………5分
(Ⅱ)
函数的图象为:
当 时, ,依题意, ,则
∴ 的取值范围是 …………………………………………………………10分
18.(Ⅰ)∵ 由正弦定理得

即 ,易知 ,且 ,
上式两边除以 ,得 ……………………………………6分
(Ⅱ)∵ ,∴ ,
由 ,又 , ,得

∴ …12分
19.(12分)
二、填空题共4小题,每小题5分,共20分.
13.填 .【解析】如图可知 的最小值是 .
14.填 .【解析】由题意得四面体 是底面边长为 的正三角形,侧棱 垂直底面,且 , , ,则外接球球心在过底面中心垂直于底面的垂线上,且到底面的距离等于 的一半,∴

魏县第一中学2018-2019学年下学期高二期中数学模拟题

魏县第一中学2018-2019学年下学期高二期中数学模拟题

魏县第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1 B.﹣≤a≤ C .﹣1≤a ≤1 D .﹣2≤a ≤22. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=3. 已知x ,y ∈R,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( ) A .4﹣B .4﹣C.D.+4. 已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A )∪B 为( ) A .{0,1,2,4} B .{0,1,3,4} C .{2,4} D .{4}5. 已知x ,y满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( ) A .1B.C.D.6. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 7. 设数列{a n }的前n 项和为S n ,若S n =n 2+2n (n ∈N *),则++…+=( )A.B.C. D.8. 已知AC ⊥BC ,AC=BC ,D满足=t+(1﹣t),若∠ACD=60°,则t 的值为( )A.B.﹣C.﹣1D.9. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .(11,12)B .(12,13)C .(13,14)D .(13,12)10.在△ABC 中,a=1,b=4,C=60°,则边长c=( )A .13B .C .D .2111.已知集合2{430}A x x x =++≥,{21}xB x =<,则A B =( )A .[3,1]--B .(,3][1,0)-∞--C .(,3)(1,0]-∞--D .(,0)-∞12.已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?二、填空题13.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点,则直线A 1P 与DQ 的位置关系是 .(填“平行”、“相交”或“异面”)14.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .15.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .16.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 17.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .18.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .三、解答题19.(本小题满分12分)已知A 、B 、C 、D 为同一平面上的四个点,且满足2AB =,1BC CD DA ===,设BAD θ∠=,ABD ∆的面积为S ,BCD ∆的面积为T . (1)当3πθ=时,求T 的值;(2)当S T =时,求cos θ的值;20.已知等比数列{a n }的前n 项和为S n ,a n >0,a 1=,且﹣,,成等差数列.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设数列{b n }满足b n •log 3(1﹣S n+1)=1,求适合方程b 1b 2+b 2b 3+…+b n b n+1=的正整数n 的值.21.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.22.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC的面积为,求角C.23.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}求:(I)A∩B;(II)(C U A)∩(C U B);(III)C U(A∪B).24.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.魏县第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】 B【解析】解:定义域为R 的函数f (x )是奇函数, 当x ≥0时,f (x )=|x ﹣a 2|﹣a 2=图象如图,∵f (x )为R 上的1高调函数,当x <0时,函数的最大值为a 2,要满足f (x+l )≥f (x ),1大于等于区间长度3a 2﹣(﹣a 2),∴1≥3a 2﹣(﹣a 2),∴﹣≤a ≤ 故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.2. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 3. 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB , 若存在θ∈R ,使得xcos θ+ysin θ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.4.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.5.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.6.【答案】D.【解析】7.【答案】D【解析】解:∵S n=n2+2n(n∈N*),∴当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=(n2+2n)﹣[(n﹣1)2+2(n﹣1)]=2n+1.∴==,∴++…+=++…+==﹣.故选:D.【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.8.【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DE⊥AC,垂足为E,作DF⊥BC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.9.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.【答案】B【解析】解:∵a=1,b=4,C=60°,∴由余弦定理可得:c===.故选:B.11.【答案】B【解析】(,3][1,)A =-∞--+∞,(,0)B =-∞, ∴(,3][1,0)AB =-∞--.12.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2 n=2,满足条件,执行循环体,S=1+1+2=4 n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n ≤9, 故选B .【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.二、填空题13.【答案】 相交【分析】由已知得PQ ∥A 1D ,PQ=A 1D ,从而四边形A 1DQP 是梯形,进而直线A 1P 与DQ 相交.【解析】解:∵在正方体ABCD ﹣A 1B 1C 1D 1中,点P 、Q 分别是B 1C 1、CC 1的中点, ∴PQ ∥A 1D ,∵直线A 1P 与DQ 共面,∴PQ=A 1D ,∴四边形A 1DQP 是梯形, ∴直线A 1P 与DQ 相交. 故答案为:相交.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.14.【答案】 2016 .【解析】解:∵f (x )=f (2﹣x ),∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ). ∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ), 即函数f (x )是周期为2的周期函数,∵方程f (x )=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.15.【答案】6.【解析】解:∵=(2x﹣y,m),=(﹣1,1).若∥,∴2x﹣y+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.由,解得,代入2x﹣y+m=0得m=6.即m的最大值为6.故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.16.【解析】考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).17.【答案】a≤﹣1.【解析】解:由x2﹣2x﹣3≥0得x≥3或x≤﹣1,若“x<a”是“x2﹣2x﹣3≥0”的充分不必要条件,则a≤﹣1,故答案为:a≤﹣1.【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.18.【答案】5.【解析】解:∵,B=45°,面积S=2,∴S=acsinB==2a=2.∴a=1由余弦定理得b 2=a 2+c 2﹣2accosB=12+(4)2﹣2×1××=25∴b=5. 故答案为:5.【点评】本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.三、解答题19.【答案】【解析】(1)在ABC ∆中,由余弦定理得2222cos BD AB AD AB AD θ=+-⋅2211221232=+-⨯⨯⨯=,在BCD ∆中,由余弦定理得222cos 2BC CD BD BCD BC CD+-∠=⋅2221112112+-==-⨯⨯,∵(0,180)BCD ∠∈,∴cos 60BCD ∠=.∴11sin 112224T BC CD BCD =⋅∠=⨯⨯⨯=. (2)1sin sin 2S AD AB BCD θ=⋅∠=.2222cos 54cos BD AB AD AB AD θθ=+-⋅=-,2224cos 3cos 22BC CD BD BCD BC CD θ+--∠==⋅,11sin sin 22T BC CD BCD BCD =⋅∠=∠,∵S T =,∴1sin sin 2BCD θ=∠,∴2224cos 34sin sin 1cos 1()2BCD BCD θθ-=∠=-∠=-, ∴7cos 8θ=.20.【答案】【解析】解:(Ⅰ)设数列{a n }的公比q ,由﹣,,,成等差数列,得,解得或q=﹣1(舍去),∴;(Ⅱ)∵,∴=﹣n﹣1,∴,,==,解得:n=100.【点评】本题考查等比数列和等差数列的概念与性质,以及等比数列的前n项和公式和裂项相消法求和,属于中档题.21.【答案】【解析】解:(1)设h(x)=f(x)﹣g(x)=lg(2016+x)﹣lg(2016﹣x),h(x)的定义域为(﹣2016,2016);h(﹣x)=lg(2016﹣x)﹣lg(2016+x)=﹣h(x);∴f(x)﹣g(x)为奇函数;(2)由f(x)﹣g(x)<0得,f(x)<g(x);即lg(2016+x)<lg(2016﹣x);∴;解得﹣2016<x<0;∴使f(x)﹣g(x)<0成立x的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性.22.【答案】【解析】解:(Ⅰ)由题意知,tanA=,则=,即有sinA﹣sinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;…(Ⅱ)因为三角形△ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,①由余弦定理得,=,②由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0<C<π,则C+<,即C+=,解得C=….【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.23.【答案】【解析】解:如图:(I)A∩B={x|1<x≤2};(II)C U A={x|x≤0或x>2},C U B={x|﹣3≤x≤1}(C U A)∩(C U B)={x|﹣3≤x≤0};(III)A∪B={x|x<﹣3或x>0},C U(A∪B)={x|﹣3≤x≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.24.【答案】【解析】解:(1)∵y=+,∴,解得x≥﹣2且x≠﹣2且x≠3,∴函数y的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].。

