数学建模案例分析

合集下载

数学建模-第四篇-典型案例分析课件

数学建模-第四篇-典型案例分析课件

问题
☞ (1)请制定一个主管道钢管的订购和运输计 划, 使总费用最小(给出总费用).
☞ (2)请就(1)的模型分析: 哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个 钢厂钢管的产量的上限的变化对购运计划和总 费用的影响最大,并给出相应的数字结果.
☞ (3)如果要铺设的管道不是一条线, 而是一 个树形图, 铁路、公路和管道构成网络, 请就 这种更一般的情形给出一种解决办法, 并对图 二按(1)的要求给出模型和结果.
§2.4 流量估计 1. 拟合水位~时间函数.
2. 确定流量~时间函数.
3. 一天总用水量的估计.
§2.5 算法设计与编程
1.拟合第1.2时段的水位,并导出流量.
2. 拟合供水时段的流量.
3. 一天总用水量的估计. 4. 流量及总用水量的检验.
Watertower.m
32Biblioteka 302826
24
22
20
★ 空气阻力的影响 对不同出手速度和出手高度的出手角度和入射角度
v(m/s)
8.0 8.5 9.0
h (m)
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1.8 1.9 2.0 2.1
1度
2度
60.7869 61.6100 62.3017 62.9012
43.5424 41.5693 39.7156 37.9433
§1.2 问题的分析 d
d
球心偏前
0
△x
0 D
篮球入框
D
☞不考虑篮球和篮框大小,讨论球心命中框心的条件 ☞考虑篮球和篮框大小,讨论球心命中框心且入框条件 ☞保证球入框,出手角度和出手速度允许的最大偏差 ☞考虑空气阻力的影响

