(完整版)初一数学相交线练习题
七年级下数学相交线练习题含答案
9.如图,与 是同旁内角的角有()
A. 个B. 个C. 个D. 个
10.如图,直线 、 被直线 所截,则 与 是()
A.同位角B.同旁内角C.内错角D.对顶角
11.如图, , ,若 ,则 ________.
12.如图, , 为垂足, , 为垂足,那么点 到 的距离是线段________的长,点 到 的距离是线段________的长,点 到 的距离是线段________的长, 的依据是________.
【解答】
此题暂无解答
24.
【答案】
解: , ,
.
与 是对顶角,
.
, ,
,
,
,
.
,
.
【考点】
邻补角
对顶角
【解析】
此题暂无解析
【解答】
此题暂无解答
25.
【答案】
解:如图:
【考点】
同位角、内错角、同旁内角
【解析】
此题暂无解析
【解答】
此题暂无解答
26.
【答案】
∵ = , = ,
∴ = = ,
∴ = = ,
∴ = = .
(1)当五条直线相交时交点最多会有多少个?
(2)猜想 条直线相交时最多有几个交点?(用含 的代数式表示)
(3)算一算,同一平面内 条直线最多有多少个?
(4)平面上有 条直线,无任何 条交于一点( 条以上交于一点也无),也无重合,它们会出现 个交点吗?如果能给出一个画法;如果不能请说明理由.
39.如图所示,某自来水厂计划把河流 中的水引到蓄水池 中,问从河岸 的何处开渠,才能使所开的渠道最短?画图表示,并说明设计的理由.
【考点】
初一数学相交线与平行线28道典型题(含 答案和解析)
初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。
相交线》练习题(含答案)
相交线》练习题(含答案)5.1.1 相交线1.下列说法中,正确的是(。
B。
)。
A。
相等的两个角是对顶角B。
有一条公共边的两个角是邻补角C。
有公共顶点的两个角是对顶角D。
一条直线与端点在这条直线上的一条射线组成的两个角是邻补角2.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠1的对顶角是∠3.3.如图是一把剪刀,其中∠1=40°,则∠2=140°,其理由是邻补角互补。
4.如图,O是直线AB上一点,∠COB=30°,则∠1=150°。
5.如图所示,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD=35°。
6.如图所示,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC的度数为(。
A。
)。
A。
62°B。
118°C。
72°D。
59°7.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于(。
C。
)。
A。
90°B。
120°C。
180°D。
360°8.如图所示,AB,CD,EF交于点O,∠1=20°,∠2=60°,求∠BOC的度数为80°。
9.如图所示,l1,l2,l3交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数为72°。
10.探究题:1) 三条直线相交,最少有一个交点,最多有三个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;2) 四条直线相交,最少有四个交点,最多有十个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数。
人教版七年级数学下册第五章相交线练习试题(含答案) (20)
人教版七年级数学下册第五章相交线练习试题(含答案) 如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1=25°,求∠2的度数?【答案】65°【解析】试题分析:直接利用邻补角的定义得出∠BOE=65°,再根据对顶角相等,即可得出答案.试题解析:∵直线AB,CD,EF相交于点O,且AB⊥CD∴∠BOC=90°,∵∠1=25°,∴∠BOE=65°,∴∠2=∠BOE=65°.92.如图,直线AB,CD相交于点O,且∠1=∠2.(1)指出∠1的对顶角;(2)若∠2和∠3的度数比是2:5,求∠4和∠AOC的度数.【答案】(1)∠1的对顶角是∠AOC;(2)∠AOC=40°.【解析】分析:(1)根据对顶角的定义解答;(2)先求出∠1、∠2、∠3的比,再根据平角的定义列式求出这三个角,再根据对顶角相等求解.详解:(1)∠1的对顶角是∠AOC;(2)∵∠1=∠2,∠2和∠3的度数比是2:5,∴∠1:∠2:∠3=2:2:5,设∠2=2x,则∠1=2x,∠3=5x,由题意得,2x+2x+5x=180∘,解得x=20,所以,∠1=40∘,∠2=40∘,∠3=100∘,根据对顶角相等,∠4=∠BOC=40∘,∠AOC=∠1=40∘.点睛:考查对顶角的概念以及平角的概念,熟练掌握对顶角的性质,平角的性质是解题的关键.93.如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.【答案】(1)54°;(2)120°【解析】试题分析:(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数.试题解析:解:(1)∠∠AOC=36°,∠COE=90°,∠∠BOE=180°﹣∠AOC﹣∠COE=54°;=30°,∠∠AOC=30°,(2)∠∠BOD:∠BOC=1:5,∠∠BOD=180°×115∠∠AOE=30°+90°=120°.94.如图,△ABC中,∠A+∠B=900.⑴根据要求画图:①过点C画直线MN∥AB②过点C画AB的垂线,交AB于点D.⑵请在⑴的基础上回答下列问题:①已知∠B+∠DCB=900,则∠A与∠DCB的大小关系为__________,理由是__________.②图中线段_________的长度表示点A到直线CD的距离.【答案】(1)作图见解析(2)①;∠A=∠DCB;同角的余角相等;②AD 【解析】【分析】【详解】试题分析:(1)根据题意画出MN∠AB,CD∠AB于D;(2)①根据同角的余角相等可判断∠A=∠DCB;②根据点到直线的距离的定义求解.试题解析:解:(1)①如图,MN为所求;②如图,CD为所求;(2)①∠∠B+∠DCB=90°,∠B+∠A=90°,∠∠A=∠DCB;②线段AD长度表示点A到直线CD的距离.故答案为∠A=∠DCB,同角的余角相等;AD.95.如图所示,射线OM与直线交于点O,OM平分∠AOB,求∠AOM 度数,并用符号表示OM与AB的位置关系.【答案】90°.【解析】试题分析:根据角平分线定义得出∠AOM=12∠AOB,代入求出∠AOM=90°,根据垂直定义得出即可.试题解析:∵∠AOB=180°,OM平分∠AOB,∴∠AOM=12∠AOB=12×180°=90°,∴OM⊥AB.96.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)【答案】详见解析.【解析】试题分析:(1)过点C作AB的平行线.(2)过点C作CD垂直于AB交AB于点D.根据垂线段最短,可得CD长度最小,量出CD的长度,然后按比例尺求出实际的距离.试题解析:如图:(1)过点C画一平行线平行于AB.(2)过点C作CD垂直于AB交AB于点D.然后用尺子量CD的长度,再按1:2000的比例求得实际距离即可.经测量0.9,=CD cm⨯==cm m0.92000180018.97.已知:如图所示,∠1=∠2,∠3=∠4,GF ∠AB 于G 点,那么CD 与AB 是否互相垂直?试判断并说明理由.【答案】相互垂直,证明详见解析.【解析】试题分析:首先由GF AB ⊥可得2490∠+∠=︒, 又因为1234∠=∠∠=∠,, 得到1390∠+∠=︒, 由此即可得到CD 与AB 的位置关系.试题解析:相互垂直.理由:∵GF AB ⊥∴2490∠+∠=︒,而1234∠=∠∠=∠,,∴1390∠+∠=︒,CD AB ∴⊥.98.如图,将一副三角尺的直角顶点重合在一起.()1若DOB ∠与DOA ∠的比是2:11,求BOC ∠的度数.()2若叠合所成的(090)BOC n n ∠=<<,则AOD ∠的补角的度数与BOC ∠的度数之比是多少?【答案】(1)70°;(2)1:1.【解析】试题分析:根据条件可知∠AOB =∠COD =90°,并且∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,根据这个关系就可以求解.试题解析:解:(1)设∠DOB =2x °,则∠DOA =11x °.∵∠AOB =∠COD ,∴∠AOC =∠DOB =2x °,∠BOC =7x °.又∵∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,则得方程:11x =180﹣7x ,解得:x =10,∴∠BOC =70°.(2)∵∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC ,∴∠AOD 与∠BOC 互补,则∠AOD 的补角等于∠BOC .故∠AOD 的补角的度数与∠BOC 的度数之比是1:1.点睛:正确认识∠AOD =∠AOB +∠COD ﹣∠BOC =180°﹣∠BOC 这一个关系是解题的关键,这是一个常用的关系,需熟记.99.如图,//30100CE AB B AOB ∠=∠=,,,求C ∠和ODE ∠的度数.【答案】30°,130°.【解析】试题分析:由已知能得出∠COD =∠AOB =100°(对顶角相等),再由CE ∥AB ,可求出∠C =∠B =30°,根据三角形外角定理可求出∠ODE 的度数.试题解析:解:∵CE ∥AB ,∴∠C =∠B =30°.∠COD =∠AOB =100°(对顶角相等),∠ODE =∠C +∠COD =30°+100°=130°(三角形外角和定理).点睛:本题考查了的知识点是平行线的性质、对顶角及三角形外角定理,解题的关键是由平行线的性质和对顶角求出∠C 和∠ODE 的度数.100.如图,直线AB 与CD 相交于点O OP ,是BOC ∠的平分线,OF CD ⊥,如果40AOD ∠=.求:()1COP ∠的度数;()2BOF ∠的度数.【答案】(1)20°;(2)50°【解析】试题分析:(1)先由对顶角相等得出∠BOC =∠AOD =40°,再根据角平分线定义即可求解;(2)先由OF ⊥CD 得出∠COF =90°,再根据∠BOF =∠COF ﹣∠BOC 即可求解.试题解析:解:(1)∵直线AB 与CD 相交于点O ,∴∠BOC =∠AOD =40°.∵OP 是∠BOC 的平分线,∴∠COP =12∠BOC =20°; (2)∵OF ⊥CD ,∴∠COF =90°,∴∠BOF =∠COF ﹣∠BOC =90°﹣40°=50°.点睛:本题考查了对顶角的性质,垂直的定义,角平分线的定义,是基础知识,需熟练掌握.。