魏县第一中学数学必修2各章考试

魏县第一中学数学必修2各章考试

ABD CE F新课标数学必修2测试题(1)测试时间120分钟 命题人:张双锋 校正人:天涯一、选择题1.如果一个水平放置的图形的斜二测直观图是一个底面为045, 腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+B .221+ C .222+ D . 21+ 2.半径为R 的半圆卷成一个圆锥,则它的体积为( )A 33RB 33RC 35RD 35R 3.一个正方体的顶点都在球面上,它的棱长为2cm , 则球的表面积是( ) A.28cm π B.212cm πC.216cmπD.220cm π4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( ) A .7 B.6 C.5 D.35.棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是( )A .1:7 B.2:7 C.7:19 D.5:16 6.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32EF =,且EF 和平面ABCD 的距离为2,则该多面体的体积为( ) A .92B.5 C.6 D.152二、填空题1.圆台的较小底面半径为1,母线长为2,一条母线和底面的一条半径有交点且成060,则圆台的侧面积为____________。

2.Rt ABC ∆中,3,4,5AB BC AC ===,将三角形绕直角边AB 旋转一周所成的几何体的体积为____________。

3.等体积的球和正方体,它们的表面积的大小关系是S 球___S 正方体4.若长方体的一个顶点上的三条棱的长分别为3,4,5,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,其最短路程是______________。

5. 图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(2)中的三视图表示的实物为_____________。

魏县一中2018-2019学年下学期高二期中数学模拟题

魏县一中2018-2019学年下学期高二期中数学模拟题

魏县一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A .B . C.D.2. “互联网”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶+段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( )A .10 B .20C .30D .403. 垂直于同一条直线的两条直线一定()A .平行B .相交C .异面D .以上都有可能4. 已知复数,,,是虚数单位,若是实数,则( )11i z a =+232i z =+a ∈R i 12z z a = A . B . C .D .23-13-13235. 某几何体的三视图如图所示,则它的表面积为()A .B .C .D .6. 在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=u u u r u u u r u u u r rH AB A .2 B .3C.1D .47. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A. B. C. D. 4π5π2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.8. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小.其中正确的说法的个数是( )A .1B .2C .3D .49. 某三棱锥的三视图如图所示,该三棱锥的表面积是 A 、 B 、28+30+C 、D 、56+60+10.已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有()A .2个B .4个C .6个D .8个11.“”是“圆关于直线成轴对称图形”的( )3<-b a 056222=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.12.若直线上存在点满足约束条件2y x =(,)x y 则实数的最大值为 30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩m A 、B 、C 、D 、1-322二、填空题13.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= . 14.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b∈R .若=,则a+3b 的值为 .15.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a 18.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件. 三、解答题19.设f (x )=x 2﹣ax+2.当x ∈,使得关于x 的方程f (x )﹣tf (2a )=0有三个不相等的实数根,求实数t 的取值范围. 20.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.21.(本小题满分12分)已知向量,,(cos sin ,sin )m x m x x w w w =-a (cos sin ,2cos )x x n x w w w =--b设函数的图象关于点对称,且.()()2n f x x R =×+Îa b (,1)12p(1,2)w Î(I )若,求函数的最小值;1m =)(x f (II )若对一切实数恒成立,求的单调递增区间.()()4f x f p£)(x f y =【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.22.(本小题满分12分)数列满足:,,且.{}n b 122n n b b +=+1n n n b a a +=-122,4a a ==(1)求数列的通项公式;{}n b (2)求数列的前项和.{}n a n S23..(1)求证:(2),若.24.如图,直四棱柱ABCD﹣A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.(1)证明:平面MNE⊥平面D1DE;(2)证明:MN∥平面D1DE.魏县一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】C 【解析】考点:平面图形的直观图.2. 【答案】B 【解析】试题分析:设从青年人抽取的人数为,故选B .800,,2050600600800x x x ∴=∴=++考点:分层抽样.3. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系. 4. 【答案】A【解析】,1232(32)i z z a a =-++∵是实数,∴,∴.12z z 320a +=23a =-5. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S 底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量. 6. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -=u u u r u u u r u u u r 2OA OB OD +=u u u r u u u r u u u rD AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC u u u r u u u r何意义等.7. 【答案】B8. 【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=,正确;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故④不正确.故选:B .【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X ,Y 的关系,属于基础题. 9. 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。