数学建模竞赛案例分析

数学建模竞赛案例分析

数学建模竞赛案例分析数学建模竞赛是一项旨在培养学生创新思维、动手能力和团队合作精神的活动。

参与竞赛的学生需要运用数学理论和方法解决实际问题,并通过建立模型、分析数据和验证结果等步骤,最终得出科学可行的结论。

本文将从一个具体的数学建模竞赛案例出发,进行深入分析。

案例介绍该案例是关于城市交通流量优化的问题。

某城市的交通拥堵问题日益严重,市政府决定通过优化交通信号灯的配时方案来减轻拥堵程度。

但是,在使用传统方式设置配时方案时,往往难以真实反映实际交通状况,造成传统方式不够准确和高效的问题。

因此,这个案例要求参赛队伍通过建模分析,给出一种更科学、更精确的交通信号灯优化方案。

建模分析团队成员首先分析了交通拥堵问题的原因,确定了车流量和信号灯配时之间的关系。

然后,他们在分析的基础上建立了一个数学模型,将交通信号灯的配时问题转化为优化问题。

针对所建模型,他们设计了相应的算法,并利用计算机进行模拟实验。

结果验证为了验证模型的准确性和有效性,他们选择了某主干道进行实地测试。

对于测试数据的采集,他们设计了专门的采样方案并进行了多次采样。

通过对数据的统计分析,他们得出了不同交通流量下的最优配时方案,并与之前的传统方案进行了对比。

结果表明,他们提出的优化方案在减轻拥堵程度、提高道路通行效率方面效果明显,证明了所建模型的准确性和可行性。

问题讨论在结果验证过程中,团队成员对模型的局限性和可扩展性进行了深入讨论。

他们提出了一些可能改进的方案,如增加交通流量的动态性、考虑多种车辆类型等。

同时,他们还针对模型的实用性进行了讨论,提出了一些具体的应用建议。

同时,他们也意识到建模过程中的一些假设和限制条件,比如忽略行人的影响等,需要在实际应用中进行进一步研究。

结论通过这个案例的分析,团队成员不仅提高了数学建模的能力,还学会了如何团队合作和实际应用建模成果。

同时,他们也发现了数学建模在实际问题解决中的潜力和局限性。

这个案例为他们提供了一个宝贵的学习机会,使他们的数学建模水平得到全面提升。

数学建模竞赛成功经验分享与案例分析

数学建模竞赛成功经验分享与案例分析

数学建模竞赛成功经验分享与案例分析在数学建模竞赛中,取得成功并非易事。

除了扎实的数学基础和分析能力外,团队合作与沟通、解题思维的总结与拓展、时间管理等方面的因素同样重要。

本文将分享一些数学建模竞赛的成功经验,并分析一些经典的案例。

一、团队合作与沟通在数学建模竞赛中,团队合作和沟通是关键。

合理分工,高效协作可以提高团队整体的工作效率。

团队成员之间需要及时沟通与交流,将个人的想法和观点分享出来,以便找到最佳的解决方案。

同时,团队需要制定明确的计划与目标,并进行有效的组织与调度。

案例分析:在某数学建模竞赛中,一支团队面对一个复杂的实际问题,团队成员通过深入讨论,在共同努力下确定了问题的解决思路,并把该思路转化为数学模型。

通过团队成员之间的合作与沟通,大大提高了解题的效率,并且最终获得了竞赛的好成绩。

二、解题思维的总结与拓展数学建模竞赛中的问题往往是实际问题,需要将问题进行数学化建模,设定适当的假设和变量,确定合适的求解方法。

有效的解题思维总结与拓展是成功的关键。

案例分析:在一场数学建模竞赛中,一支团队面对一个涉及交通拥堵的问题。

他们通过总结以往的经验,提出了一种创新的解题思路:将交通拥堵问题看作流体力学问题,并借鉴计算机模拟技术进行仿真实验。

这种新颖的思路帮助他们从一个全新的角度解决问题,并在竞赛中获得好成绩。

三、时间管理数学建模竞赛的时间限制通常较为紧张,在有限的时间内完成解题过程是一项挑战。

因此,良好的时间管理能力对于竞赛中的成功非常重要。

合理规划时间,掌握解题进度,合理分配时间用于建模、求解和分析是必备的能力。

案例分析:在一场数学建模竞赛中,一支团队遇到了一个非常复杂的优化问题。

经过初步分析后,他们立刻制定了详细的时间安排,明确每个环节所需的时间,并进行了合理分配。

这使得他们能够在有限时间内完成建模和求解,最终取得较好的成绩。

综上所述,数学建模竞赛的成功需要团队合作与沟通、解题思维的总结与拓展、以及良好的时间管理能力。

最新数学建模案例分析2双层玻璃的功效

最新数学建模案例分析2双层玻璃的功效

精品文档双层玻璃的功效北方城镇的有些建筑物的窗户是双层的,即窗户上装两层厚度为d 的玻璃夹着一层厚度为l 的空气,如左图所示,据说这样做是为了保暖,即减少室内向室外的热量流失 .我们要建立一个模型来描述热量通过窗户的热传导(即流失) 过程,并将双层玻璃窗与用同样多材料做成的单层玻璃窗 (如右图,玻璃厚度为2d )的热量传导进行对比,对双层玻璃窗能够减少多少热量损失给出定量分析结果 .一、模型假设1. 热量的传播过程只有传导,没有对流.即假定窗户的密封性能很好,两层玻璃之间的空气是不流动的;2. 室内温度T 和室外温度T 保持不变,热传导过程已处于稳定1 2状态,即沿热传导方向,单位时间通过单位面积的热量是常数;3. 玻璃材料均匀,热传导系数是常数 .二、 符号说明T ——室内温度 1T ——室外温度2 d ——单层玻璃厚度l ——两层玻璃之间的空气厚度T —— 内层玻璃的外侧温度aT ——外层玻璃的内侧温度bk ——热传导系数Q ——热量损失三、 模型建立与求解由物理学知道,在上述假设下,热传导过程遵从下面的 物理规 律:厚度为 d 的均匀介质,两侧温度差为 T ,则单位时间由温度高 的一侧向温度低的一侧通过单位面积的热量为 Q ,与 T 成正比,与d 成反比,即T Q = kd(1)其中 k 为热传导系数.1. 双层玻璃的热量流失记双层窗内窗玻璃的外侧温度为 T ,外层玻璃的内侧温度为 T ,a b玻璃的热传导系数为 k 1 ,空气的热传导系数为 k 2 ,由(1)式单位时 间单位面积的热量传导(热量流失)为:Q = k 1T T 1ad = k 2 T T ab d = k 1 T T b 2d(2)由 Q = k 1 T T 1ad及 Q = k 1 T T b2d可得 T a T b = (T 1 T 2 ) 2Qdk 1再代入 Q = k就将(2)中 T a 、 T b 消去,变形可得:k 1 (T 1 T 2 ) k l d (s + 2) k 2 d(3)2. 单层玻璃的热量流失对于厚度为 2d 的单层玻璃窗户,容易写出热量流失为:Q, = k 1 1 23. 单层玻璃窗和双层玻璃窗热量流失比较比较(3) (4)有: Q = 2Q, s + 2(4) (5)显然, Q < Q, .为了获得更具体的结果,我们需要 k 1 , k 2 的数据,从有关资料可 知,不流通、干燥空气的热传导系数 k 2 = 2.5 104(J/cm.s .ºC),常用玻璃的热传导系数 k 1 = 4 103 ~ 8 103 (J/cm.s.ºC),于是k 1= 16 ~ 32 k 2在分析双层玻璃窗比单层玻璃窗可减少多少热量损失时,我们 作最保守的估计,即取 k 1 = 16 ,由(3) (5)可得:2Q 1 =Q, 8h + 1k Q = , s = h1 , h = lh =(6)T Td2d精品文档4. 模型讨论比值Q Q,反映了双层玻璃窗在减少热量损失上的功效,它只与h = l d 有关,下图给出了Q Q, ~ h的曲线,当h由 0 增加时,Q Q,迅速下降,而当h超过一定值(比如h > 4)后Q Q,下降缓慢,可见h不宜选得过大.四、模型的应用这个模型具有一定的应用价值.制作双层玻璃窗虽然工艺复杂会增加一些费用,但它减少的热量损失却是相当可观的 .通常,建筑规范要求h = l d 必 4 .按照这个模型,Q Q, 必 3%,即双层玻璃窗比用同样多的玻璃材料制成的单层窗节约热量 97%左右.不难发现,之所以,而这有如此高的功效主要是由于层间空气的极低的热传导系数k2要求空气是干燥、不流通的.作为模型假设的这个条件在实际环境下精品文档当然不可能完全满足,所以实际上双层玻璃窗的功效会比上述结果差一些.。

初中数学建模案例

初中数学建模案例

初中数学建模案例数学建模案例:城市交通拥堵问题的优化摘要:城市交通拥堵是大城市所面临的普遍问题,本案例将通过建立数学模型对城市交通拥堵问题进行优化分析,以求解最佳车辆通行路线,提高交通运行效率。