(完整word版)人教版初中数学七年级下册相交线练习题附参考答案
人教版初中数学七年级下册相交线练习题附参考答案1.在两条直线相交所成的四个角中,( )不能判定这两条直线垂直A.对顶角互补 B.四对邻补角 C.三个角相等 D.邻补角相等答案:B说明:两条直线相交,已有四对邻补角,因此,选项B不足以判定这两条直线垂直;而根据垂直的定义,对顶角、邻补角的性质不难判断其它选项的说法都可以判定这两条直线垂直;所以答案为B.2.如图,在三角形ABC中,AC⊥BC,CD⊥AB于D,则下列关系不成立的是( )A.AB>AC>ADB.AB>BC>CDC.AC+BC>ABD.AC>CD>BC答案:D说明:由垂线段最短的性质,可知AB>AC,AB>BC,AC>AD,BC>CD都成立,即选项A、B中的关系都是正确的;再由两点之间线段最短,可知AB<AC+BC成立,所以选项C也正确;只有选项D中CD>BC不成立,答案为D.3.图中,∠1和∠2是同位角的是( )A B C D答案:D说明:由同位角的概念可知,一条直线与两条直线相交,同位角位置相同且有一边在同一直线上,这样可以判断选项A、B、C中的∠1与∠2都不是同位角,只有选项D中的∠1与∠2是同位角,答案为D.填空题:1.如图,直线a,b,c交于O,∠1 = 30º,∠2 = 50º,则∠3 =________.答案:100º说明:如图,∠3的对顶角为∠4,所以∠3 =∠4;又∠1+∠2+∠4 = 180º,∠1 = 30º,∠2 = 50º,所以∠4 = 180º−30º−50º = 100º,即∠3 = 100º.2.如图,直线AB、CD交于O,OA平分∠EOC,且∠EOD = 120º,则∠BOD =_______.答案:30º说明:因为∠BOD =∠COA,∠EOD+∠EOC = 180º,OA平分∠EOC,所以∠EOD+2∠COA = 180º,再由∠EOD = 120º,可得∠COA = 30º,即∠BOD = 30º.3.已知如图,①∠1与∠2是_______被_______所截成的_______角;②∠2与∠3是_______被_______截成的_______角;③∠3与∠A是_______被_______截成的_______角;④AB、AC被BE截成的同位角_______,内错角_______,同旁内角_______;⑤DE、BC被AB截成的同位角是_______,内错角_______,同旁内角_______.答案:①DE、BC;BE;内错角②AC、BC;BE;同旁内角③AB、BE;AC;同位角④不存在;∠ABE与∠3;∠ABE与∠AEB⑤∠ADE与∠ABC;不存在;∠EDB与∠DBC4.在三角形ABC中,AC⊥BC,CD⊥AB于D,如图,则在图中共有______对互余的角,______对互补的角,______对邻补角,点A到CD的距离是______,到BC的距离是______,到点B的距离是______,点C 到直线AB的距离是______.答案:有4对互余的角:∠ACD与∠A;∠A与∠B;∠B与∠BCD;∠BCD与∠ACD;有3对互补的角:∠CDA与∠CDB;∠ACB与∠CDA;∠ACB与∠CDB;有1对邻补角:∠CDA与∠CDB;点A到CD的距离是AD;点A到BC的距离是AC;点A到点B的距离是AB;点C到直线AB的距离是CD.解答题:1.如图,已知直线AB、CD、EF相交于O,OG⊥AB,且∠FOG = 32º,∠COE = 38º,求∠BOD.答案:因为AB、CD、EF交于O,所以∠FOD =∠COE =38º又因为OG⊥AB,所以∠BOD = 90º−∠FOD−∠FOG = 90º−32º−38º = 20º.2.如图,已知OA⊥OB,OC⊥OD,且∠AOD:∠BOC = 4:5,求∠BOC的度数.答案:因为OA⊥OB,OC⊥OD所以∠AOB =∠DOC =90º即∠AOD+∠BOC = 180º又因为∠AOD:∠BOC = 4:5所以∠BOC = ×180º = 100º.3.如图,直线AB、CD交于O,∠AOE = 30º,∠BOC = 2∠AOC,求∠DOF.解答:∵AB、CD交于O∴∠AOC+∠BOC = 180º又∵∠BOC = 2∠AOC∴3∠AOC = 180º∴∠AOC = 60º又∵∠AOE = 30º∴∠DOF = 30º。
初一相交线试题及答案
初一相交线试题及答案
一、选择题
1. 两条直线相交,交点的个数是()
A. 0个
B. 1个
C. 2个
D. 3个
2. 如果两条直线相交成90°角,那么这两条直线是()
A. 垂直
B. 平行
C. 相交
D. 重合
3. 在平面内,两条直线的位置关系有()
A. 只有相交
B. 只有平行
C. 只有重合
D. 相交、平行和重合
4. 两条直线相交,其中一条直线的斜率是2,另一条直线的斜率是-1/2,则这两条直线()
A. 垂直
B. 平行
C. 重合
D. 既不垂直也不平行
二、填空题
1. 当两条直线相交时,它们相交成的角叫做______。
2. 如果两条直线相交成30°角,那么这两条直线是______。
3. 在平面直角坐标系中,若直线y=2x+3与直线y=-1/2x+5相交,则交点的坐标是______。
三、解答题
1. 已知直线l1:y=3x-4与直线l2:y=-2x+6相交,求两条直线的交点坐标。
2. 判断两条直线y=x+1和y=-x+2是否相交,并说明理由。
答案:
一、选择题
1. B
2. A
3. D
4. A
二、填空题
1. 邻角
2. 相交
3. (2, 7)
三、解答题
1. 将直线l1的方程代入直线l2的方程中,得到3x-4=-2x+6,解得x=2,代入任一方程得y=2,所以交点坐标为(2, 2)。
2. 两条直线的斜率不相等,即1≠-1,因此它们相交。
七年级数学-相交线与平行线专项习题(含答案解析)
1. 已知多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,则常数a(含答案解析)的值是 .2. 观察如图图形,并阅读相关文字:那么5条直线相交,最多交点的个数是()A .10B .14C .21D .153. 已知x -x 1=3,则x 4+x 14= .4. 已知(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,则(a +b )2= .5.6. 如图,点O为直线AB上一点,将直角三角板OCD的直角顶点放在点O处.已知∠AOC的度数比∠BOD的度数的3倍多10度.(1)求∠BOD的度数;(2)若OE,OF分别平分∠BOD,∠BOC,求∠EOF的度数.=x 3+(1-2a )x 2-(1+2a )x +2a 1.解:(x -2a )•(x 2+x -1)=x 3+x 2-x -2ax 2-2ax +2a ,∵多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,∴1-2a =0,解得:a =0.5,故答案为:0.5.2. 解:两条直线相交,最多交点数为1个;三条直线相交,最多交点数为1+2=3(个);四条直线相交,最多交点数为1+2+3=6(个);五条直线相交,最多交点数为1+2+3+4=10(个).故选:A .3. 解:1194. 解:∵(a 2+b 2+3)(a 2+b 2-3)=7,ab =3,即(a 2+b 2)2-32=7,∴(a 2+b 2)2=7+9=16,∴a 2+b 2=4,∴(a +b )2=a 2+b 2+2ab=4+2×3=4+6=10.故答案为:10.5.6. 解:(1)设∠BOD =x °,∵∠AOC 的度数比∠BOD 的度数的3倍多10度,且∠COD =90°, ∴x +(3x +10)+90=180,解得:x =20,∴∠BOD =20°;(2)∵OE 、OF 分别平分∠BOD 、∠BOC ,。
七年级数学下册相交线练习题
七年级数学下册相交线练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线m 、n 相交,则∠1与∠2的位置关系为( )A .邻补角B .内错角C .同旁内角D .对顶角2.下列图形中,∠1与∠2不是对顶角的有( )A .1个B .2个C .3个D .0个3.小强把一个含有30°的直角三角板放在如图所示两条平行线m ,n 上,测得∠β=115°,则∠α的度数为()A .65°B .55°C .45°D .35°4.如图,直线AB ,CD 相交于点O ,OE CD ⊥,58BOE ∠=︒,则AOC ∠ 等于( )A .58°B .42°C .32°D .22°5.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫作这点到直线的距离.其中正确的有( )A .0个B .1个C .2个D .3个6.如图,∠1=∠2,∠3=25°,则∠4等于( )A .165°B .155°C .145°D .135°7.如图,已知AB ∠CD ,FG 平分∠EFD 交AB 于点G ,若∠AEF =70°,则∠EFG 的度数为( )A .30°B .35°C .40°D .45°8.如图,在三角形ABC 中,AH BC ⊥,BF 平分ABC ∠,BE BF ⊥,EF BC ∥,以下四个结论:∠AH EF ⊥;∠ABF EFB ∠=∠;∠AC BE ∥;∠E ABE ∠=∠;∠∠ADF =∠AFB .其中正确的结论有( )A .4个B .3个C .2个D .1个9.如图,直线AB 与CD 相交于点O ,∠BOD=40°,OE∠AB ,则∠COE 的度数为( )A .140B .130C .120D .110二、填空题10.如图,把长方形ABCD 沿EF 对折后使两部分重合,若160∠=︒,则∠=AEF _______.11.下图是某工人加工的一个机器零件(数据如图),经过测量不符合标准.标准要求是:120EFD ∠=︒,且A ∠、B 、C ∠保持不变为了达到标准,工人在保持E ∠不变情况下,应将图中D ∠____(填“增大”或“减小”)_____度.12.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.13.观察下图,寻找对顶角:(1)如图1,图中共有 对对顶角(2)如图2,图中共有 对对顶角(3)如图3,图中共有 对对顶角(4)若有n 条直线相交于一点,则可形成多少对对顶角?14.