魏县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

魏县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

魏县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )A .120°B .60°C .45°D .30°2. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( )A .kB .﹣kC .1﹣kD .2﹣k3. 已知不等式组表示的平面区域为,若内存在一点,使,则的取值⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x D D 00(,)P x y 001ax y +<a 范围为()A .B .C .D .(,2)-∞(,1)-∞(2,)+∞(1,)+∞4. 下列正方体或四面体中,、、、分别是所在棱的中点,这四个点不共面的一个图形是P Q R S ()5. 下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y=|x|(x ∈R )B .y=(x ≠0)C .y=x (x ∈R )D .y=﹣x 3(x ∈R )6. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于()A .2017B .﹣8C .D .7. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.8. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为()A.35B.C.D.539.已知数列{a n}满足a1=1,a2=2,a n+2=(1+cos2)a n+sin2,则该数列的前10项和为()A.89B.76C.77D.3510.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.11.已知向量=(1,2),=(x,﹣4),若∥,则x=() A.4 B.﹣4 C.2 D.﹣212.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.35二、填空题13.已知实数x,y满足约束条,则z=的最小值为 .14.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是 .15.函数f(x)=a x+4的图象恒过定点P,则P点坐标是 .16.已知点E、F分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .17.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6= .18.方程(x+y﹣1)=0所表示的曲线是 .三、解答题19.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.20.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.21.在△ABC 中,内角A ,B ,C 的对边分别为a 、b 、c ,且bsinA=acosB .(1)求B ;(2)若b=2,求△ABC 面积的最大值.22.(本小题满分12分)已知且过点的直线与线段有公共点, 求直()()2,1,0,2A B ()1,1P -AB 线的斜率的取值范围.23.已知等差数列{a n }的首项和公差都为2,且a 1、a 8分别为等比数列{b n }的第一、第四项.(1)求数列{a n }、{b n }的通项公式;(2)设c n =,求{c n }的前n 项和S n .24.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;(Ⅲ)当时,证明:存在,使得.魏县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A【解析】解:根据余弦定理可知cosA=∵a 2=b 2+bc+c 2,∴bc=﹣(b 2+c 2﹣a 2)∴cosA=﹣∴A=120°故选A 2. 【答案】D【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k ,∴f (2016)=20163a+2016b+1=k ,∴20163a+2016b=k ﹣1,∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k .故选:D .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用. 3. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域如图所示,先求的最小值,当D z ax y =+12a ≤时,,在点取得最小值;当时,,在点取12a -≥-z ax y =+1,0A ()a 12a >12a -<-z ax y =+11,33B ()得最小值.若内存在一点,使,则有的最小值小于,∴或1133a +D 00(,)P x y 001ax y +<z ax y =+1121a a ⎧≤⎪⎨⎪<⎩,∴,选A .1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩2a <4.【答案】D【解析】考点:平面的基本公理与推论.5.【答案】D【解析】解:y=|x|(x∈R)是偶函数,不满足条件,y=(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,y=﹣x3(x∈R)奇函数,在定义域上是减函数,满足条件,故选:D6.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.7.【答案】B【解析】8.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,故选:D.【点评】本题主要考查分步计数原理的应用,属于基础题.9.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.10.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。

河北省魏县第一中学10-11学年高二年级上学期第一次月考(数学)

河北省魏县第一中学10-11学年高二年级上学期第一次月考(数学)

高二数学第一次月考试卷一.选择题(每题五分,共六十分)1.不等式2601x x x --->的解集为 ( )(A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<2.算法:第一步 输入n第二步 判断n 是否是2,若n=2,则n 满足条件,若n>2,则执行第三步.第三步 依次从2到n 一1检验能不能整除n ,若不能整除n,则结束算法;否则,返回第一步.满足上述条件的是 ( )A .质数B .奇数C .偶数 D.约数3.下列给出的输入语句、输出语句和赋值语句⑴输出语句INPUT a ;b ;c (2)输入语句INPUT x =3(3)赋值语句3=B (4)赋值语句A=B=2则其中正确的个数是, ( )A .0个 B. 1个 C. 2个 D. 3个4.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是( ) D. 112A. 3 B . 4 C. 5.右图程序运行的结果是 ( ) a=1A. 1 2 3. b=2B. 2 3 1. c=3C.2 3 3. a=bD. 3 2 1. b=cPRINT a, b, c6.如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于( )(A )720(B ) 360(C ) 240(D ) 1207.下列各数中最小的数是( )A.()2111111B.()6210C.()41000D.()9818.设a =3log 2,b =ln2,c =125-,则( ) 92(A ) a<b<c (B )b<c<a (C ) c<a<b (D ) c<b<a9.设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( )A .285 B .4 C . 125D .2 10.下边程序执行后输出的结果是( )PRINT n A. -1 B. 0 C. 1 D. 2 11. 如右上图对于所给的算法中, 执行循环的次数是 ( ) A.1 000 B .999 C .1001D .99812.如图,汉诺塔问题是指有3根杆子A ,B ,C ,杆上有若干碟子,把所有的碟子从B 杆移到A 杆上,每次只能移动一个碟子,大的碟子不能叠在小的碟子上面,把B 杆上的3个碟子全部移动倒A 杆上,最少需要移动的次数是 ( )A.4B.5C.6D.7 二.填空题:13.用秦九韶算法计算多项式641922401606012)(23456+-+-+-=x x x x x x x f 当2=x 时的值为 ________ .14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为(单位:吨)。

