二次函数课件.ppt

合集下载

《二次函数》课件

《二次函数》课件

一二
元次
二函
次数
方与

抛物线 y=ax2+bx+c(a≠0)与x轴的公共点的横坐
标即一元二次方程ax2+bx+c =0的根
抛物线
与x轴
的公共
点情况
有两个公共点⇔∆> 0
有一个公共点⇔∆= 0
没有公共点⇔∆< 0
利用图象法求一元二次方程的根
抛物线
拓 与直线
展 的公共
点个数
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标
羊圈的面积S=x(40-2x)=-2x2+40x
=-2(x-10)2+200(0<x<20).
∴当x=10时,S有最大值,此时S=200.
∵200>187.5,∴张大伯的设计不合理.
应当设计羊圈与墙垂直的两边长为10 m,
与墙平行的一边长为20m.
3.一家电脑公司推出一款新型电脑,投放市场以来3个
2
2
1 2 1
3 2
2
x - (2x-30) = − x +60x-450.
2
2
2
3.如图,在梯形ABCD中,AB∥DC,∠ABC=90°,
∠A=45°,AB=30,BC=x,其中15<x<30.作
DE⊥AB于点E,将△ADE沿直线DE折叠,点A落在F
处,DF交BC于点G.
(3) 当x为何值时,S有最大值?并求出这个最大值.
(1) 请你求出矩形羊圈的面积;
解:(1)由题意,得羊圈的长为25 m,
宽为(40-25)÷2=7.5(m).
故羊圈的面积为25×7.5=187.5(m2)

二次函数ppt课件

二次函数ppt课件
想一想 自变量的取值范围是 x>6 .
典 例3 如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形 例 菜园ABCD,设AB边长为x米,求菜园的面积y(单位:平方米)与x(单位:米) 精 的函数关系式.
析 解:∵AB边长为x米.
D
C
A
B
在根据实际问题列二次函数关系式时,要注意自变量的取值范围.
第二十二章 二次函数
22.1.1二次函数
视 频
观察都匀 绿博园音
引 乐喷泉视
入 频有时会
形成一条
条曲
线.这些
曲线能否
用函数关
系式表示?
复 1.什么是函数? 习 一般地,在一个变化的过程中,如果有两个变量x与y,并且对于x 巩 的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是 固 自变量,y是x的函数.
典 例4 某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产 例 品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但 精 一天产量减少5件.若生产第x档次的产品一天的总利润为y元(其中x为正整数, 析 且1≤x≤10),求出y关于x的函数关系式.
解:∵第一档次的产品一天能生产95件,每件利润6元,每提高一 个档次,每件利润加2元,但一天产量减少5件,
课 堂 小 结
作业设计
必做:课本41页1、2题
选做: 若函数
是二次函数,求:
(1)求a的值. (2)求函数关系式. (3)当x=-2时,y的值是多少?
共勉:
走进名家,乐享数学
一切问题都可以转化为数学问题,
一切数学问题都可以转化为代数问题,
而一切代数问题又可以转化为函数问题,
因此,一旦解决了函数问题,

二次函数的应用课件ppt课件ppt课件ppt

二次函数的应用课件ppt课件ppt课件ppt
要点一
导数在二次函数中的应用
利用导数研究二次函数的单调性、极值和拐点,解决实际 问题。
要点二
定积分在二次函数中的应用
利用定积分计算二次函数的面积,解决与面积相关的实际 问题。
THANKS
感谢观看
详细描述
二次函数是数学中一类重要的函数,其形式由参数$a$、$b$ 和$c$决定。当$a > 0$时,函数图像开口向上;当$a < 0$ 时,函数图像开口向下。
二次函数的图像
总结词
二次函数的图像是一个抛物线, 其形状由参数$a$、$b$和$c$决 定。
详细描述
二次函数的图像是一个抛物线, 其顶点的位置由参数$b$和$c$决 定,而开口的大小和方向则由参 数$a$决定。
在生产和生活中,经常需要解决诸如利润最大化、成本最小化等最优化问题。利 用二次函数开口方向和顶点坐标的性质,可以快速找到最优解,为决策提供依据 。
利用二次函数解决周期性问题
总结词
利用二次函数的对称性和周期性,解 决具有周期性规律的问题。
详细描述
在物理学、工程学和生物学等领域, 许多现象具有周期性规律。通过将实 际问题转化为二次函数模型,可以更 好地理解和预测这些周期性现象。
利用二次函数解决面积问题
总结词
利用二次函数与坐标轴的交点,解决 与面积相关的实际问题。
详细描述
在几何学和实际生活中,经常需要计 算图形的面积。通过将问题转化为求 二次函数与坐标轴围成的面积,可以 简化计算过程,提高解决问题的效率 。
04
如何提高二次函数的应用能力
掌握基本概念和性质
理解二次函数的一般 形式: $y=ax^2+bx+c$, 其中$a neq 0$。