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.15.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若36DOE ∠=︒,则BOC ∠的度数为______.三、解答题16.如图,ABC 中,AD 是角平分线,AF 是高线,36,74B C ∠=︒∠=︒,求DAF ∠的度数.17.证明:对顶角相等.18.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+∠D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,与CD、AB分别相交于点M、N.∠以线段AC为边的“8字型”有_______个,以点O为交点的“8字型”有________个:∠若∠B=100°,∠C=120°,求∠P的度数;∠若角平分线中角的关系改为“∠CAB=3∠CAP,∠CDB=3∠CDP”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.19.如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.参考答案:1.A【分析】根据邻补角的意义,结合图形判定即可.【详解】直线m、n相交,则∠1与∠2互为邻补角.故选A.【点睛】本题考查了邻补角的意义,掌握两个角的位置关系是解决问题的关键.2.C【分析】根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.【详解】解:∠中∠1和∠2的两边不互为反向延长线,故∠符合题意;∠中∠1和∠2是对顶角,故∠不符合题意;∠中∠1和∠2的两边不互为反向延长线,故∠符合题意;∠中∠1和∠2没有公共点,故∠符合题意.∠∠1 和∠2 不是对顶角的有3个,故选C .【点睛】此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.3.B【分析】根据=115︒∠,得出65AED ∠=︒,根据直角三角形的性质得出60A ∠=︒,根据三角形内角和得出55ADE ∠=︒,根据对顶角相等,得出55BDF =︒∠,最后根据平行线的性质得出55α∠=︒.【详解】解:=115︒∵∠,∠18011565AED =︒-︒=︒∠, ABC 为直角三角形,30B ∠=︒,∠9060A B ∠=︒-∠=︒,18055ADE A AED =︒--=︒∴∠∠∠,55BDF ADE ==︒∴∠∠,m n ,55BDF ==︒∴∠∠,故B 正确.故选:B .【点睛】本题主要考查了直角三角形的性质,三角形内角和定理,平行线的性质,对顶角相等,熟练掌握两直线平行,同位角相等,是解题的关键.4.C【分析】直接利用垂线的定义结合对顶角的性质得出答案.【详解】解:∠OE ∠CD ,∠BOE =58°,∠∠BOD =90°-58°=32°,∠∠AO C=∠BOD =32°.故选:C【点睛】此题主要考查了垂线的定义以及对顶角的性质,正确得出∠BOD 的度数是解题关键.5.B【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B .【点睛】本题主要考查了对顶角、同位角、相交线、平行线、点到直线的距离,正确理解相关概念是解题的关键.6.B【分析】设∠4的补角为5∠,利用∠1=∠2求证a b ∥,进而得到35∠=∠,最后即可求出∠4.【详解】解:设∠4的补角为5∠,如下图所示:∠1=∠2,a b ∥,3525∴∠=∠=︒,41805155∴∠=︒-∠=︒.故选:B .【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.7.B【分析】根据两直线平行,内错角相等求出∠EFD ,再根据角平分线的定义求解即可.【详解】解:∠AB ∠CD ,∠AEF =70°,∠∠EFD =∠AEF =70°,∠FG 平分∠EFD ,∠∠EFG =12∠EFD =12×70°=35°. 故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图,理清图中各角度之间的关系是解题的关键.8.B【分析】根据平行线的性质证得AH ∠EF ,判断∠,结合角平分线的定义可得∠ABF =∠EFB ,判断∠,根据等角的余角相等可得∠E =∠ABE 判断∠,由AC 与BF 不一定垂直,判断∠,根据已知条件,结合三角形的内角和定理不能判断90BAF ∠=︒,即可判断∠.【详解】解:∠AH ∠BC ,EF ∥BC ,∠AH ∠EF ,故∠正确;∠BF 平分∠ABC ,∠∠ABF =∠CBF ,∠EF ∥BC ,∠∠EFB =∠CBF ,∠∠ABF =∠EFB ,故∠正确;∠BE ∠BF ,而AC 与BF 不一定垂直,∠BE ∥AC 不一定成立,故∠错误;∠BE ∠BF ,∠∠E 和∠EFB 互余,∠ABE 和∠ABF 互余,而∠EFB =∠ABF ,∠∠E =∠ABE ,故∠正确.由∠可知BE ∥AC 不一定成立,∠∠ADF =∠BDH又∠∠BDH +∠DBH =90°∠∠ADF +∠DBH =90°又∠∠BAF 不一定等于90°∠∠ADF =∠AFB 不一定成立,故∠不一定正确.故选:B .【点睛】本题主要考查了平行线的性质,角平分线的定义以及余角的性质,垂直的定义,三角形内角和定理等知识的运用,解题的关键是两直线平行,内错角相等.9.B【分析】根据垂直定义可得90AOE ∠=,根据对顶角相等可得40AOC =∠,然后可得答案.【详解】∠OE∠AB ,∠∠AOE=90°,∠∠BOD=40°,∠∠AOC=∠BOD=40°,∠∠EOC=∠AOE +∠AOC =130°.故选:B .【点评】本题主要考查了垂线的定义、对顶角和角的和差,掌握相关定义及性质是解题的关键. 10.120︒【分析】如图,先求解120,BFB '∠=︒再利用轴对称的含义求解,BFE ∠ 再利用平行线的性质可得答案. 【详解】解:如图, 160∠=︒,则18060120,BFB '∠=︒-︒=︒由对折可得:160,2BFE BFB '∠=∠=︒ 长方形ABCD ,//,AD BC ∴=180120,AEF BFE ∴∠︒-∠=︒故答案为:120.︒【点睛】本题考查的是长方形的性质,邻补角的定义,轴对称的含义,平行线的性质,掌握以上知识是解题的关键.11. 减小 15【分析】延长EF 到H 与CD 交于H ,先利用对顶角的性质和三角形内角和定理求出DCE =60°,然后根据三角形外角的性质得到∠DHE =∠E +∠DCE =100°,∠DFE =∠D +∠DHF ,由此求解即可.【详解】解:如图,延长EF 到H 与CD 交于H ,∠∠DCE=∠ACB=180°-∠A-∠B,∠A=70°,∠B=50°,∠∠DCE=60°,∠∠DHE=∠E+∠DCE=100°,∠∠DFE=∠D+∠DHF,∠∠D=∠DFE-∠DHF=120°-100°=20°,∠∠D从35°减小到20°,减小了15°,故答案为:减小,15.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.12.126︒【分析】首先根据∠1与∠2互补可得∠1+∠2=180°,再表示出∠1的余角90°-(180°-∠2),即可得到结论.【详解】∠2∠的余角是36︒,∠2903654︒︒︒∠=-=.∠1∠与2∠互补,∠118054126︒︒︒∠=-=.故答案为126°.【点睛】本题考查了余角和补角,关键是掌握余角和补角的定义.13.【答题空1】2【答题空2】6【答题空3】12【答题空4】n(n-1)【分析】(1)根据对顶角的定义计算即可得解;(2)根据对顶角的定义计算即可得解;(3)根据对顶角的定义计算即可得解;(4)根据对顶角的对数和直线的条数的规律写出即可;【详解】解:(1)根据题意得∠有2对对顶角;(2)根据题意得∠AB 与CD 相交形成2对对顶角,AB 与EF 相交形成2对对顶角,CD 与EF 相交形成2对对顶角,所以共有6对对顶角.(3)根据题意得∠AB 与CD 相交形成2对对顶角,AB 与EF 相交形成2对对顶角,AB 与GH 相交形成2对对顶角,CD 与EF 相交形成2对对顶角,CD 与GH 相交形成2对对顶角,EF 与GH 相交形成2对对顶角,所以共有12对对顶角.(4)由(1)(2)(3)得:当有2条直线相交于一点时,可形成对顶角的对数为2×1=2;当有3条直线相交于一点时,可形成对顶角的对数为3×2=6;当有4条直线相交于一点时,可形成对顶角的对数为4×3=12.由此发现:当有n 条直线相交于一点时,可形成n (n -1)对对顶角.故答案为2,6,12,n (n −1)【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图,按照一定的顺序计算对顶角的对数是解题的关键.14.65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∠180COE EOD ∠+∠=︒,50EOD ∠=︒,∠130COE ∠=︒,∠AO 平分COE ∠,∠65AOC ∠=︒,∠∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.15.72°【分析】先根据角平分线,求得∠AOD 的度数,再根据对顶角相等,求得∠BOD 的度数.【详解】解:∠OE 平分∠AOD ,∠∠AOD=2∠DOE=2×36︒=72︒,∠∠BOC 与∠AOE 是对顶角,∠∠BOC 的度数为72︒,故答案为:72︒.【点睛】本题主要考查了角平分线的定义以及对顶角的定义,解题的关键是找到角与角的关系. 16.19°【分析】根据三角形内角和定理可以求出∠BAC 的度数,根据角平分线的定义,可以求出∠BAD 的度数,再根据高线的性质,得出∠BAF 的性质,即可求出DAF ∠的度数.【详解】∠36,74B C ∠=︒∠=︒∠180180367470BAC B C ∠=︒-∠-∠=︒-︒-︒=︒∠AD 是角平分线 ∠1352BAD BAC ∠∠==︒ ∠AF 是高线∠90BFA ∠=︒∠9054BAF B ∠=︒-∠=︒∠543519DAF BAF BAD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形的角平分线和高线,以及三角形的内角和定理,灵活掌握性质推导出角度之间的关系是本题的关键.17.见解析【分析】先写出已知、求证、证明,并画出图形,利用邻补角和同角的补角相等即可证明.