河北省魏县第一中学2220-2022学年高二数学22月月考新人教A版【会员独享】

河北省魏县第一中学2220-2022学年高二数学22月月考新人教A版【会员独享】

理科选修2-1月考试题一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.方程220x -+=的两个根可分别作为( ).A .一椭圆和一双曲线的离心率B .一椭圆和一抛物线的离心率C .两椭圆的离心率D .两双曲线的离心率 2.椭圆2281x y +=的焦点坐标是( ).A .(1,0)±B .(0,C .(4±D .(0,4± 3.下列命题中,假命题的个数为( ).①对所有正数p p <;②不存在实数x ,使4x <且2524x x +=; ③存在实数x ,使得111x -≤+≤且24x >; ④33>,A .1B .2C .3D .4 4.给出下列结论,其中正确的是( ).A .渐近线方程为(0,0)by x a b a=±>>的双曲线的标准方程一定是12222=-b y a xB .抛物线221x y -=的准线方程是21=xC .等轴双曲线的离心率是2D .椭圆22221(0,0)x y m n m n+=>>的焦点坐标是1(F ,5、若方程m x -252+my +162=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是 ( )A.(-16,25)B.(29,25) C.(-16,29) D.(29,+∞) 6.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e 等于( ).A .12-B .2C .12+D .22+7.已知(1,0),(1,0)A B -,点(,)C x y 12=,则||||AC BC +=( ).A .6B .4C .2D .不能确定8.抛物线px y 22=与直线04=-+y ax 交于,A B 两点,其中点A 的坐标为(1,2), 设抛物线的焦点为F ,则||||FA FB +等于( ). A .7 B .53 C .6 D .59.设a ∈R ,则a>1是a1<1 的 ( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件10 已知A 、B 、C 三点在曲线y =1,,4m (14)m <<,当△ABC的面积最大时,m 等于( ). A 3B49C 25 D23 11.给出四个命题:①若2320x x -+=,则1x =或2x =; ②若23x ≤<,则(2)(3)0x x --≤; ③若0x y ==,则220x y +=;④,x y N ∈,若x+y 是奇数,则,x y 中一个是奇数,一个是偶数,那么( ). A .①的逆命题为真 B .②的否命题为真 C .③的否命题为假 D .④的逆命题为假12.已知椭圆22221(0)x y a b a b +=>>的面积为ab π,若全集{(,)|,}U x y x R y R =∈∈,集合22{(,)|1},{(,)|2360}94x y A x y B x y x y =+≤=++>,则)(B C A u ⋂所表示的图形的面积为( ).A .6(2)π-B .3(2)π-C .2(2)π-D .332π-二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.一次函数22y x a =-+与252144a y x +=-+的图象的交点落在第一象限的充要条件是 .14、已知椭圆m x 2+n y 2=1与双曲线p x 2-qy 2=1(m ,n ,p ,q ∈R +)有共同的焦点F 1、F 2,P 是椭圆和双曲线的一个交点,则|PF 1|·|PF 2|=15.直线3y x =+与曲线1492=-xx y 的交点的个数是 个. 16.若点P 与点(4,0)F 的距离比它到直线:30l x +=的距离大1,则点P 的轨迹方程为__________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)在平面直角坐标系中有 F 1(0,5) F 2(0,-5) 两定点 ,已知某曲线上的任意一点P 满足条件|PF 1|—|PF 2|为定值,且曲线经过点M (82,9)求此曲线的方程。