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

《二次函数》优质PPT课件(共65页ppt)

《二次函数》优质PPT课件(共65页ppt)

抛物线
y 2x 32 1
2
y 1 x 12 5
3
y 2x 32 5
y 0.5x 12
y 3 x2 1 4
y 2x 22 5
y 0.5x 42 2 y 3 x 32
4
开口方向
向上 向下 向上 向下 向下 向上 向上 向下
对称轴
直线x=-3 直线x=-1 直线x=3 直线x=-1 直线x=0 直线x=2 直线x=-4 直线x=3
__10_0___x棵橙子树,这时平均每棵树结_______个橙6子00。 5x
(3)如果果园橙子的总产量为y个,那么y与x
之间的关系式为_____y____6_0_0__5_x_。100 x
y 5x2 100 x 60000
y 5x2 100 x 60000 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?
-2
-1
2
4
6
-2
y x2
-3
-4
-5
1.二次函数所描述的关系 2.结识抛物线 3.刹车距离与二次函数 4.二次函数的图象 5.用三种方式表示二次函数 6.何时获得最大利润 7.最大面积是多少 8.二次函数与一元二次方程
影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系 数。
有研究表明,晴天在某段公路上行驶时,速度为v(km/h)的 汽车的刹车距离s(m)可以由公
x
1 2 3 4 5 6 7 8 9 10 11 12 13 14

y 个
60095
60180
60255
60320
60375
60420
60455
60480
60495
60500

高中二次函数 课件ppt课件ppt课件ppt

高中二次函数 课件ppt课件ppt课件ppt
翻折变换是指将二次函数的图像在x轴或y轴上进行翻转。
当函数图像关于x轴进行翻折时,对应的函数表达式变为$y = -f(x)$;关 于y轴进行翻折时,对应的函数表达式变为$y = f(-x)$。
在翻折变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性 不变。
伸缩变换
伸缩变换是指将二次函数的图像在x轴或y轴上进行缩放。
详细描述
二次函数在代数中可以用来解决方程的根的问题,在几何 中可以用来研究图形的性质和关系,在概率统计中可以用 来描述随机变量的分布等。
THANK YOU
当函数图像在x轴方向上缩小a倍时,对应的函数表达式变为$y = f(frac{1}{a}x)$; 在x轴方向上扩大a倍时,对应的函数表达式变为$y = f(ax)$。
在伸缩变换过程中,函数的值域和定义域会发生改变,但函数的奇偶性和周期性不 变。
04
二次函数的解法
配方法
总结词
通过配方将二次函数转化为完全平方形式,从而简化求解过程。
顶点式二次函数解析式
总结词
顶点式二次函数解析式是 $y = a(x h)^2 + k$,其中 $(h, k)$ 是抛物线 的顶点。
详细描述
顶点式二次函数解析式表示一个以 $(h, k)$ 为顶点的开口抛物线,其开 口方向同样由系数 $a$ 决定。顶点坐 标 $(h, k)$ 可以用来确定抛物线的位 置和形状。
详细描述
公式法适用于求解一般形式的二次方程 $ax^2 + bx + c = 0$。根据判别式 $Delta = b^2 - 4ac$ 的值,可以 将二次方程的解表示为 $x_1, x_2 = frac{-b pm sqrt{Delta}}{2a}$。当 $Delta > 0$ 时,方程有两个实根;当 $Delta = 0$ 时,方程有两个相同的实根;当 $Delta < 0$ 时,方程没有实根。

二次函数的图像和性质PPT课件(共21张PPT)

二次函数的图像和性质PPT课件(共21张PPT)

相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.