【详解】已知:如图,直线AB ,CD 相交于点O ,∠1和∠2是对顶角.求证:∠1=∠2.证明:∠∠1和∠2是对顶角(已知),∠OA与OB互为反向延长线(对顶角的意义).∠∠AOB是平角(平角的定义).同理,∠COD也是平角.∠∠1和∠2都是∠AOC的邻补角(邻补角的定义).∠∠1=∠2(同角的补角相等).【点睛】本题考查对顶角的定义,领补角的定义,同(等)角的补角相等.利用数形结合的思想是解答本题的关键.18.(1)证明见解析;(2)∠3,4;∠110°;∠3∠P=∠B+2∠C;【分析】(1)利用三角形内角和定理和对顶角相等即可证明;(2)∠根据“8字型”的定义判断即可;∠由(1)结论可得∠AMC和∠DMP中,∠C+∠CAM=∠P+∠PDM,∠BDN 和∠P AN中,∠B+∠BDN=∠P+∠P AN,两式相加再由角平分线的定义即可解答;∠根据∠CAB=3∠CAP,∠CDB=3∠CDP,由∠C+∠CAM=∠P+∠PDM可得3(∠C-∠P)=∠BDC-∠CAB,由∠B+∠BDN=∠P+∠P AN可得32(∠P-∠B)=∠BDC-∠CAB,进行等量代换即可解答;(1)解:∠AOC中,∠A+∠C=180°-∠AOC,∠BOD中,∠B+∠D=180°-∠BOD,∠∠AOC=∠BOD,∠∠A+∠C=∠B+∠D;(2)解:∠以线段AC为边的“8字型”有:∠ACM和∠PDM,∠ACO和∠BOD,∠ACO和∠DNO,共3个;以点O为交点的“8字型”有:∠ACO和∠BDO,∠ACO和∠DNO,∠AMO和∠BDO,∠AMO和∠DNO,共4个;∠∠AMC和∠DMP中,∠C+∠CAM=∠P+∠PDM,∠BDN和∠P AN中,∠B+∠BDN=∠P+∠P AN,∠∠C+∠CAM+∠B+∠BDN =∠P+∠PDM+∠P+∠P AN,∠P A平分∠BAC,PD平分∠BDC,∠∠CAM=∠P AN,∠BDN=∠PDM,∠∠C+∠B=2∠P,∠120°+100°=2∠P,∠∠P=110°;∠∠∠CAB=3∠CAP,∠CDB=3∠CDP,∠∠CAM=13∠CAB,∠P AN=23∠CAB,∠BDN=23∠BDC,∠PDM=13∠BDC,∠AMC和∠DMP中,∠C+∠CAM=∠P+∠PDM,∠C-∠P=∠PDM-∠CAM=13∠BDC-13∠CAB,3(∠C-∠P)=∠BDC-∠CAB,∠BDN和∠P AN中,∠B+∠BDN=∠P+∠P AN,∠P-∠B=∠BDN-∠P AN=23∠BDC-23∠CAB,32(∠P-∠B)=∠BDC-∠CAB,∠3(∠C-∠P)=32(∠P-∠B),2∠C-2∠P=∠P-∠B,3∠P=∠B+2∠C;【点睛】本题考查了三角形内角和定理,等式的性质,角平分线的定义,对顶角的性质等知识;掌握等式的性质是解题关键.19.∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.。
七年级下册相交线与平行线练习题及答案
七年级下册相交线与平行线练习题及答案第五章相交线与平行线一、典型例题例1.如图1,直线a与b平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。
图1例2.已知:如图2,AB∥EF∥CD,EG平分∠XXX,∠B+∠BED+∠D=192°,求∠EGD的度数。
图2例3.如图3,已知AB∥CD,且∠B=40°,∠D=70°,求∠DEB的度数。
图3例4.平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?例6.10条直线两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条。
A。
6B。
7C。
8D。
92.平面上三条直线相互间的交点个数是()。
A。
3B。
1或3C。
1或2或3D。
不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()。
A。
36条B。
33条C。
24条D。
21条4.已知平面中有n个点,A、B、C三个点在一条直线上,A、D、F、E四个点也在一条直线上,除这些之外,再没有三点共线或四点共线,以这n个点作一条直线,一共可以画出38条不同的直线,这时n等于()。
A。
9B。
10C。
11D。
125.若平行直线AB、CD与相交直线EF、GH相交成如图所示的图形,则共得同旁内角()。
A。
4对B。
8对C。
12对D。
16对6.如图,已知FD∥BE,则∠1+∠2-∠3=()。
图4A。
90°B。
135°C。
最新人教版初中数学七年级下册相交线练习题附参考答案
人教版初中数学七年级下册相交线练习题附参考答案1.在两条直线相交所成的四个角中,( )不能判定这两条直线垂直A.对顶角互补 B.四对邻补角 C.三个角相等 D.邻补角相等答案:B说明:两条直线相交,已有四对邻补角,因此,选项B不足以判定这两条直线垂直;而根据垂直的定义,对顶角、邻补角的性质不难判断其它选项的说法都可以判定这两条直线垂直;所以答案为B.2.如图,在三角形ABC中,AC⊥BC,CD⊥AB于D,则下列关系不成立的是( )A.AB>AC>ADB.AB>BC>CDC.AC+BC>ABD.AC>CD>BC答案:D说明:由垂线段最短的性质,可知AB>AC,AB>BC,AC>AD,BC>CD都成立,即选项A、B中的关系都是正确的;再由两点之间线段最短,可知AB<AC+BC成立,所以选项C也正确;只有选项D中CD>BC不成立,答案为D.3.图中,∠1和∠2是同位角的是( )A B C D答案:D说明:由同位角的概念可知,一条直线与两条直线相交,同位角位置相同且有一边在同一直线上,这样可以判断选项A、B、C中的∠1与∠2都不是同位角,只有选项D中的∠1与∠2是同位角,答案为D.填空题:1.如图,直线a,b,c交于O,∠1 = 30º,∠2 = 50º,则∠3 =________.答案:100º说明:如图,∠3的对顶角为∠4,所以∠3 =∠4;又∠1+∠2+∠4 = 180º,∠1 = 30º,∠2 = 50º,所以∠4 = 180º−30º−50º = 100º,即∠3 = 100º.2.如图,直线AB、CD交于O,OA平分∠EOC,且∠EOD = 120º,则∠BOD =_______.答案:30º说明:因为∠BOD =∠COA,∠EOD+∠EOC = 180º,OA平分∠EOC,所以∠EOD+2∠COA = 180º,再由∠EOD = 120º,可得∠COA = 30º,即∠BOD = 30º.3.已知如图,①∠1与∠2是_______被_______所截成的_______角;②∠2与∠3是_______被_______截成的_______角;③∠3与∠A是_______被_______截成的_______角;④AB、AC被BE截成的同位角_______,内错角_______,同旁内角_______;⑤DE、BC被AB截成的同位角是_______,内错角_______,同旁内角_______.答案:①DE、BC;BE;内错角②AC、BC;BE;同旁内角③AB、BE;AC;同位角④不存在;∠ABE与∠3;∠ABE与∠AEB⑤∠ADE与∠ABC;不存在;∠EDB与∠DBC4.在三角形ABC中,AC⊥BC,CD⊥AB于D,如图,则在图中共有______对互余的角,______对互补的角,______对邻补角,点A到CD的距离是______,到BC的距离是______,到点B的距离是______,点C 到直线AB的距离是______.答案:有4对互余的角:∠ACD与∠A;∠A与∠B;∠B与∠BCD;∠BCD与∠ACD;有3对互补的角:∠CDA与∠CDB;∠ACB与∠CDA;∠ACB与∠CDB;有1对邻补角:∠CDA与∠CDB;点A到CD的距离是AD;点A到BC的距离是AC;点A到点B的距离是AB;点C到直线AB的距离是CD.解答题:1.如图,已知直线AB、CD、EF相交于O,OG⊥AB,且∠FOG = 32º,∠COE = 38º,求∠BOD.答案:因为AB、CD、EF交于O,所以∠FOD =∠COE =38º又因为OG⊥AB,所以∠BOD = 90º−∠FOD−∠FOG = 90º−32º−38º = 20º.2.如图,已知OA⊥OB,OC⊥OD,且∠AOD:∠BOC = 4:5,求∠BOC的度数.答案:因为OA⊥OB,OC⊥OD所以∠AOB =∠DOC =90º即∠AOD+∠BOC = 180º又因为∠AOD:∠BOC = 4:5所以∠BOC = ×180º = 100º.3.如图,直线AB、CD交于O,∠AOE = 30º,∠BOC = 2∠AOC,求∠DOF.解答:∵AB、CD交于O∴∠AOC+∠BOC = 180º又∵∠BOC = 2∠AOC∴3∠AOC = 180º∴∠AOC = 60º又∵∠AOE = 30º∴∠DOF = 30º。
初一数学相交线试题答案及解析
初一数学相交线试题答案及解析1.如图,直线a、b相交于点O,若∠1等于40°,则∠2等于()A.50°B.60°C.140°D.160°【答案】C【解析】因∠1和∠2是邻补角,且∠1=40°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣40°=140°.解:∵∠1+∠2=180°又∠1=40°∴∠2=140°.故选C.2.如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则∠1+∠2的度数是()A.45°B.60°C.90°D.180°【答案】C【解析】由图可知,直角三角形的两个锐角正好是∠1和∠2的对顶角,而直角三角形的两个锐角之和是90°,那么就可得知∠1+∠2的度数.解:由图可知,∠1和∠2的对顶角互余,所以∠1+∠2=90°.故选C.3.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()A.20°B.40°C.50°D.80°【答案】C【解析】利用角平分线的性质和对顶角相等即可求得.解:∵∠EOC=100°且OA平分∠EOC,∴∠BOD=∠AOC=×100°=50°.故选C.4.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()A.38° B.104° C.142° D.144°【答案】C【解析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOM=180°﹣38°=142°.故选C.5.如图,直线AB和CD相交于点O,若∠AOD=55°,则∠AOC=()A.115°B.120°C.125°D.130°【答案】C【解析】根据互为邻补角的两个角的和等于180°列式计算即可得解.