2022-2023学年河北省邯郸市魏县一中高二(下)期中数学试卷【答案版】

2022-2023学年河北省邯郸市魏县一中高二(下)期中数学试卷【答案版】

2022-2023学年河北省邯郸市魏县一中高二(下)期中数学试卷一、单选题(每题5分,共50分)1.曲线y =√x 在点(4,2)处的切线方程为( ) A .x +4y +4=0B .x ﹣4y +4=0C .x +4y +12=0D .x ﹣4y +12=02.设a =√1.2,b =e 0.1,c =1+ln 1.1,则( ) A .a >b >cB .c >b >aC .b >a >cD .b >c >a3.已知f (x )=x 2﹣3x ,则f ′(0)=( ) A .0B .﹣3C .﹣2D .24.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x ﹣a 1)(x ﹣a 2)…(x ﹣a 8),则f ′(0)=( ) A .212B .29C .28D .265.已知函数f (x ),g (x )的定义域为R ,g '(x )为g (x )的导函数,且f (x )+g '(x )﹣10=0,f (x )﹣g '(4﹣x )﹣10=0,若g (x )为偶函数,则以下四个命题:①f (1)+f (3)=20;②f (4)=10;③f (﹣1)=f (﹣3);④f (2022)=10中一定成立的个数为( ) A .1B .2C .3D .46.若函数f (x )=x 3+ax 2+bx +c ,x ∈[﹣2,2]表示的曲线过原点,且在x =±1处的切线的斜率为﹣1,有以下命题:(1)f (x )的解析式为:f (x )=x 3﹣4x ,x ∈[﹣2,2] (2)f (x )的极值点有且仅有一个 (3)f (x )的最大值与最小值之和等于零 其中假命题个数为( ) A .0个B .1个C .2个D .3个7.下列三个命题:①ln5<√5ln2;②2√11<11;③3eln2<4√2,(e 为自然对数的底数),其中所有真命题的序号是( ) A .①②B .②C .③D .②③8.已知函数f (x )=x ﹣a sin x ,“a =2”是“x =π3是f (x )的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知P 与Q 分别为函数2x ﹣y +6=0与函数y =2lnx +2的图象上一点,则线段|PQ |的最小值为( ) A .65B .√5C .6√55D .610.已知f (x )=cos2x ,则lim Δx→0f(x+Δx)−f(x)Δx =( ) A .sin2xB .﹣sin2xC .2sin2xD .﹣2sin2x二、填空题(每空2分,共10分)11.已知函数f (x )=lnx ﹣nx +lnm +1(m >1),f '(x )是其导函数,若曲线y =f (x )的一条切线为直线l :2x ﹣y +1=0,则mn 的最小值为 .12.(x 2+1)(x −1x )5的展开式中含1x项的系数为 .13.函数f (x )=(x ﹣1)e x 的图象在点(0,f (0))处的切线方程为 . 14.已知函数f (x )=ax 3+3x 2﹣6ax +b 在x =2处取得极值9,则a +b = . 15.曲线y =x 3+1x在点(﹣1,a )处的切线方程为 . 三、解答题(16题10,17、19题每题12分,18题6分,共40分) 16.(10分)已知函数f(x)=xe x (x >0). (1)求函数f (x )的最大值;(2)若函数g (x )=f (x )﹣m 有两个零点,求实数m 的取值范围; (3)若不等式f 2(x )﹣af (x )>0仅有一个整数解,求实数a 的取值范围.17.(12分)(1)解不等式:3A x 3≤2A x+12+6A x 2; (2)求值C n 5−n+C n+19−n ;(3)已知1C 5m −1C 6m =710C 7m ,求C 8m.18.(6分)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,试设计一种选取方案,它是一个排列问题,还是一个组合问题? 19.(12分)在(2x 4+1x)n (n ∈N +)的展开式中. (1)若存在常数项,求n 的最小值; (2)①展开式中二项式系数和为1024; ②展开式中所有的系数和为243;③展开式中第4项和第5项的二项式系数相等在以上①②③中任选一项作答. (ⅰ)求n ;(ⅱ)若展开式中存在常数项,求常数项;若不存在说明理由.2022-2023学年河北省邯郸市魏县一中高二(下)期中数学试卷参考答案与试题解析一、单选题(每题5分,共50分)1.曲线y=√x在点(4,2)处的切线方程为()A.x+4y+4=0B.x﹣4y+4=0C.x+4y+12=0D.x﹣4y+12=0解:y=√x的导数为y′=12√x,可得过点(4,2)的切线斜率为k=1 4,则所求切线的方程为y﹣2=14(x﹣4),即x﹣4y+4=0,故选:B.2.设a=√1.2,b=e0.1,c=1+ln1.1,则()A.a>b>c B.c>b>a C.b>a>c D.b>c>a解:由c−a=1+ln1.1−√1+2×0.1,令f(x)=1+ln(1+x)−√1+2x且0<x<1,所以f′(x)=11+x−1+2x=√1+2x−1−x(1+x)1+2x,令g(x)=√1+2x−1−x且0<x<1,则g′(x)=11+2x−1<0,即g(x)递减,所以g(x)<g(0)=0,故f'(x)<0在(0,1)上恒成立,则f(x)在(0,1)上递减,所以f(x)<f(0)=0,即f(0.1)<0,则c<a,由b−a=e0.1−√1+2×0.1,令t(x)=e x−√1+2x且0<x<1,所以t′(x)=e x1√1+2x在(0,1)上递增,故t'(x)>t'(0)=0,故t(x)在(0,1)上递增,t(x)>t(0)=0,即t(0.1)>0,则b>a,综上,b>a>c.故选:C.3.已知f(x)=x2﹣3x,则f′(0)=()A.0B.﹣3C.﹣2D.2解:∵f(x)=x2﹣3x,∴f′(x)=2x﹣3,∴f′(0)=2×0﹣3=﹣3.故选:B.4.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=()A.212B.29C.28D.26解:∵f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8)=x[(x﹣a1)(x﹣a2)…(x﹣a8)],∴f′(x)=(x﹣a1)(x﹣a2)…(x﹣a8)+x[(x﹣a1)(x﹣a2)…(x﹣a8)]′,考虑到求导中f′(0),含有x项均取0,得:f′(0)=a1a2a3…a8=(a1a8)4=212.故选:A.5.已知函数f(x),g(x)的定义域为R,g'(x)为g(x)的导函数,且f(x)+g'(x)﹣10=0,f(x)﹣g'(4﹣x)﹣10=0,若g(x)为偶函数,则以下四个命题:①f(1)+f(3)=20;②f(4)=10;③f(﹣1)=f(﹣3);④f(2022)=10中一定成立的个数为()A.1B.2C.3D.4解:∵f(x)+g'(x)﹣10=0,f(x)﹣g'(4﹣x)﹣10=0,∴g'(4﹣x)=﹣g'(x),又g(x)是偶函数,g(﹣x)=g(x),两边求导得﹣g'(﹣x)=g'(x),∴g'(x)是奇函数,g'(x)=﹣g'(﹣x),g'(0)=0,∴g'(4﹣x)=﹣g'(x)=g'(﹣x),即g'(4+x)=g'(x),g'(x)是周期函数,4是它的一个周期,g'(4)=g'(0)=0,f(x)=10﹣g'(x),∴f(x)是周期函数,4是它的一个周期,f(0)=10﹣g'(0)=10,f(4)=f(0)=10,f(1)+f(3)=10﹣g'(1)+10﹣g'(3)=20+g'(﹣1)﹣g'(3)=20,g'(x)是周期为4的周期函数,又是奇函数,g'(﹣2)=﹣g'(2)=g'(2),g'(2)=g'(﹣2)=0,f(2)=10﹣g'(2)=10,f(2022)=f(505×4+2)=f(2)=10,g'(﹣1)=﹣g'(1),g'(﹣3)=g'(1),所以g'(﹣3)=﹣g'(﹣1),f(﹣3)=10﹣g'(﹣3),f(﹣1)=10﹣g'(﹣1),因此f(﹣3)+f(﹣1)=20,不能得出f(﹣3)=f(﹣1),一定正确的有①②④,共3个.故选:C.6.若函数f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲线过原点,且在x=±1处的切线的斜率为﹣1,有以下命题:(1)f(x)的解析式为:f(x)=x3﹣4x,x∈[﹣2,2](2)f (x )的极值点有且仅有一个 (3)f (x )的最大值与最小值之和等于零 其中假命题个数为( ) A .0个B .1个C .2个D .3个解:函数f (x )=x 3+ax 2+bx +c 的图象过原点,可得c =0;又f ′(x )=3x 2+2ax +b ,且f (x )在x =±1处的切线斜率均为﹣1, 则有 {3+2a +b =−13−2a +b =−1,解得a =0,b =﹣4.所以f (x )=x 3﹣4x ,f ′(x )=3x 2﹣4. (1)可见f (x )=x 3﹣4x ,因此(1)正确; (2)令f ′(x )=0,得x =±2√33.因此(2)不正确;所以f (x )在[−2√33,2√33]内递减,(3)f (x )的极大值为f (−2√33)=16√39,极小值为f ( 2√33)=−16√39,两端点处f (﹣2)=f (2)=0,所以f (x )的最大值为M =16√39,最小值为m =−16√39,则M +m =0,因此(3)正确. 