通过引入实时的交通流数据,通过数学建模和优化算法,对现有的交通流模型进行改进。

1.引言城市交通拥堵严重影响到居民的出行效率和生活质量,同时还造成大量的汽车尾气排放,给环境带来巨大的负面影响。

因此,对城市交通拥堵问题进行优化分析,以提高交通运行效率和减少交通污染,具有重要的现实意义。

2.问题建模2.1基本假设我们对城市交通拥堵问题进行以下基本假设:1)假设城市交通网络是一个有向图,交叉口为节点,道路为边。

2)假设车辆的行驶速度在不同道路上是相同的。

3)假设车辆在交叉口处按照指定的交通规则进行行驶。

4)假设车辆的目的地是已知的。

2.2确定目标我们的目标是通过优化交通流模型,使得车辆在城市交通网络中的行驶时间最短。

2.3建立数学模型我们将采用最短路径算法求解车辆行驶的最佳路径。

首先,我们需要对城市交通网络进行建模。

假设城市交通网络中交叉口数量为N,那么可以用一个N×N的矩阵A来表示交通网络的连通关系,其中A[i][j]表示从节点i到节点j的道路长度。

如果节点i和节点j之间不存在直接的道路连接,则取A[i][j]为无穷大。

然后,我们可以采用Dijkstra算法来求解最短路径。

Dijkstra算法是一种贪心算法,它通过不断更新起点到所有其他节点的最短路径长度,从而找到起点到终点的最短路径。

具体步骤如下:1)初始化起点到所有其他节点的最短路径长度为无穷大。

2)将起点到起点的最短路径长度设为0。

3)将起点标记为已访问。

4)对于起点直接相连的节点,更新起点到这些节点的最短路径长度。

5)选择一个未访问的节点中最短路径长度最小的节点,将其标记为已访问。

6)更新这个节点直接相连的节点的最短路径长度。

7)重复步骤5和步骤6,直到所有节点都被标记为已访问。

数学建模案例分析

数学建模案例分析

数学建模案例分析数学建模是将现实问题转化为数学模型,并利用数学方法对模型进行求解的过程。

它是数学与实际问题结合的重要手段,能够帮助人们深入理解问题的本质,提供科学的决策依据。

以下是一个数学建模案例分析。

市有4个城区,现准备改造城市供水系统,以满足未来的供水需求。

根据过往的数据分析,每个城区的用水量与其人口数量、平均收入以及大型工厂的数量有关。

现在的问题是如何设计供水系统,使得满足各城区的用水需求,并且降低总成本。

为了解决这个问题,我们需要进行数学建模。

首先,我们需要确定影响用水量的因素。

1.人口数量:根据过往数据,我们可以得到人口数量与用水量之间的关系。

假设每增加1个人口,用水量增加A升,其中A为一个常数。

2.平均收入:平均收入的提高可能会促使人们增加用水量。

假设平均收入每提高1个单位,用水量增加B升,其中B为一个常数。

3.大型工厂数量:大型工厂对水的需求较大,可能对城区的用水量产生较大的影响。

假设每增加1个大型工厂,用水量增加C升,其中C为一个常数。

通过对过往数据的分析和回归分析,我们可以得到A、B和C的具体数值。

然后,我们可以建立供水系统的数学模型:设城区1、城区2、城区3和城区4的人口分别为x1、x2、x3和x4,平均收入分别为y1、y2、y3和y4,大型工厂数量分别为z1、z2、z3和z4设城区1、城区2、城区3和城区4的用水量分别为w1、w2、w3和w4根据前述的假设,我们可以得到数学模型:w1=A*x1+B*y1+C*z1w2=A*x2+B*y2+C*z2w3=A*x3+B*y3+C*z3w4=A*x4+B*y4+C*z4此外,由于我们希望降低总成本,我们还需要引入成本模型。

假设供水系统的建设成本与每个城区的用水量成正比,并且平均每增加1升用水量,建设成本增加D元,其中D为一个常数。

设城区1、城区2、城区3和城区4的建设成本分别为cost1、cost2、cost3和cost4根据成本因素,我们可以得到成本模型:cost1 = D * w1cost2 = D * w2cost3 = D * w3cost4 = D * w4接下来,我们需要优化这个数学模型。

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。

我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。

文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。

我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。

通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。

本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。

二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。

在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。

这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。

在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。

然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。

接下来,我们可以选择适合的模型进行训练。

在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。

我们需要根据数据的特性和问题的需求,选择最合适的模型。

同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。

我们需要对模型进行评估和优化。

这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。

如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。

数学建模案例分析【精选文档】

数学建模案例分析【精选文档】

案例分析1:自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。

它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。

但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。

扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。

为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断.若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。