解:∵∠AOD=55°,∴∠AOC=180°﹣55°=125°.故选C.6.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°【答案】B【解析】设∠DOE=x,根据题意得到∠BOE=2x,∠AOC=∠COD=72°﹣x,再根据平角为180度,得到2×(72°﹣x)+3x=180°,解得x=36°,即可得到∠BOE的度数.解:如图,设∠DOE=x,∵∠DOE=∠BOD,∴∠BOE=2x,又∵OC是∠AOD的平分线,∠COE=72°,∴∠AOC=∠COD=72°﹣x;∴2×(72°﹣x)+3x=180°,解得x=36°,∴∠BOE=2x=2×36°=72°.故选B.7.下列说法正确的是()A.相等的两个角是对顶角B.和等于90°的两个锐角互为余角C.如果∠1+∠2+∠3=180°,那么∠1、∠2、∠3互为补角D.一个角的补角一定大于这个角【答案】B【解析】根据余角、补角、对顶角的定义进行判断即可.解:A、两个对顶角相等,但相等的两个角不一定是对顶角;故A错误;B、如果两个角的和是一个直角,那么这两个角互为余角;故B正确;C、余、补角是两个角的关系,故C错误;D、锐角的补角都大于这个角,而直角和钝角不符合这样的条件,故D错误.故选B.8.如图,直线AB、CD相交于O点,∠AOD+∠BOC=236°,则∠AOC=()A.72° B.62° C.124° D.144°【答案】B【解析】由两直线相交,对顶角相等,可得∠AOD=∠BOC,已知∠AOD+∠BOC=236°,可求∠AOD;又∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,将∠AOD的度数代入,可求∠AOC.解:∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又已知∠AOD+∠BOC=236°,∴∠AOD=118°.∵∠AOC与∠AOD互为邻补角,∴∠AOC=180°﹣∠AOD=180°﹣118°=62°.故选B.9.如图,直线AB与CD相交于点O,OE是射线,则∠AOC的对顶角是()A.∠BOD B.∠EOB C.∠COE D.∠EOD【答案】A【解析】结合图形,根据对顶角的定义选择即可.解:∠AOC的两边所在的直线是AB,CD,所以∠AOC的对顶角是∠BOD.故选A.10.如图,直线AB、CD相交于O,OB是∠DOE的平分线,若∠COE=100°,则∠AOC的度数是()A.30° B.40° C.50° D.60°【答案】B【解析】由OB是∠DOE的平分线和对顶角相等可以得到∠AOC=∠BOD=∠EOB,又∠COE=100°,最后利用平角的定义即可求解.解:∵∠COE=100°,∴∠AOC+∠EOB=180°﹣100°=80°,而∠AOC=∠BOD,∵OB是∠DOE的平分线,∴∠BOD=∠EOB,∴∠AOC=∠EOB,∴∠AOC=∠EOB=40°.故选B.11.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=∠AOD+40°,则∠BOE的度数是()A.55° B.70° C.35° D.40°【答案】A【解析】首先根据∠AOC+∠AOD=180°以及∠AOC=∠AOD+40°求得∠AOC的度数,则∠BOD 的度数可以求得,然后根据角平分线的定义即可求解.解:∵∠AOC=∠AOD+40°,又∠AOC+∠AOD=180°,∴∠AOC=110°,∠AOD=70°,∴∠BOD=∠AOC=110°,∵OE平分∠BOD,∴∠BOE=∠BOD=55°.故选A.12.平面上三条不同的直线相交最多能构成对顶角()A.6对B.5对C.4对D.3对【答案】A【解析】根据三条直线相交,最多有3个交点,每个交点有两对对顶角,进行计算即可.解:如图最多有三个交点,∴最多形成2×3=6对对顶角.故选:A.13.如图是对顶角的有()对.A.1对B.2对C.3对D.4对【答案】B【解析】根据对顶角的定义,判断、解答出即可.解:由图知:∠AOC与∠BOD是对顶角,∠AOD与∠BOC是对顶角,故选B.14.如图,直线a和直线b相交于点O,∠1=50°,则∠2=.【答案】50°【解析】根据对顶角相等即可求解.解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案为=50°.15.如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=.【答案】40°【解析】根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.16.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠BOD的大小为.【答案】22°【解析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.17.如图,直线AB、CD、EF相交于点O,则∠1=∠3=30°,则∠2的度数是.【答案】120°【解析】根据对顶角相等可得∠4=∠1,再根据平角等于180°列式计算即可得解.解:∵∠4=∠1=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣30°﹣30°=120°.故答案为:120°.18.如图,AB与CD相交于O点,∠1=60°,则∠2=°.【答案】60【解析】根据对顶角的性质直接得出答案即可.解:如图,∠2=∠1=60°.故答案为:60.19.如图∠AOC=60°,则∠BOD=°.【答案】60【解析】先由图得出∠AOC与∠BOD是对顶角,根据对顶角相等,得出∠AOC=∠BOD=60°.解:由图可知:∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC=60°,∴∠BOD=60°.故答案为:60.20.如图,直线AB、CD相交于点O,∠1=50°,则∠2=度.【答案】50【解析】根据对顶角相等,即可求解.解:∠2=∠1=50°故答案为:50°。
(完整版)初一平行线与相交线经典试题
第一章:平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B 互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.6.对顶角的性质:对顶角相等.二、经典考题剖析:【考题1-1】(2004、厦门,2分)已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】(2004、青海,3分)如图l-2-1,直线AB,CD相交于点O,OE⊥AB 于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:(30 分钟) (答案:220 ) 1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.6.一个角的余角比它的补角的九分之二多1°,求这个角的度数.7.∠1和∠2互余,∠2和∠3互补,∠3=153○,∠l=_8.如图l-2-2,AB⊥CD,AC⊥BC,图中与∠CAB互余的角有()A.0个B.l个C.2个D.3个9.如果一个角的补角是150○,那么这个角的余角是____________10.已知∠A和∠B互余,∠A与∠C互补,∠B与∠C的和等于周角的13,求∠A+∠B+∠C的度数.11.如图如图1―2―3,已知∠AOC与∠B都是直角,∠BOC=59○.(1)求∠AOD的度数;(2)求∠AOB和∠DOC的度数;(3)∠A OB与∠DOC有何大小关系;(4)若不知道∠BOC的具体度数,其他条件不变,这种关系仍然成立吗?考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识另:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】(2004贵阳,3分)如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A C D=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2004、开福,6分)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:( 40分钟) (答案:220 ) 1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。
(word完整版)初一数学相交线练习题
5.1.1 相交线姓名 年级分数一、选择题1•如图所示,/ 1和/2是对顶角的图形有()个B有公共顶点且互补的两个角D有公共顶点且有一条公共边,另一边互为反O,若/ AOC +Z BOD=90 °,则/ BOC ( )A 1个2•邻补角是()A和为180°的两个角C有一条公共边相等的两个角向延长线的两个角3•如图,直线AB与CD相交于点A 135 °B120 °C100 ° D145 °4题图 4•如图,/ ACB=90 ° , CD 丄AB ,则图中与/ 2互余的角有 二、填空题 5•如果一个角比它的邻补角小 30°,则这个角的度数为 — 6•如图,AB 交CD 于O 点,OE 是端点为 O 的一条射线, 有 对 个,它们分别是 7•如图,已知直线 AB , CD 相交于点 是 _________ ° 8•如图,直线AB 、CD 相交于点O , 解:因为/ DOB= / _____________ ( __________ =80 ° __ (已知) 所以,/ DOB= _____ ° (等量代换) 又因为/仁30 ° ( ) 所以/ 2= / ____ - / O , OA 平分/ EOC ,Z EOC=70 °,则/ / AOC=80。
,/ 1=30°,求/ 2 的度数 ) O 0 BOD 的度数O三、解答题:9•如图,直线AB, CD相交于点0 , 0E平分/ 求/ AOF的度数。
10•如图所示是某城市古建筑群中一座古塔底部的建筑平面图,请你利用学过的知识设计如何测量出古塔外墙底部的/ ABC的大小的方案,并说明理由。