故选:B .7.下列三个命题:①ln5<√5ln2;②2√11<11;③3eln2<4√2,(e 为自然对数的底数),其中所有真命题的序号是( ) A .①②B .②C .③D .②③解:构造函数f (x )=lnxx ,x >0,则f '(x )=1−lnxx 2, 令f '(x )=0得,x =e ,∴当x ∈(0,e )时,f '(x )>0,函数f (x )单调递增, 当x ∈(e ,+∞)时,f '(x )<0,函数f (x )单调递减, ∵2<√5<e ,∴ln22√5√5,化简得√5ln 2<ln 5,故①错误,∵e <√11<4,∴ln22=ln44<ln √1111,化简得:2√11<11,故②正确,∵当x =e 时,f (x )取得最大值1e,3eln2<4√2⇔4√2<1e,∴√22√2=4√21e,故③正确,∴真命题序号为②③,故选:D .8.已知函数f (x )=x ﹣a sin x ,“a =2”是“x =π3是f (x )的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:①若a =2时,f ′(x )=1﹣2cos x .当x ∈(0,π3)时,f ′(x )<0,当x ∈(π3,π2)时,f ′(x )>0,∴x =π3是f (x )的极小值点, ②若x =π3是f (x )的极小值点, 则f ′(π3)=1−12a =0.∴a =2,经检验知,a =2符合题意,综上,a =2是x =π3是f (x )的极小值点的充要条件, 故选:C .9.已知P 与Q 分别为函数2x ﹣y +6=0与函数y =2lnx +2的图象上一点,则线段|PQ |的最小值为( ) A .65B .√5C .6√55D .6解:设与直线2x ﹣y +6=0平行,且与函数y =2lnx +2相切的直线为l :2x ﹣y +m =0,由于函数y =2lnx +2的导数为y ′=2x ,令2x=2,求得x =1,故切点为(1,2),代入切线l 的方程得 2﹣2+m =0,故m =0, 故切线l 的方程为2x ﹣y =0.直线l 与直线2x ﹣y +6=0之间的距离为√4+1=6√55, 故线段|PQ |的最小值为6√55,故选:C .10.已知f (x )=cos2x ,则lim Δx→0f(x+Δx)−f(x)Δx =( )A .sin2xB .﹣sin2xC .2sin2xD .﹣2sin2x解:∵f (x )=cos2x , ∴f ′(x )=﹣2sin2x , ∴limΔx→0f(x+Δx)−f(x)Δx =f ′(x )=﹣2sin2x , 故选:D .二、填空题(每空2分,共10分)11.已知函数f(x)=lnx﹣nx+lnm+1(m>1),f'(x)是其导函数,若曲线y=f(x)的一条切线为直线l:2x﹣y+1=0,则mn的最小值为﹣e.解:函数f(x)=lnx﹣nx+lnm+1(m>1)的导数为f′(x)=1x−n,设切点为(x0,y0),可得切线的斜率为1x0−n,由切线l:2x﹣y+1=0可得1x0−n=2,即(n+2)x0=1,也即n=1x−2,又y0=lnx0﹣nx0+1+lnm=2x0+1,化为m=e x,所以mn=e(1x02−1x0)=e[(1x0−1)2﹣1],当x0=1即有m=e>1时,mn取得最小值﹣e.故答案为:﹣e.12.(x2+1)(x−1x )5的展开式中含1x项的系数为﹣5.解:(x2+1)(x−1x)5=x2(x−1x)5+(x−1x)5,(x−1x)5的展开式的通项为T r+1=C5r x5−r⋅(−1x)r=(−1)r⋅C5r x5−2r.令5﹣2r=﹣1,则r=3,(−1)3×C53=−10.令5﹣2r=﹣3,则r=4,(−1)4×C54=5,故(x2+1)(x−1x)5的展开式中含1x项的系数为﹣10+5=﹣5.故答案为:﹣5.13.函数f(x)=(x﹣1)e x的图象在点(0,f(0))处的切线方程为y=﹣1.解:由题意可得f'(x)=xe x,则f'(0)=0.因为f(0)=﹣1,所以所求切线方程为y+1=0,即y=﹣1.故答案为:y=﹣1.14.已知函数f(x)=ax3+3x2﹣6ax+b在x=2处取得极值9,则a+b=﹣13.解:f′(x)=3ax2+6x﹣6a,因为函数f(x)=ax3+3x2﹣6ax+b在x=2处取得极值9,所以{3a×22+6×2−6a=0a×23+3×22−6a×2+b=9,解得a=﹣2,b=﹣11,所以a+b=﹣13.故答案为:﹣13.15.曲线y=x3+1x在点(﹣1,a)处的切线方程为2x﹣y=0.解:由点(﹣1,a)在曲线y=x3+1x上,得a=(﹣1)3﹣1=﹣2,则切点为(﹣1,﹣2),由y=x3+1x,得y′=3x2−1x2,∴曲线y=x3+1x在点(﹣1,﹣2)处的切线的斜率k=y'|x=﹣1=2,故所求切线方程为y+2=2(x+1),即2x﹣y=0.故答案为:2x﹣y=0.三、解答题(16题10,17、19题每题12分,18题6分,共40分)16.(10分)已知函数f(x)=xe x(x>0).(1)求函数f(x)的最大值;(2)若函数g(x)=f(x)﹣m有两个零点,求实数m的取值范围;(3)若不等式f2(x)﹣af(x)>0仅有一个整数解,求实数a的取值范围.解:(1)函数f(x)=xe x(x>0),则f′(x)=1−x e x,当x∈(0,1)时,f′(x)>0,函数f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,函数f(x)单调递减,所以当x=1时,函数f(x)取得极大值,也是最大值为f(1)=1 e .(2)函数g(x)=f(x)﹣m有两个零点,相当于函数f(x)=xe x(x>0)的图象与直线y=m有两个交点.当x=0时,f(0)=0,x→+∞时,f(x)→0,结合(1)中结论,可得0<m<1 e .(3)因为f(x)>0,所以不等式f2(x)﹣af(x)>0仅有一个整数解,即f(x)>a只有一个整数解,因为f(x)的极大值为f(1)=1e,0<1<2,f(2)=2e2,所以当a∈[2e2,1e)时,f(x)>a只有一个整数解x=1,即当a∈[2e2,1e)时,不等式f2(x)﹣af(x)>0仅有一个整数解x=1.所以实数a的取值范围是[2e2,1e).17.(12分)(1)解不等式:3A x 3≤2A x+12+6A x 2; (2)求值C n 5−n+C n+19−n ;(3)已知1C 5m −1C 6m =710C 7m ,求C 8m.解:(1)易知x ≥3,x ∈N ,因为A x 3=x (x ﹣1)(x ﹣2),A x+12=(x +1)x ,A x 2=x (x ﹣1), 所以原不等式可化为3x (x ﹣1)(x ﹣2)≤2x (x +1)+6x (x ﹣l ),所以3≤x ≤5, 所以原不等式的解集为{3,4,5}.(2)由题意得{5−n ≤n5−n ≥09−n ≤n +19−n ≥0,解得4≤n ≤5,因为n ∈N ,所以n =4或n =5,当n =4时,原式=C 41+C 55=5; 当n =5时,原式=C 50+C 64=16.(3)由题意可知m 的取值范围为{m |0≤m ≤5,m ∈N }. 由已知得,m!(5−m)!5!−m!(6−m)!6!=7m!(7−m)!10×7!,即10m =(7﹣m )(6﹣m ),整理得m 2﹣23m +42=0,解得m =21(舍去)或m =2,所以C 8m =C 82=28.18.(6分)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,试设计一种选取方案,它是一个排列问题,还是一个组合问题? 解:分两类,每一类又分两步分别完成:第1类:A 类选修课3门中选1门,再从B 类选修课4门中选2门,将它们组合在一起,即为一种方案,它是一个组合问题.第2类:A 类选修课3门中选2门,再从B 类选修课4门中选1门,将它们组合在一起,即为一种方案,它是一个组合问题.19.(12分)在(2x 4+1x)n (n ∈N +)的展开式中. (1)若存在常数项,求n 的最小值; (2)①展开式中二项式系数和为1024; ②展开式中所有的系数和为243;③展开式中第4项和第5项的二项式系数相等在以上①②③中任选一项作答. (ⅰ)求n ;(ⅱ)若展开式中存在常数项,求常数项;若不存在说明理由.解:(1)T r+1=C n r (2x 4)n−r (1x)r =C n r 2n−r x 4n−5r,令4n ﹣5r =0,可得n =54r , 当r =4时,n 有最小正整数值5.(2)选①:(i )由题意得,2n =1024,n =10.(ii)(2x 4+1x )10展开式通项(1)T r+1=C 10r (2x 4)10−r −(1x )r =C 10r 210−r x 40−5r ,当40﹣5r =0时,r =8此时,常数项为:T 9=C 10822x 0=180选②:(i )由题意,令x =1,有3n =243,n =5.(ii)(2x 4+1x )5展开式通项(1)T r+1=C 5r (2x 4)5−r −(1x )r =C 5r 25−r x 20−5r ,当20﹣5r =0时,r =4.此时,常数项为:T 5=C 5421x 0=10. 选③:(i)C n 3=C n 4,n =7.(ii)(2x 4+1x )7展开式通项(1)T r+1=C 7r (2x 4)7−r −(1x )r =C 7r 27−r x 28−5r ,当28﹣5r =0时,r =5.6.此时,r 不是整数,因此无常数项.。