二次函数ppt课件

二次函数ppt课件
22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾

观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×

×


例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

二次函数说课ppt课件ppt课件ppt课件

二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。

初三二次函数课件ppt课件

初三二次函数课件ppt课件

02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。

二次函数图ppt课件

二次函数图ppt课件

02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件

二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件

CONTENCT

• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答

二次函数PPT课件

二次函数PPT课件

典题精讲
3.某商场以每件30元的价格购进一种商品,试销中 发现:这种商品的销售量m(件)与每件商品的销 售价x(元)满足一次函数关系m=162-3x,试写出 商场销售这种商品的日销售利润y(元)与每件商 品的销售价x(元)之间的函数关系式,y是x的二 次函数吗?
解:由题意分析可知,该商品每件的利润为(x-30)元。 则依题意可得: y=(162-3x )(x-30),即y=-3x²+252x-4860 由此可知y是x的二次函数
典题精讲
4.如图,用同样规格的正方形白色瓷砖铺设矩形地面, 请视察下列图形并解答有关问题:
n=1
n=2
n=3
(1)在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖
列共有(n+2)块瓷砖(均用含n的代数式表示);
(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中 的n的函数关系式 y=(n+3)(n+2),即y=n²+5n+6 .
y是x的函数吗?
举例讲授
问题2
n个球队参加比赛,每两对之间进行一场比赛。
比赛的场次数m与球队n有什么关系?这就是说,每个
队要与其他 n个-1球队各比赛一场,整个比赛场次

,这里m是n的函数吗?
举例讲授
问题3 某种产品现在的年产量为20t,计划今后两年
增加产量.如果每年都比上一年的产量增加x倍,那 么两年后这种产品的年产量y将随计划所定的x值而 确定,y与x之间的关系应怎样表示?
22.1.1 二次函数
学习目标
1.结合具体情境体会二次函数的意义,理 解二次函数的有关概念.
2.能够表示简单变量之间的二次函数关系.
复习导入