这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。

产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。

我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。

寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。

本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。

如换成自行车的路程寿命来比较,就好得多。

产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。

弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。

自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。

数学案例分析报告范文6篇

数学案例分析报告范文6篇

数学案例分析报告范文6篇篇一:利用数学建模分析消费者行为在本篇案例中,我们将利用数学建模的方法分析消费者在特定市场环境下的购买行为。

通过收集大量的数据,并运用数学模型对这些数据进行分析,我们可以找出消费者的偏好、购买意向以及其他相关因素,从而帮助企业更好地制定营销策略。

篇二:基于数学模型的财务风险评估本文将以一个实际的财务风险案例为例,探讨如何通过建立数学模型对公司的财务状况进行评估,并提出相应的预警措施。

借助数学的工具和方法,我们可以更准确地分析公司的财务数据,并给出科学的建议,以降低财务风险。

篇三:数学模型在供应链管理中的应用本文将介绍数学模型在供应链管理中的应用。

通过对供应链各环节的数据分析,建立数学模型,我们可以优化供应链的运作效率,降低运营成本,并实现更好的供应链规划和管理。

篇四:利用数学建模分析社会网络结构在这篇案例中,我们将利用数学建模方法分析社会网络的结构,探讨不同个体之间的关系、影响力和传播效应。

通过建立数学模型,我们可以更好地理解社会网络的特点,为社会研究提供新的视角。

篇五:基于数据分析的股市预测模型本文将介绍一个基于数据分析的股市预测模型案例。

通过对历史股市数据的分析和建模,我们可以预测股市未来的走势,帮助投资者做出更明智的投资决策。

数学模型的应用将使股市预测更加科学和可靠。

篇六:数学模型在医学诊断中的应用最后一篇案例将介绍数学模型在医学诊断中的应用。

通过分析患者的医疗数据和病情,建立数学模型可以辅助医生做出更准确的诊断和治疗方案,提高医疗效率,帮助患者早日康复。

以上就是六个数学案例分析报告范文,通过这些案例的介绍,我们可以看到数学在各个领域的应用,为问题的解决提供了新的思路和方法。

愿本文对您有所启发和帮助。

数学建模案例分析--线性代数建模案例20例

数学建模案例分析--线性代数建模案例20例

线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。

案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。

根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。

正负数的实际应用数学建模实践与分析案例解析

正负数的实际应用数学建模实践与分析案例解析

正负数的实际应用数学建模实践与分析案例解析数学建模是一种将实际问题抽象为数学模型并运用数学方法进行分析与解决的方法。

在实际应用中,正负数的概念经常被用于数学建模中。

本文将通过分析实际案例,探讨正负数在数学建模中的实际应用,以及建模过程的分析和解决方案。

案例一:地铁购票系统设计地铁购票系统是当代城市中重要的交通工具之一,如何设计一个高效的购票系统对于提升出行体验至关重要。

我们考虑以下情景:假设一张地铁车票的价格为10元,用户购票时可以选择单程票或者月票。

若用户选择购买月票,需要支付300元,且月票的有效期为30天。

如果用户购买单程票,则需要在每次乘车时支付10元,但月票可以在30天内无限次地乘坐地铁。

我们将这个问题抽象为一个数学模型。

首先,我们定义正数表示实际花费,负数表示实际收入。

根据用户购票的选择,我们可以得到以下数学模型:令x表示购买单程票的次数,y表示购买月票的次数,则总花费为10x+300y。

同时,我们要考虑用户是否能够通过购买月票来节省费用。

如果用户的地铁需求超过了7次(即超过了70元),那么购买月票将比购买单程票更划算;否则,购买单程票更合适。

通过对不同情况下的花费进行比较,我们可以得到最优解。

案例二:气温变化的数学模拟气温变化是一个经常被研究的话题,在防灾减灾、农业生产等方面都需要对气温进行准确预测和模拟。

我们考虑以下情景:假设某地区的一年中气温最低为-10℃,最高为30℃,温度的变化满足一定的函数关系。

我们可以使用数学模型来模拟气温变化。

令t表示某一天的气温,x 表示所处的日期(1表示一年中的第一天,365表示一年中的最后一天),则我们可以假设气温与日期的关系为t = a * sin(b * x + c) + d,其中a为振幅,b为周期,c为相位差,d为平均值。

通过对历史气温数据的分析,我们可以得到最佳的模型参数,并通过该模型进行气温的预测和模拟。

通过以上案例的分析可见,正负数在数学建模中有着广泛的应用。

数学建模的创新案例与思考

数学建模的创新案例与思考

数学建模的创新案例与思考在现代社会中,数学建模已经成为解决复杂问题和开展科学研究的重要方法之一。

通过数学建模,我们可以将现实问题抽象化、分析化,找到问题的本质,并通过数学方法进行求解和优化。

本文将介绍一些数学建模的创新案例,并对其进行思考和总结。

案例一:交通路径规划随着城市交通问题的日益凸显,优化交通路径规划成为一项重要任务。

基于数学建模的方法,我们可以借助图论、最短路径算法等工具,对城市路网和交通流量进行建模和分析,从而为交通管理者提供最佳路径规划方案。

以某城市为例,我们可以通过收集该城市的交通数据,包括道路长度、道路拓扑结构、交通流量等信息。

然后,我们可以建立数学模型,将城市道路网络抽象为图,并根据交通流量分布情况确定边的权重。

接下来,可以使用最短路径算法,如迪杰斯特拉算法或A*算法,从而求解出最优路径。

通过该数学建模方法,我们能够准确评估交通路线的效率,并提出改进建议。

在实践中,这种方法已经被应用于公交车路径优化、快递员配送路线规划等方面,取得了显著的效果。

案例二:股票价格预测股票价格的预测一直是金融领域的热门研究课题之一。

传统的技术分析和基本面分析方法存在局限性,而数学建模方法则可以更准确地预测股票价格的走势。

在这种情况下,我们可以使用时间序列分析和回归分析等方法来构建数学模型。

首先,我们需要收集大量的历史股票数据,包括价格、交易量、市场指标等信息。

然后,利用统计学方法对数据进行分析,并建立相应的模型。

最后,通过模型的拟合和预测,我们可以得到对股票价格走势的预测结果。

值得注意的是,股票市场的复杂性使得股票价格的预测存在一定的不确定性。

因此,在实际应用中,我们需要结合多种建模方法和技术指标,综合考虑各种因素,提高预测的准确性和可靠性。

总结与思考数学建模作为一种创新的思维方式和工具,已经在各个领域展现出了巨大的潜力和广泛的应用前景。

通过数学建模,我们可以更好地理解和解决现实问题,并推动科学研究的发展。

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法数学建模是将实际问题转化为数学模型,并利用数学方法对问题进行分析和求解的过程。