参考答案:1. A2.D3.A4. 2 个 / ACD / B5. 75°6. 2; 57. 35°8. / AOC,对顶角相等,/ AOC,80 °,已知/ BOD,/ 1 , 80°, 30°, 50°9 解:由已知设/ AOD=4x °,/ BOE=x °•/ OE 平分/ BOD ,二/ BOD=2 / B0E=2x °•••/AOD+ / BOD=180 °••• 6x=180 °x=30°/-Z BOE=30 ° , /-Z AOD=120 °/ BOD=6O ° Z COE=150 °1•/ OF 平分Z COE /.Z EOF= Z COE=75 °2• Z BOF= Z EOF- Z BOE=45 °AOF= Z AOB- Z BOF=135 °10•方法一:作AB的延长线,如图1所示,量出Z CBD的度数,Z ABC=180 ° -Z CBD 方法二:作AB和CB的延长线,如图2所示,量出Z DBE的度数,Z ABC= Z DBE。
(2021年整理)七年级数学下相交线练习题
(完整版)七年级数学下相交线练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)七年级数学下相交线练习题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)七年级数学下相交线练习题的全部内容。
(完整版)七年级数学下相交线的全部内容。
练习题编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)七年级数学下相交线练习题这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)七年级数学下相交线练习题> 这篇文档10756894321(1)相交线练习题一、判断(每题1分,共10分)1.顶点相同并且相等的两个角是对顶角。
( )2.相交直线构成的四个角中若有一个角是直角,就称这两条直线互相垂直.( )3.直线外一点到这条直线的垂线段叫做这点到这条直线的距离。
( )4.如图1,∠2和∠8是对顶角.( ) 5。
如图1,∠2和∠4是同位角.( ) 6.如图1,∠1和∠3是同位角。
( )7.如图1,∠9和∠10是同旁内角,∠1和∠7也是同旁内角.( )8.如图1,∠2和∠10是内错角。
( )9。
O 是直线AB 上一点,D 分别在AB 的两侧,且∠DOB=∠AOC, 则C,O,D•三点在同一条直线上.( )D CAB NM P(2)Qla75684321b(3)564321AB NM P(4)OQ421D CAB (5)OFE10.如图2,其中共有4对同位角,4对内错角,4对同旁内角.( )二、填空(每空1分,共29分)11.如图3,直线L 截直线a,b 所得的同位角有______对,它们是_ _____;•内错有___对,它们是_____ _;同旁内角有______对,•它们是_____ _;•对顶角_____•对,•它们是_____ _。
初一数学相交线试题答案及解析
初一数学相交线试题答案及解析1.下面各图中∠1和∠2是对顶角的是()A.B.C.D.【答案】B【解析】根据对顶角的定义对各选项分析判断后利用排除法求解.解:A、∠1和∠2不是对顶角,故本选项错误;B、∠1和∠2是对顶角,故本选项正确;C、∠1和∠2不是对顶角,故本选项错误;D、∠1和∠2不是对顶角,是邻补角,故本选项错误.故选B.2.如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=()A.50°B.55°C.60°D.65°【答案】B【解析】根据邻补角的和等于180°列式进行计算即可得解.解:∵∠AOC=125°,∴∠AOD=180°﹣125°=55°.故选B.3.如图,直线a与直线c相交于点O,∠1的度数是()A.60°B.50°C.40°D.30°【答案】D【解析】根据邻补角的和等于180°列式计算即可得解.解:∠1=180°﹣150°=30°.故选D.4.如图,在所标识的角中,互为对顶角的两个角是()A.∠2和∠3B.∠1和∠3C.∠1和∠4D.∠1和∠2【答案】A【解析】两条直线相交后,所得的只有一个公共顶点,且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角.解:根据同位角、同旁内角、邻补角、对顶角的定义进行判断,A、∠2和∠3是对顶角,正确;B、∠1和∠3是同旁内角,错误;C、∠1和∠4是同位角,错误;D、∠1和∠2的邻补角是内错角,错误.故选A.5.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()A.20°B.40°C.50°D.80°【答案】C【解析】利用角平分线的性质和对顶角相等即可求得.解:∵∠EOC=100°且OA平分∠EOC,∴∠BOD=∠AOC=×100°=50°.故选C.6.如图,直线AB和CD相交于点O,若∠AOD=55°,则∠AOC=()A.115°B.120°C.125°D.130°【答案】C【解析】根据互为邻补角的两个角的和等于180°列式计算即可得解.解:∵∠AOD=55°,∴∠AOC=180°﹣55°=125°.故选C.7.如图,AB是一条直线,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=∠BOD,∠COE=72°,则∠EOB=()A.36°B.72°C.108°D.120°【答案】B【解析】设∠DOE=x,根据题意得到∠BOE=2x,∠AOC=∠COD=72°﹣x,再根据平角为180度,得到2×(72°﹣x)+3x=180°,解得x=36°,即可得到∠BOE的度数.解:如图,设∠DOE=x,∵∠DOE=∠BOD,∴∠BOE=2x,又∵OC是∠AOD的平分线,∠COE=72°,∴∠AOC=∠COD=72°﹣x;∴2×(72°﹣x)+3x=180°,解得x=36°,∴∠BOE=2x=2×36°=72°.故选B.8.如图,直线AB、CD相交于O点,∠AOD+∠BOC=236°,则∠AOC=()A.72° B.62° C.124° D.144°【答案】B【解析】由两直线相交,对顶角相等,可得∠AOD=∠BOC,已知∠AOD+∠BOC=236°,可求∠AOD;又∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,将∠AOD的度数代入,可求∠AOC.解:∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又已知∠AOD+∠BOC=236°,∴∠AOD=118°.∵∠AOC与∠AOD互为邻补角,∴∠AOC=180°﹣∠AOD=180°﹣118°=62°.故选B.9.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=∠AOD+40°,则∠BOE的度数是()A.55° B.70° C.35° D.40°【答案】A【解析】首先根据∠AOC+∠AOD=180°以及∠AOC=∠AOD+40°求得∠AOC的度数,则∠BOD 的度数可以求得,然后根据角平分线的定义即可求解.解:∵∠AOC=∠AOD+40°,又∠AOC+∠AOD=180°,∴∠AOC=110°,∠AOD=70°,∴∠BOD=∠AOC=110°,∵OE平分∠BOD,∴∠BOE=∠BOD=55°.故选A.10.如图,直线a与b相交于点O,∠1+∠2=100°,则∠3的度数为()A.80°B.100°C.120°D.130°【答案】D【解析】根据对顶角相等求出∠1,代入∠3=180°﹣∠1求出即可.解:∵∠1+∠2=100°,∠1=∠2,∴∠1=50°,∴∠3=180°﹣∠1=130°,故选D.11.一个角等于它的邻补角的,则这个角为()A.90°B.60°C.45°D.30°【答案】C【解析】利用题中“一个角等于它的邻补角的”作为相等关系,设出未知数列方程求解即可.解:设这个角为x°,则它的邻补角为(180﹣x)°,据题意得:x=(180﹣x),解得x=45°.故选:C.12.平面上三条不同的直线相交最多能构成对顶角()A.6对B.5对C.4对D.3对【答案】A【解析】根据三条直线相交,最多有3个交点,每个交点有两对对顶角,进行计算即可.解:如图最多有三个交点,∴最多形成2×3=6对对顶角.故选:A.13.如图是对顶角的有()对.A.1对B.2对C.3对D.4对【答案】B【解析】根据对顶角的定义,判断、解答出即可.解:由图知:∠AOC与∠BOD是对顶角,∠AOD与∠BOC是对顶角,故选B.14.如图,直线a和直线b相交于点O,∠1=50°,则∠2=.【答案】50°【解析】根据对顶角相等即可求解.解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案为=50°.15.一块直角三角板放在两平行直线上,如图所示,∠1+∠2=度.【答案】90【解析】根据对顶角相等得到∠1=∠3,∠2=∠4,而三角形尺为直尺,即可得到∠1+∠2=90°.解:如图,∵∠1=∠3,∠2=∠4,而∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.16.如图,是用对顶角的量角器测量圆锥形零件的锥角的示意图,则此零件的锥角等于度.【答案】30【解析】根据对顶角相等即可回答.解:根据对顶角相等,得零件的锥角等于30°.17.如图,直线AB、CD、EF相交于点O,则∠1=∠3=30°,则∠2的度数是.【答案】120°【解析】根据对顶角相等可得∠4=∠1,再根据平角等于180°列式计算即可得解.解:∵∠4=∠1=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣30°﹣30°=120°.故答案为:120°.18.如右图,是一把剪刀,若∠1+∠2=90°,则∠2=_____.【答案】45°【解析】由图知,∠1、∠2是对顶角,根据对顶角的性质,可得出∠1=∠2,又∠1+∠2=90°,解答出即可;解:由图知,∠1、∠2是对顶角,根据对顶角的性质,可得出∠1=∠2,又∠1+∠2=90°,∴∠2==45°;故答案为45°.19.如图,直线a、b相交,已知∠1=38°,则∠2=度,∠3=°,∠4=°.【答案】142;38;142【解析】根据对顶角相等,邻补角互补进行计算即可求解.解:∵∠1=38°,∴∠3=∠1=38°,∠2=180°﹣38°=142°,∠4=∠2=142°.故答案为:142,38,142.20.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为度.【答案】55°【解析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∠ABE=35°,继而即可求出答案.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故答案为:55.。