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

《二次函数》PPT课件

《二次函数》PPT课件

一次函数 y=kx+b(k≠0)
正比例函数
y=kx (k≠0)
一条直线
反比例函数 y k (k 0).
双曲线
x
课时导入
导入新知 正方体的六个面是全等的正方形(如图),设正 方体的棱长为x,表面积为y. 显然,对于x的 每一个值,y都有一个对应值,即y是x的函数, 它们的具体关系可以表示为 y=6x2.
课堂小结
二次函数
(2)确定二次函数的各项系数及常数项时,要把函 数关系式化为一般形式.
(3)二次项系数不为0.
感悟新知
知2-练
方法点拨:在实际问题中建立二次函数模型时,关键 要找出两个变量之间的数量关系,用类似建立一元二 次方程模型的方法,借助方程思想求出二次函数的关 系式.
解:(1) y=300+30 ( 60-x ) =-30x+2 100 ( 40 ≤ x ≤ 60 ). ( 2 ) W= ( x-40 ) ( -30x+2 100 ) =-30x2+3 300x-84 000.
课时导入
这个函数与我们学过的函数不同,其中自变 量x的最高次数是2.
这类函数具有哪些性质呢?这就是本章要学 习的二次函数.
感悟新知
知识点 1 二次函数的定义
问题1
知1-讲
n个球队参加比赛,每两队之间进行一场比赛,
比赛的场次数m与球队数n有什么关系?
比赛的场次数
m= 1 n(n-1),
即m=
1
2 n2-
感悟新知
总结
知2-讲
1. 建立二次函数模型的一般步骤: (1)审清题意:找出问题中的已知量(常量)和
未知量(变量),把问题中的文字或图形语言转化 成数学语言.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = 20(1 + x)2
即: y = 20x2 + 40x + 20
问题3:
多边形的对角线总数d与边数n有什么关系?
由图可以想出,如果多边形有n条边,那么它有 n 个顶点,
从一个顶点出发,连接与这点不相邻的各顶点,可以作
(n-3)条对角线
d = 1 n(n - 3)
M
N
2
即 d = 1 n2 - 3 n 22
(1)m取什么值时,此函数是正比例函数?
(2) m取什么值时,此函数是反比例函数?
(3) m取什么值时,此函数是二次函数?
解:(1)当m2-7=1且m+3≠0即m=± 2 2 时是正
比例函数。
(2)当m2-7=-1且m+3≠0即m=± 6 时是反比例函
数。 (3)当m2-7=2且m+3≠0即m=3时是二次函数。
观察思考:
以上问题中的各式有什么共同点?
y=6x2
d
=
1 2
n2
-
3 2
n
y = 20x2 +40x+20
归纳总结:
概念: 一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0) 的函数叫做二次函数。其中x是自变量。
ax²叫做二次项,a为二次项系数,
bx叫做一次项,b为一次项系数,
c为常数项。
26.1.1 二次函数(1)
基础回顾 什么叫函数?
在某变化过程中的两个变量x、y,当变量x 在某个范围内取一个确定的值,y总有唯一的 值与它对应。
这样的两个变量之间的关系我们把它叫 做函数关系。
对于上述变量x 、y,我们把y叫x的函数。 x叫自变量, y叫应变量。
目前,我们已经学习了那几种类型的函数?
(1) Байду номын сангаас=-x2+58x-112
(2)y=πx2 (3) y=x(1+x) (4)s=3-2t² (5) y=3(x-1)²+1
知识运用
1、m取何值时,函数y=(m+1)xm2 - 2m-1
+ m(m - 3)x + m 是二次函数?
解:由题意得
m2—2m-1=2 m+1 ≠0
∴m=3
2、y=(m+3)x m2-7
注意: y=ax²+bx+c(a≠0)
(1)等号左边是变量y,右边是关于自变量 x的整式。
(2)a,b,c为常数,且a 0
(3 )x最高次数为2次,可以 没有一次项和常数项,但不能没有二次项。
二次函数的一般形式: y=a x ²+b x +c (其中a、b、c是常数,a≠0)
二次函数的特殊形式: 当c=0时, y=a x ²+bx 当b=0时, y=ax²+c 当b=0,c=0时, y=ax²
其中包括正比例函数 y=kx(k≠0), 反比例函数y= k (k≠0) ,
x 二次函数y=ax2+bx+c(a≠0)。 可以发现,这些函数的名称都形象地反映了函 数表达式与自变量的关系。
辨一辨
1.下列函数中,哪些是二次函数?
(1) y=3(x-1)2+1 (是) (2) y = 1 - x(不是)
x2
(3) s = 3-2t2(是) (4) y=(x+3)2-x2(不是)
(5) y = 3x3 + 2x(2 不是) (6) y = x-2 + x(2 不是)
说出下列二次函数的二次项系数、一次项系 数、常数项。
1.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
S=2πr2 +2πr2 即S=4πr2
2. n支球队参加比赛,每两队之间进行
一场比赛,写出比赛的场次数 m与球队
数 n 之间的关系式.
m = 1 n(n -1)
2

m = 1 n2 - 1 n 22
现在我们学习过的函数有: 一次函数y=kx+b (k ≠0),
变 量 之 间函 的数 关 系
一次函数 反比例函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0) y= k (k≠0)
x
二次函数
游戏准备
如图,正方形的棱长为x, 它的表面积y可以表
示为 y=6x2
问题2:
某工厂一种产品现在的年产量是20万件, 计划今后两年增加产量。如果每年比上一 年产量的增长率都为x ,那么两年后这种 产品的产量为y万件,请表示y与x之间的 关系。
相关文档
最新文档