在实际生活中,我们面临各种各样的问题,例如交通拥堵、疾病传播、环境污染等,这些问题的解决离不开数学建模的应用。

本文将通过几个具体案例,介绍实际问题的数学建模和解决方法。

案例一:交通拥堵问题交通拥堵是城市中常见的难题。

为了缓解交通拥堵,我们可以使用数学建模的方法来分析和优化交通流。

首先,我们可以将城市的交通网络抽象成一个图,节点表示交叉口,边表示道路。

然后,根据实际情况,给每条边赋予一个权重,表示该道路的通行能力。

接下来,我们可以使用最短路径算法来求解最短路径,并将结果应用于交通规划和调度。

案例二:疾病传播问题疾病传播是公共卫生领域的重要问题。

为了有效地控制疾病的传播,我们可以使用数学建模的方法来分析和预测疾病的传播路径和速度。

首先,我们可以将人群划分为不同的类别,如易感者、感染者和康复者。

然后,我们可以建立传染病传播的动力学模型,例如SIR模型,来描述不同类别之间的转化关系。

接下来,我们可以使用微分方程组来求解该模型,并根据模型的结果进行疾病控制和预防策略的制定。

案例三:环境污染问题环境污染是全球面临的重要挑战之一。

为了减少环境污染的影响,我们可以使用数学建模的方法来分析和评估不同的治理措施。

首先,我们可以建立环境污染的传输模型,考虑污染物在大气、地表和地下水中的运移规律。

然后,我们可以使用数学方法,如有限元法或数值模拟方法,来求解该模型,并评估不同治理方案的效果。

最后,根据模型的结果,制定相应的环境保护政策和措施。

总结起来,数学建模是解决实际问题的一种重要方法。

通过将实际问题抽象为数学模型,并运用数学方法对模型进行求解和分析,我们能够更好地理解问题的本质和规律,并提出有效的解决方案。

在今后的发展中,数学建模将在各个领域发挥重要作用,为我们解决更多实际问题提供帮助。

以上是对题目“实际问题的数学建模和解决方法”的论述,通过介绍交通拥堵、疾病传播和环境污染等不同领域的案例,说明了数学建模在解决实际问题中的应用。

数学建模案例分析5.建模案例:最佳灾情巡视路线

数学建模案例分析5.建模案例:最佳灾情巡视路线

建模案例:最佳灾情巡视路线这里介绍1998年全国大学生数学模型竞赛B题中的两个问题.一、问题今年夏天某县遭受水灾.为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视.巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线.1.若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的路线.2.假定巡视人员在各乡(镇)停留时间T=2h,在各村停留时间t=1h,汽车行驶速度V=35km/h.要在24h内完成巡视,至少应分几组;给出这种分组下最佳的巡视路线.乡镇、村的公路网示意图见图1.图1二、假设1.汽车在路上的速度总是一定,不会出现抛锚等现象;2.巡视当中,在每个乡镇、村的停留时间一定,不会出现特殊情况而延误时间;3.每个小组的汽车行驶速度完全一样;4.分组后,各小组只能走自己区内的路,不能走其他小组的路(除公共路外).三、模型的建立与求解将公路网图中,每个乡(镇)或村看作图中的一个节点,各乡(镇)、村之间的公路看作图中对应节点间的边,各条公路的长度(或行驶时间)看作对应边上的权,所给公路网就转化为加权网络图,问题就转化为在给定的加权网络图中寻找从给定点O 出发,行遍所有顶点至少一次再回到O 点,使得总权(路程或时间)最小,此即最佳推销员回路问题.在加权图G 中求最佳推销员回路问题是NP —完全问题,我们采用一种近似算法求出该问题的一个近似最优解,来代替最优解,算法如下:算法一 求加权图G (V ,E )的最佳推销员回路的近似算法:1. 用图论软件包求出G 中任意两个顶点间的最短路,构造出完备图),(E V G '',()E y x '∈∀,, ()(),,G x y mind x y ω=;2. 输入图G '的一个初始H 圈;3. 用对角线完全算法产生一个初始H 圈;4. 随机搜索出G '中若干个H 圈,例如2000个;5. 对第2、3、4步所得的每个H 圈,用二边逐次修正法进行优化,得到近似最佳H 圈;6. 在第5步求出的所有H 圈中,找出权最小的一个,此即要找的最佳H圈的近似解.由于二边逐次修正法的结果与初始圈有关,故本算法第2、3、4步分别用三种方法产生初始圈,以保证能得到较优的计算结果.问题一 若分为3组巡视,设计总路程最短且各组尽可能均衡的巡视路线.此问题是多个推销员的最佳推销员回路问题.即在加权图G 中求顶点集V 的划分12,,,n V V V ,将G 分成n 个生成子图[][][]12,,...,n G V G V G V ,使得(1)顶点i V O ∈, i =1,2,3,…,n ;(2)()G V V n i i== 1 ;(3)()()(),m ax m ax i j i ji i C C C ωωαω-≤,其中i C 为i V 的导出子图[]i V G 中的最佳推销员回路,()i C ω为i C 的权,i ,j =1,2,3,…,n ;(4)()1ni i C ω=∑取最小.定义 称()()(),0m ax m ax i j i ji i C C C ωωαω-=为该分组的实际均衡度.α为最大容许均衡度.显然100≤≤α,0α越小,说明分组的均衡性越好.取定一个α后,0α与α满足条件(3)的分组是一个均衡分组.条件(4)表示总巡视路线最短.此问题包含两方面:第一,对顶点分组;第二,在每组中求最佳推销员回路,即为单个推销员的最佳推销员问题.由于单个推销员的最佳推销员回路问题不存在多项式时间内的精确算法,故多个推销员的问题也不存在多项式时间内的精确算法.而图中节点数较多,为53个,我们只能去寻求一种较合理的划分准则,对图1进行粗步划分后,求出各部分近似最佳推销员回路的权,再进一步调整,使得各部分满足均衡性条件(3).图2 O点到任意点的最短路图(单位:km)从O点出发去其他点,要使路程较小应尽量走O点到该点的最短路.故用图论软件包求出O点到其余顶点的最短路,这些最短路构成一棵以O为树根的树,将从O点出发的树枝称为干枝,见图2,从图中可以看出,从O点出发到其它点共有6条干枝,他们的名称分别为①,②,③,④,⑤,⑥.根据实际工作的经验及上述分析,在分组时应遵从以下准则:准则一:尽量使同一干枝及其分枝上的点分在同一组;准则二:应将相邻的干枝上的点分在同一组;准则三:尽量将长的干枝与短的干枝分在同一组.由上述分组准则,我们找到两种分组形式如下:分组一:(⑥,①),(②,③),(⑤,④);分组二:(①,②),(③,④),(⑤,⑥).显然分组一的方法极不均衡,故考虑分组二.对分组二中每组顶点的生成子图,用算法一求出近似最优解及相应的巡视路线.使用算法一时,在每个子图所构造的完备图中,取一个尽量包含图2中树上的边的H圈作为其第2步输入的初始圈.分组二的近似解见表1.因为该分组的均衡度0α=()()()121,2,3241.9125.5m ax 241.9i i C C C ωωω=--==54.2%所以此分法的均衡性很差.为改善均衡性,将第Ⅱ组中的顶点C ,2,3,D ,4分给第Ⅲ组(顶点2为这两组的公共点),重新分组后的近似最优解见表2.因该分组的均衡度=0α()311,2,3216.4191.1m ax 216.4i i C C C ωωω=--==11.69%所以这种分法的均衡性较好.问题二 当巡视人员在各乡(镇)、村的停留时间一定,汽车的行驶速度一定,要在24h 内完成巡视,至少要分几组及最佳的巡视路线.由于T =2h ,t =1h ,V =35km/h ,需访问的乡镇共有17个,村共有35个.计算出在乡(镇)及村的总停留时间为17⨯2h+35h=69h ,要在24h 内完成巡回,若不考虑行走时间,有: 2469<i (i 为分的组数).得i 最小为4,故至少要分4组.由于该网络的乡(镇)、村分布较为均匀,故有可能找出停留时间尽量均衡的分组,当分4组时各组停留时间大约为69h 17.254=h ,则每组分配在路途上的时间大约为24h-17.25h=6.75h.而前面讨论过,分三组时有个总路程599.8km 的巡视路线,分4组时的总路程不会比599.8km 大太多,不妨以599.8km 来计算.路上时间约为599.8h 1735=h ,若平均分配给4个组,每个组约需417h=4.25h〈6.75h ,故分成4组是可能办到的.现在尝试将顶点分为4组.分组的原则:除遵从前面准则一、二、三外,还应遵从以下准则:准则四:尽量使各组的停留时间相等.用上述原则在图2上将图分为4组,同时计算各组的停留时间,然后用算法一算出各组的近似最佳推销员巡回,得出路线长度及行走时间,从而得出完成巡视的近似最佳时间.用算法一计算时,初始圈的输入与分3组时同样处理.这4组的近似最优解见表3.加框的表示此点只经过不停留.该分组实际均衡度0α==-74.2269.2174.22 4.62%可以看出,表3分组的均衡度很好,且完全满足24h 完成巡视的要求.。