2010-2023历年河北省魏县一中高二期中考试理科数学

2010-2023历年河北省魏县一中高二期中考试理科数学

2010-2023历年河北省魏县一中高二期中考试理科数学第1卷一.参考题库(共10题)1.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取一个容量为45的样本,那么高一、高二、高三各年级抽取人数分别为(..)A.15,5,25B.15,15,15......C.10,5,30D.15,10,202.(本小题满分12分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令ξ表示走出迷宫所需的时间(1)求走出迷宫时恰好用了l小时的概率(2)求ξ的分布列和数学期望3.(本小题满分12分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.4.如图,用四种不同的颜色给图中的六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法共有(...)A.288种B.264种C.240种D.168种5.将个不同的小球放入个盒子中,则不同放法种数有(....)A......B....C....D.6.若则自然数(..)A.11B.12C.13D.147.已知其中是常数,计算=()A.0B.1C.-1D.2508.(本小题满分10分)甲、乙两人做出拳游戏(锤子、剪刀、布),求:(1)平局的概率;(2)甲赢的概率;9.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(-2≤ξ≤2)=()A.0.477B.0.628C.0.954D.0.97710.(本小题满分12分)A、B两个试验方案在某科学试验中成功的概率相同,已知A、B两个方案至少一个成功的概率为0.36,(1)求两个方案均获成功的概率;(2)设试验成功的方案的个数为随机变量ξ,求ξ的分布列及数学期望第1卷参考答案一.参考题库1.参考答案:D2.参考答案:解:(1)P=1/3(2)的所有可能取值为:1,3,4,6,所以的分布列为:134[来源:学&科&网]6(2)(小时)[3.参考答案:解:(1)画茎叶图,中间数为数据的十位数从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中位数是35,甲的中位数是33.因此乙发挥比较稳定,总体得分情况比甲好.(2)利用科学计算器:=33,=33;=3.96,=3.56;甲的中位数是33,乙的中位数是35. 综合比较选乙参加比赛较为合适4.参考答案:B本题主要考查排列组合的基础知识与分类讨论思想,属于难题。