人教版七年级数学下册5-1-1 相交线 习题(含答案及解析)(4)
5.1.1 相交线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.在同一平面内,画出三条直线,使它们满足下列条件:①没有交点;②有一个交点;③有两个交点;④有三个交点.其中能画出图形的是()A.①②③④B.①②③C.①②④D.①③答案:A解析:根据直线的位置关系,确定每种情况下三直线的位置即可.①三条直线分别平行时,没有交点,故图形可以画出;②三条直线可以同时经过一个点,故图形可以画出;③其中两直线平行,第三条直线与平行的直线相交,故图形可以画出;④三条直线任意两条都相交时,有三个交点,故图形可以画出.故选A.2.互不重合的三条直线公共点的个数是()A.只可能是0个,1个或3个B.只可能是0个,1个或2个C.只可能是0个,2个或3个D.0个,1个,2个或3个都有可能答案:D解析:如下图,有4种情况.图1,三条直线平行时,无交点;图2,有一个交点;图3,当其中两条直线平行,与第三条直线不平行时,有两个交点;图4,有三个交点.故选D.3.如图1,其中∠1与∠2是同位角的是()A.②③B.②③④C.①②④D.③④答案:C解析:试题根据同位角定义可知①②④中∠1与∠2是同位角.故选C.4.如图,直线a,b相交于点O,若∠1=50°,则∠2和∠3的度数分别是( ) A.50°,40°B.50°,130°C.130°,50°D.50°,50°答案:B解析:由图示可得,∠1与∠2互为对顶角,∠1与∠3互为邻补角,根据两直线相交,对顶角相等,邻补角互补求解.详解:解:∵∠1与∠2是对顶角,∴∠2=∠1=50°,∵∠1+∠3=180°,∴∠3=130°.故选B.点睛:本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.5.如图,AB,CD,EF相交于点O,则∠1+∠2+∠3等于( )A.90°B.120°C.150°D.180°答案:D解析:根据对顶角相等可得∠3=∠AOC,再根据∠1+∠2+∠AOC=180°即可得到答案.详解:∵∠1+∠2+∠AOC=180°,∠3=∠AOC(对顶角相等),∴∠1+∠2+∠3=180°.故选D.点睛:本题考点:对顶角的相等.6.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为()A.30°B.60°C.70°D.150°答案:A详解:解:∵∠α和∠β是对顶角,∴∠α=∠β∵∠α=30°,∴∠β=30°故选:A点睛:本题考查对顶角的性质.7.平面内两两相交的8条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.16 B.18 C.29 D.28答案:C解析:试题根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即m=1;任意两直线相交都产生一个交点时交点最多,∵任意三条直线不过同一点,∴此时交点为:8×(8﹣1)÷2=28,即n=28;则故选C.8.下列图形中,∠1与∠2是对顶角的是( )A.(A)B.(B)C.(C)D.(D)答案:C解析:由对顶角的定义:“有公共顶点,且两边分别互为反向延长线的两个角互为对顶角”分析可知,A、B、D三幅图中的∠1、∠2都不是对顶角,只有C图中的∠1、∠2是对顶角. 故选C.二、填空题1.如图,枕木与枕木的位置关系是___,铁轨与枕木的位置关系是___.答案:平行垂直解析:由图像不难得出枕木与枕木的位置关系是平行,铁轨与枕木的位置关系是垂直.故答案为(1). 平行;(2). 垂直.2.如图,枕木与枕木的位置关系是___,铁轨与枕木的位置关系是___.答案:平行垂直解析:由图像不难得出枕木与枕木的位置关系是平行,铁轨与枕木的位置关系是垂直.故答案为(1). 平行;(2). 垂直.3.探究题:(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有_________对,邻补角有__________对.答案:(1)1,3;(2)1,6;(3)1,(1)2n n,n(n-1),2n(n-1)解析:试题分析:当直线同交于一点时,只有一个交点;当直线两两相交,且不过同一点时,交点个数最多;根据对顶角与邻补角的定义找出即可.(1)三条直线相交,最少有1个交点,最多有3个交点,如图:对顶角:6对,邻补角:12对;(2)四条直线相交,最少有1个交点,最多有6个交点,如图:对顶角:12对,邻补角:24对;(3)n条直线相交,最少有1个交点,最多有(1)2n n-个交点,对顶角有n(n﹣1)对,邻补角有2n(n﹣1)对.故答案为(1)1,3;(2)1,6;(3)1,(1)2n n-,n(n﹣1),2n(n﹣1).4.在同一平面内,直线a,b相交于点P,若a⊥c,则b,c的位置关系是_____.答案:相交或平行解析:当a⊥b时,由于a⊥c,a⊥b,根据“同一平面内,垂直于同一条直线的两条直线平行”可得b∥c;当a、b相交(不垂直)时,由于a⊥c,a、b相交,可得b与c相交.故答案为:相交或平行.5.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠EOD=25°,则∠AOC=________°,∠BOC=________°;(2)若∠AOD=140°,则∠BOE=________°.答案:(1)50,130;(2)20.解析:(1) 利用角平分线的性质以及对顶角、邻补角的知识进行求解;(2)根据角平分线的性质和平角的定义解答即可.详解:(1)∵OE平分∠BOD,∠EOD=25°,∴∠BOD=2∠EOD=50°.根据对顶角相等,得:∠AOC=∠BOD=50°,∠BOC=180°-∠BOD=130°.(2) ∵∠AOD+∠BOD=180°, ∠AOD=140°, ∴∠BOD=180°-140°=40°,∵OE 平分∠BOD, ∴∠BOE=12∠BOD=12×40°=20°.故答案为(1)50,130;(2)20. 点睛:本题考查了角平分线性质及平角定义,关键是灵活运用这些性质.6.如图,直线AB 、CD 相交于点O ,∠DOE∶∠DOB=4∶5,OF 平分∠AOD,∠AOC=∠AOF-15°,则∠EOF 的度数为__________. 答案:105°分析:根据题目中∠DOE∶∠DOB=4∶5的关系设未知数,再由∠AOC=∠AOF-15°列出方程,求解未知数的值,最后可求得∠EOF 的度数. 详解:解:∵∠DOE∶∠DOB=4:5设∠DOE=4x ,则∠DOB=5x ∴∠AOC=∠BOD=5x∵∠AOC+∠AOD=180∴∠AOD=180°-∠AOC=180-5x∵OF 平分∠AOD∴∠AOF=∠FOD=18052x - ∵∠AOC=∠AOF -15 ∴5x =18052x --15 解的:x =10 ∴∠DOE=40,∠FOD=1805102-⨯=65 ∴∠EOF=∠FOD+∠DOE=105故答案是:105点睛:本题主要考察角度计算问题,合理的设未知数及方程的建立是解题的关键.7.如图,已知直线AB、CD相交于O,如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y +4)°,则∠AOD的度数为____.答案:110°解析:根据图示知,∠AOC=∠BOD,即2x°=(y+4)°,①∠AOC+∠BOC=180°,即2x°+(x+y+9)°=180°,②由①②解得,x°=35°,y°=66°,所以∠AOD=∠BOC=(x+y+9)°=110°,故答案是:110°.8.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=______.答案:134°解析:试题分析:根据题意可得∠AOE=90°,则∠AOC=46°,则∠AOD=180°-∠AOC=180°-46°=134°.考点:角度的计算.9.猜谜语(打两个数学名词)从最后一个数起:________ 两牛相斗:________ .答案:倒数;对顶角解析:从最后一个数起即倒数,两牛相斗即对顶角.详解:从最后一个数起即倒数,两牛相斗即对顶角.故答案为倒数、对顶角.点睛:本题考查了倒数和对顶角的概念,趣味性较强.三、解答题1.如图,直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE 的度数吗?答案:∠AOE=58°.解析:根据对顶角相等可得∠EOC=∠DOF,由垂直定义可得∠AOE+∠EOC=90°,所以∠AOE =90°-∠EOC=90°-32°=58°.详解:解:能,因为直线CD与EF交于O,所以∠EOC=∠DOF.因为∠DOF=32°.所以∠EOC=32°.因为AB,CD互相垂直,所以∠AOC=90°.所以∠AOE+∠EOC=90°.所以∠AOE=90°-∠EOC=90°-32°=58°.点睛:此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.2.如图,已知直线AB,CD,EF相交于点O,∠1=15°,∠2=95°,求∠3的度数.答案:70°.解析:根据平角等于180°求出∠EOB,再根据对顶角相等解答.详解:因为∠1=15°,∠2=95°,所以∠EOB=180°-∠1-∠2=180°-15°-95°=70°,所以∠3=∠EOB=70°.点睛:本题考查了的对顶角相等的性质,主要利用了平角的定义和性质,熟记性质并准确识图是解题的关键.3.如图,直线AB,CD,EF相交于点O.(1)写出∠COE的邻补角;(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.答案:(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∠FOC=150°.解析:(1)根据邻补角的定义(两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角)可得,∠COE的邻补角有∠COF和∠EOD两个角;(2)根据对顶角的定义(一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点)可得,∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)由∠BOF=90°可得:AB⊥EF,所以∠AOF=90°,由∠AOC=∠BOD可得:∠AOC =60°,由∠FOC=∠AOF+∠AOC即可求出∠FOC的度数;详解:(1)∠COE的邻补角为∠COF和∠EOD;(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF;(3)∵∠BOF=90°,∴AB⊥EF∴∠AOF=90°,又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°.4.如图,直线AB,CD互相垂直,垂足为O,直线EF过点O,∠DOF=32°,你能求出∠AOE 的度数吗?答案:∠AOE=58°.解析:根据对顶角相等可得∠EOC=∠DOF,由垂直定义可得∠AOE+∠EOC=90°,所以∠AOE =90°-∠EOC=90°-32°=58°.详解:解:能,因为直线CD与EF交于O,所以∠EOC=∠DOF.因为∠DOF=32°.所以∠EOC=32°.因为AB,CD互相垂直,所以∠AOC=90°.所以∠AOE+∠EOC=90°.所以∠AOE=90°-∠EOC=90°-32°=58°.点睛:此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.。