小学生数学建模的案例分析

小学生数学建模的案例分析

小学生数学建模的案例分析在现如今的教育体系中,数学建模已经逐渐成为培养学生创新能力和解决实际问题能力的重要手段之一。

尤其是对小学生来说,通过数学建模的学习,可以培养孩子们的观察力、分析能力和问题解决能力。

本文将通过分析一个小学生数学建模的案例,探讨数学建模对于小学生学习的意义和作用。

案例:小明的帽子小明是一个小学三年级的学生,他喜欢戴帽子。

有一天,他在帽子店捡到了一个袋子,里面有一些帽子。

小明好奇地打开袋子,发现里面没有标签,也没有告诉他帽子的数量。

于是小明决定通过数学建模的方法来解决这个问题。

第一步,观察和收集信息。

小明先将帽子逐个取出,并用一张纸记录下每个帽子的特征,如颜色、形状、大小等。

同时,他还用一个小本子记录下袋子里帽子的数量。

第二步,分析问题。

小明在观察后发现,每个帽子的特征都不同,但是某些特征可能会重复出现,如颜色和形状。

他决定以颜色和形状为主要特征进行分类,并将每个帽子分到相应的类别中。

第三步,构建模型。

小明将问题简化为将帽子分成不同的类别,即颜色和形状。

他用彩色的纸条代表不同的颜色,用不同形状的图案代表帽子的形状。

然后,他用这些纸条和图案在桌上进行组合排列,找到合适的分类方法。

第四步,解决问题。

通过观察彩色纸条和图案在桌上的排列,小明发现可以将帽子分为四类:红色、蓝色、绿色和黄色;三种形状:圆形、方形和三角形。

于是他得出结论,袋子里有四顶红色的帽子、三顶蓝色的帽子、五顶绿色的帽子和两顶黄色的帽子。

同时,他还计算出袋子里共有14顶帽子。

通过这个案例,我们可以看出数学建模对于小学生的学习是有着积极意义和作用的。

首先,数学建模可以培养小学生的观察力和分析能力。

在这个案例中,小明通过观察和分析帽子的特征,运用数学的方法进行分类,并最终找到解决问题的方法。

这个过程培养了小明的观察和分析能力,提高了他的逻辑思维能力。

其次,数学建模可以培养小学生的问题解决能力。

通过这个案例,小明面临的问题是如何确定帽子的数量,他通过构建模型和合理的排列组合方法,最终解决了问题。

数学建模案例分析

数学建模案例分析

4 n 数值方法可得 f ( x ) 的最小值点 x 16.92 。由此可得 C 6 5(0.997) n 的最小值点为 17, C 的最小值为 1.48(分/二极管)。
*
5、结果分析
对于检验次品二极管的质量控制步骤可以使用分组检验的方法做得非常 经济.逐个检验的花费是5分/个。次品的二极管出现得很少,每一千中只有 三个。使用每一组17个二极管串联起来分组化验,在不影响质量的前提下可 以将检验的费用降低到三分之一(1.5分/二极管)。质量控制步骤的实行将依 赖于若干模型范围之外的因素。也许由于我们操作的特殊性对于10个或20个 一批的二极管或者n是4或5的倍数时检验起来更容易。好在对于我们的问题来 说,在n=10和n=35之间时检验的平均花费A没有明显的变化。在操作过程中的 次品率q=o.003同样也是必须考虑的。例如,这个数值可能会随着工厂内的 环境条件而发生变化。
x p
i i
i
。这一组概率值{ p i }表明了随机变量 X 的分布。
•对于我们的问题,任何的n>1,随机变量C 取两个可能数值中的一个:如果所有 的二极管都是好的,则 C=4+n 否则 C=(4+n)+5n
因为我们必须重新检验每一个二极管。用 p表示所有的二极管都是 正品的概率,剩下的可能性(有一个或更多的次品二极管 )一定有概 率1-p。则C的平均或期望值是
3、建模
考虑随机一个变量X,它可以取一个离散数值集合中的任何一个数值
X {x1 , x2 ,}
同时假设 X xi 的概率是 p i ,我们记为 P{X= x i }=p i ,显然这时有∑p i =1。因为 X 以 概率 p i 取数值 x i ,所以 X 的平均或期望值一定是所有可能的 x i 的加权平均,权值就是相应 的概率值 pi .可以写为 E ( X )