魏县一中2018-2019学年下学期高二期中数学模拟题

魏县一中2018-2019学年下学期高二期中数学模拟题

魏县一中2018-2019学年下学期高二期中数学模拟题一、选择题1. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为( )A. B . C. D. 2. “互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶 段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调 查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为( ) A .10 B .20 C .30 D .40 3. 垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能4. 已知复数11i z a =+,232i z =+,a ∈R ,i 是虚数单位,若12z z 是实数,则a =( ) A . 23-B .13-C .13D .235. 某几何体的三视图如图所示,则它的表面积为( )A. B. C. D.6. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 7. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A.4πB. C. 5πD. 2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.8. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距; ②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小. 其中正确的说法的个数是( ) A .1B .2C .3D .49. 某三棱锥的三视图如图所示,该三棱锥的表面积是 A、28+ B、30+C、56+ D 、60+10.已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个11.“3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.12.若直线2y x =上存在点(,)x y 满足约束条件30,230,,x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩则实数m 的最大值为 A 、1- B 、 C 、32D 、2 二、填空题13.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .14.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R.若=,则a+3b 的值为 .15.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ . 16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.18.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.三、解答题19.设f (x )=x 2﹣ax+2.当x ∈,使得关于x 的方程f (x )﹣tf (2a )=0有三个不相等的实数根,求实数t 的取值范围.20.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x)>恒成立,求实数k 的取值范围.21.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y =的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.22.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .23..(1)求证:(2),若.24.如图,直四棱柱ABCD﹣A1B1C1D1的底面是等腰梯形,AB=CD=AD=1,BC=2,E,M,N分别是所在棱的中点.(1)证明:平面MNE⊥平面D1DE;(2)证明:MN∥平面D1DE.魏县一中2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1. 【答案】C 【解析】考点:平面图形的直观图. 2. 【答案】B 【解析】试题分析:设从青年人抽取的人数为800,,2050600600800x x x ∴=∴=++,故选B . 考点:分层抽样. 3. 【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面. 故选D【点评】本题主要考查在空间内两条直线的位置关系.4. 【答案】A【解析】1232(32)i z z a a =-++, ∵12z z 是实数,∴320a +=,∴23a =-. 5. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.6. 【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差+=(D点是AB的中点),另外,要选好基底OA OB BAOA OB OD-=,这是一个易错点,两个向量的和2AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.7.【答案】B8.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.故选:B.【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.9.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。

魏县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

魏县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

第 2 页,共 17 页
15.已知 tan( ) 3 , n
.
2 2 2
16.已知△ ABC 的面积为 S ,三内角 A , B , C 的对边分别为,,.若 4 S a b c , 则 sin C cos( B
) 取最大值时 C . 4 17.直线 x 2 y t 0 与抛物线 y 2 16 x 交于 A , B 两点,且与 x 轴负半轴相交,若 O 为坐标原点,则
20 2 .故本题答案选 C. 30 3
第 7 页,共 17 页
【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大. 5. 【答案】D 【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2, ∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2, ∵(y﹣2)3+2y+sin(y﹣2)=6, ∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2, 设 f(t)=t3+2t+sint, 则 f(t)为奇函数,且 f'(t)=3t2+2+cost>0, 即函数 f(t)单调递增. 由题意可知 f(x﹣2)=﹣2,f(y﹣2)=2, 即 f(x﹣2)+f(y﹣2)=2﹣2=0, 即 f(x﹣2)=﹣f(y﹣2)=f(2﹣y), ∵函数 f(t)单调递增 ∴x﹣2=2﹣y, 即 x+y=4, 故选:D. 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数 f(t)是解决本题的关键,综合考查了函数的性 质. 6. 【答案】A 【解析】解:根据题意,得; = = = 又∵ + ﹣ = + ( + + +x , +y , + )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学周考(2)
命题人:刘金良 审题人:李永科
一、选择题(60分)
1.已知数列a ,-15,b ,c ,45是等差数列,则a+b+c 的值是( ) A .-5 B .0 C .5 D .10 2. 在等差数列{a n }中,若a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9
的值为
( )
A 30
B 27
C 24
D 21
3.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则
△ABC 的

状为
( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .不确定 4.

ABC
∆,


,,A B C



边长



,,.a b c 1
sin cos sin cos ,2a B C c B A b +=,a b B >∠=且则 ( )
A .6π
B .3π
C .23π
D .56π
5.一个直角三角形的三条边成等差数列,则它的最短边与最长边的比为 ( ) A 4∶5 B 5∶13 C 3∶5 D 12∶13 6.首项为24-的等差数列从第10项起开始为正数,则公差d 的取值范围是( )
A.
83d >
B. 3d <
C. 833d ≤<
D. 8
3
3d <≤
( )
A .45
B .48
C .52
D .55
8.一个凸n 边形内角的度数成等差数列,公差为5°,且最大角为160°,则n 的值为 ( )
A 9
B 12
C 16
D 9或16
9.若关于x 的方程x 2-x+a=0和x 2
-x+b=0(a b ≠)的四个根可以组成首项为41
的等差数
列,则a+b 的值为
( )
A 83
B 2411
C 2413
D 7231
10.若数列{a n }为等差数列,公差为21
,且S 100=145,则a 2+a 4……+a 100的值为 ( ) A 60 B 85 C 2145
D 其它值
11.若数列{a n }由a 1=2,a n+1=a n +2n(n 1≥)确定,则a 100的值为
( )
A 9900
B 9902
C 9904
D 9906 12.若
a 1,a 2, ……,a 2n+1成等差数列,奇数项的和为75,偶数项的和为60,则该
数列的项数为 ( )
A 4
B 5
C 9
D 11
二、填空题(共20分)
13.在等差数列{a n }中,S 4 = 6,S 8 = 20,则S 16 = 。

14.设ABC ∆的内角,,A B C 所对边
的长分别为,,a b c .若2b c a +=,则
3sin 5sin ,A B =则角C =_____.
15.成等差数列的四个数之和为26,第一个数与第四个数积为22,则这四个数
为 。

16.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,
sin 3BAC AB AD ∠==则BD
的长为__________
三、解答题(共50分)
17.(12) 已知等差数列{n
a }中,
{
n
a }的 通项公式
.
18.(12)在
ABC ∆中,角
,,A B C 的对边分别为,,a b c ,且
2
3
2cos cos sin()sin cos()25A B B A B B A C ---++=-.
(Ⅰ)求cos A 的值;
(Ⅱ)若a =5b =,求向量BA 在BC
方向上的投影.
,
0 , 16 6
4 7 3 = + - = a a a a
19.(12)在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c .已知
()cos23cos 1
A B C -+=.
(I)求角A 的大小;
(II)若ABC ∆的面积S =,5b =,求sin sin B C 的值.
20.(14)已知等差数列{a n },a 1=29,S 10=S 20. (I)求数列{a n }的通项公式.
(II)问这个数列的前多少项的和最大?并求最大值.。

相关文档
最新文档