初一数学相交线练习题.doc
5.1.1相交线姓名年级分数一、选择题1.如图所示,∠1和∠2 是对顶角的图形有()个A 1 个B 2 个C 3个D 4 个2.邻补角是()A 和为 180°的两个角B 有公共顶点且互补的两个角C 有一条公共边相等的两个角D 有公共顶点且有一条公共边,另一边互为反向延长线的两个角3.如图,直线 AB 与 CD 相交于点 O ,若∠ AOC+∠ BOD=90°,则∠ BOC()A 135°B 120°C 100°D 145°4.如图,∠ACB=90°, CD⊥ AB,则图中与∠ 2 互余的角有个,它们分别是。
二、填空题5.如果一个角比它的邻补角小30°,则这个角的度数为°。
6.如图, AB 交 CD于 O 点, OE 是端点为 O 的一条射线,图中的对顶角有对邻补角各有对7.如图,已知直线是°AB,CD 相交于点O, OA 平分∠EOC,∠ EOC=70°,则∠BOD 的度数8.如图,直线AB、 CD相交于点解:因为∠ DOB=∠(O,∠ AOC=80°,∠ 1=30°,求∠)2 的度数=80°(已知)所以,∠ DOB=°(等量代换)又因为∠ 1=30°()所以∠2=∠- ∠= - = °三、解答题:9.如图,直线 AB, CD相交于点 O ,OE 平分∠ BOD,OF 平分∠ COE,∠ AOD:∠ BOE=4:1,求∠ AOF 的度数。
10.如图所示是某城市古建筑群中一座古塔底部的建筑平面图,请你利用学过的知识设计如何测量出古塔外墙底部的∠ ABC的大小的方案,并说明理由。
参考答案:1.A 4. 2 个∠ ACD∠B 5. 75° 6. 2;57. 35°8. ∠ AOC,对顶角相等,∠A OC,80°,已知∠ BOD,∠ 1,80°, 30°, 50°9 解:由已知设∠ AOD=4x°,∠ BOE=x° ∵ OE平分∠ BOD,∴∠ BOD=2∠ BOE=2x°∵∠ AOD+∠ BOD=180° ∴ 6x=180° x=30° ∴∠ BOE=30°,∴∠ AOD=120°∠BOD=60°∠ COE=150°∵OF 平分∠ COE ∴∠ EOF=1∠COE=75°2∴∠ BOF=∠ EOF-∠ BOE=45°∴∠ AOF=∠ AOB-∠ BOF=135°10.方法一:作 AB 的延长线,如图 1 所示,量出∠ CBD 的度数,∠ ABC=180° -∠ CBD 方法二:作 AB 和 CB 的延长线,如图 2 所示,量出∠ DBE的度数,∠ ABC=∠ DBE。
初一数学相交线试题
初一数学相交线试题1.如图,直线AB和CD相交于点O,若∠AOC=125°,则∠AOD=()A.50°B.55°C.60°D.65°【答案】B【解析】根据邻补角的和等于180°列式进行计算即可得解.解:∵∠AOC=125°,∴∠AOD=180°﹣125°=55°.故选B.2.如图,直线a与直线c相交于点O,∠1的度数是()A.60°B.50°C.40°D.30°【答案】D【解析】根据邻补角的和等于180°列式计算即可得解.解:∠1=180°﹣150°=30°.故选D.3.如图,直线AB和CD相交于点O,若∠AOD=55°,则∠AOC=()A.115°B.120°C.125°D.130°【答案】C【解析】根据互为邻补角的两个角的和等于180°列式计算即可得解.解:∵∠AOD=55°,∴∠AOC=180°﹣55°=125°.故选C.4.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是()A.50° B.60° C.80° D.70°【答案】C【解析】首先根据角平分线的性质可得∠EOB=∠COE,进而得到∠COB的度数,再根据邻补角互补可算出∠BOD的度数.解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=50°,∴∠COB=100°,∴∠BOD=180°﹣100°=80°.故选:C.5.一块直角三角板放在两平行直线上,如图所示,∠1+∠2=度.【答案】90【解析】根据对顶角相等得到∠1=∠3,∠2=∠4,而三角形尺为直尺,即可得到∠1+∠2=90°.解:如图,∵∠1=∠3,∠2=∠4,而∠3+∠4=90°,∴∠1+∠2=90°.故答案为:90.6.如图,O是直线AB上一点,∠COB=30°,则∠1=°.【答案】150【解析】根据邻补角互补进行计算即可.解:∵∠COB=30°,∴∠1=180°﹣30°=150°.故答案为:150.7.如图,已知直线AB和CD相交于点O,OE⊥AB,∠AOD=128°,则∠COE的度数是度.【答案】38【解析】首先根据邻补角的定义可得∠COA的度数,再根据垂直可得∠AOE=90°,再根据互余两角的关系可计算出答案.解:∵∠AOD=128°,∴∠COA=180°﹣128°=52°,∵OE⊥AB,∴∠AOE=90°,∴∠COE=90°﹣52°=38°,故答案为:38.8.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,则∠BOD的大小为.【答案】22°【解析】根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.解:∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE﹣∠COF=90°﹣34°=56°,∵OF平分∠AOE,∴∠AOF=∠COE=56°,∴∠AOC=∠AOF﹣∠COF=56°﹣34°=22°,∴∠BOD=∠AOC=22°.故答案为:22°.9.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度;若OF平分∠DOB,则∠EOF的度数是度.【答案】35;107.5【解析】根据OE⊥AB,∠1=55°可求出∠AOC,根据∠AOC和∠BOD是对顶角,答案可求;根据OE⊥AB,OF平分∠DOB,可求出∠BOF,答案可求.解:∵OE⊥AB,∠1=55°,∴∠AOC=90°﹣∠1=90°﹣55°=35°,又∵∠BOD=∠AOC,∴∠BOD=35°;∵OE⊥AB,∴∠EOB=90°,又∵OF平分∠DOB,∴∠BOF=∠DOB=×35°=17.5°,∠EOF=∠EOB+∠BOF=90°+17.5°=107.5°.故答案分别为:35°;107.5°.10.如图,已知直线l1、l2、l3两两相交,且∠1=60°,∠2=∠4,则∠3=,∠5=.【答案】120°;90°【解析】根据邻补角的和等于180°列式计算即可求出∠3的度数;先根据对顶角相等求出∠2的度数,再求出∠4,然后根据邻补角的和等于180°列式计算即可求出∠5的度数.解:∵∠1=60°,∴∠3=180°﹣60°=120°;∠2=∠1=60°,∵∠2=∠4,∴∠4=∠2=×60°=90°,∴∠5=180°﹣∠4=180°﹣90°=90°.故答案为:120°,90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1 相交线
姓名年级分数
一、选择题
1.如图所示,∠1和∠2是对顶角的图形有()个
A 1个
B 2个
C 3个
D 4个
2.邻补角是()
A 和为180°的两个角
B 有公共顶点且互补的两个角
C 有一条公共边相等的两个角
D 有公共顶点且有一条公共边,另一边互为反向延长线的两个角
3.如图,直线AB与CD 相交于点O ,若∠AOC+∠BOD=90°,则∠BOC()
A 135°
B 120°
C 100°
D 145°
4.如图,∠ACB=90°,CD⊥AB,则图中与∠2互余的角有个,它们分别是。
二、填空题
5.如果一个角比它的邻补角小30°,则这个角的度数为°。
6.如图,AB交CD于O点,OE是端点为O的一条射线,图中的对顶角有对邻补角各有对
7.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数是°
8.如图,直线AB、CD相交于点O,∠AOC=80°,∠1=30°,求∠2的度数
解:因为∠DOB=∠()
=80°(已知)
所以,∠DOB= °(等量代换)
又因为∠1=30°()
所以∠2=∠- ∠= - = °
三、解答题:
9.如图,直线AB,CD相交于点O ,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE=4:1,求∠AOF的度数。
10.如图所示是某城市古建筑群中一座古塔底部的建筑平面图,请你利用学过的知识设计如何测量出古塔外墙底部的∠ABC的大小的方案,并说明理由。
参考答案:
1.A 2.D 3.A 4. 2个 ∠ACD ∠B 5. 75° 6. 2;5 7. 35° 8. ∠AOC ,对顶角相等,∠AOC,80°,已知∠BOD ,∠1,80°, 30°,50°
9解:由已知设∠AOD=4x °,∠BOE=x ° ∵OE 平分∠BOD ,∴∠BOD=2∠BOE=2x ° ∵∠AOD+∠BOD=180° ∴6x=180° x=30° ∴∠BOE=30°, ∴∠AOD=120° ∠BOD=60° ∠COE=150°
∵OF 平分∠COE ∴∠EOF=21
∠COE=75°
∴∠BOF=∠EOF-∠BOE=45° ∴∠AOF=∠AOB-∠BOF=135°
10.方法一:作AB 的延长线,如图1所示,量出∠CBD 的度数,∠ABC=180°-∠CBD 方法二:作AB 和CB 的延长线,如图2所示,量出∠DBE 的度数,∠ABC=∠DBE。