【精选】数学建模案例分析

【精选】数学建模案例分析

数学建模案例分析模型1 蠓虫分类问题背景 两种蠓虫和已由生物学家W.L.Grogon 和W.W.Wirth (1981)根据Af Apf 它们的触角长度、翅膀长度加以区分. 现测得只和只的触长、翅膀长的数据6Apf 9Af 如下:Apf()1.14,1.78()1.18,1.96()1.20,1.86()1.26,2.00()1.28,2.00()1.30,1.96Af()1.24,1.72()1.36,1.74()1.38,1.64()1.38,1.82()1.38,1.90()1.40,1.70()1.49,1.82()1.54,1.82()1.56,2.08问题 ⑴如何根据以上数据,制定一种方法正确区分两种蠓虫?⑵将你的方法用于触长、翅长分别为的个样本()()()1.24,1.80,1.28,1.84,1.40,2.043进行识别.如何考虑?该问题属于统计模型范畴!(属于黑洞问题)1.首先对已有数据进行分析.(测试)画出相应的散点图什么启发?从图中可以看出,两类蠓虫有明显的差别.问题是该如何识别.法1 用最小二乘法得到回归线:结果不理想.法2 用斜率的平均值构造直线结果?图中不同类别的蠓虫的区别还是比较明显的.如何做进一步的识别?用此方法对给定的三个蠓虫进行识别,若点在直线的上方,则判定为Apf,否则定为Af.由此建立识别函数dist.m. 对给定的样本进行识别,如果样本点在直线上方,则将该蠓虫识别为Apf(标示为1),否则识别为Af(标示为0).clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];n=length(x);k=sum(y./x)/n;A=[1.24,1.80;1.28,1.84;1.40,2.04];n=size(A,1);p=[];for i=1:nd=A(i,2)-k*A(i,1);if d>0p=[p,1];elsep=[p,0];endenddisp(p)结果为1 1 1即:三个新样本的判定结果均为Apf!这样的判定是否有效?(模型解释)为解释判别法的有效性,引入交叉误判率.交叉误判率是每次剔除一个样品,利用其余的训练样本建立判别准则,根据建立的判别准则对删除的样品进行判定,以其误判的比例作为误判率. 具体过程如下:①从总体为的训练样本开始,剔除其中每一个样品,剩余的个样品与中的1G 1m -2G 全部样品建立判别函数;②用建立的判别函数对剔除的样品进行判别;③重复上述步骤,直到中的全部样品依次被剔除、判别,其误判的总数记为;1G 12m ④对的样品重复步骤①②③,直到中的样品全部被剔除、判别,其误判的个数2G 2G 记为21,m 交叉误判率的估计值为1221ˆ.m m pm n+=+程序为clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];m1=length(Apf1);m2=length(Af1);n=length(x);k=sum(y./x)/n;A=[x',y'];p1=[];p2=[];for i=1:m1b=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p1=[p1,1];elsep1=[p1,0];endendfor i=m1+1:nb=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p2=[p2,1];elsep2=[p2,0];endenddisp(p1),disp(p2)结果为1 1 1 1 1 10 0 0 0 0 0 0 0 0结论:在这样的判定法则下,交叉误判率为零,说明方法还是有效的.模型2 饮酒驾车问题一、问题背景据报道,2003年全国道路交通死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例.针对这种严重的道路交通情况,国际质量监督检查检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准,新标准规定:车辆驾驶人员血液中的酒精含量大于或等于毫克/百毫升、小于毫克/百毫升为饮酒驾车;2080血液中的酒精含量大于或等于毫克/百毫升为醉酒驾车.大李在中午点喝了一瓶啤酒,8012下午点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为保险起见他6呆到凌晨点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,2为什么喝同样多的酒,两次检查结果却会不一样?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李的情况做出解释;2.在喝了瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情3况下回答:⑴酒是自很短时间内喝的;⑵酒是在较长一段时间(比如小时)内喝的.23.怎样估计血液中的酒精含量在什么时间内最高?4.根据你的模型论证;如果天天喝酒,是否还能开车?5.根据你的论证并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车的忠告.参考数据⑴人的体液占人的体重左右,其中血液只占体重的7%左右.而药物(包括65%70%:酒精)在血液中的含量与在体液中的含量大致相同.⑵体重在的某人在短时间内喝下瓶啤酒后,隔一定时间测量他的血液中酒精含70kg 2量(毫克/百毫升),得到数据如下:时间/小时0.250.50.751 1.252 2.53 3.544.55酒精含量306875828277686858515041时间/小时678910111213141516酒精含量3835282518151210774(酒精含量单位:毫克/百毫升)二、问题分析显然,该问题是微分方程模型.饮酒后,酒精先从肠胃吸收进入血液与体液中,然后从血液与体液向外排泄.由此建立二室模型:大李在喝酒以后,酒精先从吸收室(肠胃)进入中心室(血液也体液),然后从中心室向体外排除.设在时刻时,吸收室的酒精含量为,中心室的酒精含量为,酒精t ()1x t ()2x t 从吸收室进入中心室的速率系数为,分别表示在时刻时两室的酒精含量1k ()()12,y t y t t (毫克/百毫升),为中心室的酒精向外排泄的速率系数.在适度饮酒没有酒精中毒的条2k 件下,都是常量,与饮酒量无关.12,k k假定中心室的容积(百毫升)是常量,在时刻时中心室的酒精含量为,而吸V 0t =0收室的酒精含量为,酒精从吸收室进入中心室的速率与吸收室的酒精含量成正比;大02g 李第二次喝一瓶啤酒是在第一次检查后的两小时后.三、建模与解模1.模型建立由已知条件得到吸收室酒精含量应满足的微分方程为,()111d d x k x t t=-做学相应的初始条件是;而中心室酒精含量应满足的微分方程为()1002x g =()()21122d d x k x t k x t t=-相应的初始条件为.()20x t =由此建立问题的数学模型:()()()()()11121122102,,02,00.x k x t x k x t k x t x g x ⎧=-⎪=-⎨⎪==⎩2.解模调用MatLab 下的求解函数,输入下面语句syms x1 x2 k1 k2 g0[x1,x2]=dsolve('Dx1=-k1*x1','Dx2=k1*x1-k2*x2','x1(0)=2*g0','x2(0)=0');x=simple([x1,x2]);该微分方程组的解为()()()12110012122e ,2e e .k t k t k t x t g g k x t k k ---⎧=⎪⎨=-⎪-⎩中心室的酒精含量(百毫升)()()()()21210122e e e e V k t k t k t k t g k y t k k k ----=---:其中,上式即为短时间内喝完两瓶啤酒后中心室酒精含量率所对应()()0112122V g k k k k k k =≠-的数学模型.为得到模型中的未知参数,采用非线性拟合方法.编写求解程序:k0=[2,1,80];fun=inline('k(3)*(exp(-k(2)*t)-exp(-k(1)*t))','k','t');[k,r]=nlinfit(t,x,fun,k0);disp(k)hold onx1=k(3)*(exp(-k(2)*t)-exp(-k(1)*t));plot(t,x1)此时相应的值为k 2.00790.1855 114.4325图形为图形表明,拟合效果不错.再画出相应的残差图:残差分析表明模型比较理想.将计算结果代入表达式,得到在时刻时中心室酒精含量(百毫升)的函数表达式t .()()0.1855 2.00792114.4325e e t t y t --=- 模型应用若大李仅喝一瓶酒,此时,因此相应的模型为12k k '=()()0.1855 2.0079257.2163e e t t y t --=-再将代入得6t =()()0.18556 2.0079626114.4325e e 18.799320y -⨯-⨯=-≈<即大李此时符合驾车标准.假设大李在晚上点迅速喝完一瓶啤酒,以和分别代表在时刻时吸收室及8()1z t ()2z t t 中心室的含酒量(代表晚上点),则,由此得到微分方程:0t =8()()10108z g x =+一)题()()()()()()()()()1112112210122d ,d d ,d 08,08.z t k z t t z t k z t k z t tz g x z x ⎧=-⎪⎪⎪⎪=-⎨⎪=+⎪⎪=⎪⎩而由前面计算结果知:.将其代入到前面微分方()()()12188801102128e ,8e e k k k g k x g x k k ---==--程的初值问题中,则有()()()()()()()()1211112112281008801212d ,d d ,d 0e ,0e e .k k k z t k z t t z t k z t k z t t z g g g k z k k ---⎧=-⎪⎪⎪=-⎪⎨⎪=+⎪⎪=-⎪-⎩在MatLab 下,编写相应的求解程序:clear,clcsyms z1 z2 k1 k2 g0[z1,z2]=dsolve('Dz1=-k1*z1','Dz2=k1*z1-k2*z2', ...,'z1(0)=g0*(1+exp(-8*k1))','z2(0)=(k1*g0/(k1-k2))*(exp(-8*k2)-exp(-8*k1))');z=simple([z1,z2]);此时问题的解为()()()1122118108802121e e ,1e e 1e e .k k t k k t k k tz g g z k k ------⎧=+⎪⎨⎡⎤=+-+⎪⎣⎦-⎩记,()()()()()2211221188880121e e 1e e 1e e 1e e V k k t k k t k k t k k tg z k k k --------⎡⎤⎡⎤'=+-++-+⎣⎦⎣⎦-:最后代入得到在时刻时大李中心室的酒精含量函数122.0079,0.1855,57.2163k k k '===t .()()1.48400.185516.0632 2.007957.21631e e 1e e t tz ----⎡⎤=+-+⎣⎦取,即有6t = z=57.2163*((1+exp(-1.4840))*exp(-0.1855*6)-(1+exp(-16.0632))*exp(-2.0079*6))返回值23.0618即此时中心室的酒精含量率大于规定标准,属于饮酒驾车.用同样的方法可以讨论其它问题,在此不一一叙述.。

matlab数学建模30个案例分析

matlab数学建模30个案例分析

案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。

数学建模与实例分析的案例展示

数学建模与实例分析的案例展示

数学建模与实例分析的案例展示数学建模是一种将实际问题通过数学方法进行描述、分析、求解的过程。

通过建立数学模型,可以对问题进行系统、科学的研究和分析。

本文将通过实例展示数学建模的应用,以及如何进行实例分析。

【引言】数学建模的目的在于用数学的语言和方法来解释和解决实际问题,可以应用于各个领域,如经济、金融、环境、物流等。

下面将分别从不同领域的实例进行展示。

【实例一:经济领域】在经济领域中,数学建模可以帮助我们理解经济运行机制、预测市场走势等。

以股票市场为例,我们可以通过建立数学模型来分析股市变动的规律和预测未来的趋势。

通过对历史数据的分析和统计,我们可以选取合适的模型,并通过参数估计和预测方法来得出结果。

这种方法可以为投资者提供决策依据,帮助其降低风险、提高收益。

【实例二:环境领域】在环境领域中,数学建模可以帮助我们分析和解决一些环境问题,如空气质量监测、水资源管理等。

以空气质量监测为例,我们可以利用数学建模来预测和评估空气质量的变化趋势。

通过对大量的监测数据进行分析,我们可以建立空气质量模型,并通过模型的模拟和验证来预测和评估不同因素对空气质量的影响。

这种方法可以帮助环保部门及时采取措施,改善和保护环境质量。

【实例三:物流领域】在物流领域中,数学建模可以帮助我们提高物流效率、降低成本。

以物流路径规划为例,我们可以利用数学建模来确定最优的物流路径和调度方案。

通过建立数学模型,我们可以考虑到不同的约束条件,如时间、成本、距离等,以及考虑不同的变量和参数,如车辆数量、货物数量等。

通过模型求解的过程,我们可以得到最优的物流路径和调度方案,从而提高物流效率、降低成本。

【结论】数学建模是一种将实际问题转化为数学问题的过程,通过建立数学模型来分析和解决问题。

本文通过经济、环境和物流领域的实例展示,说明了数学建模的应用和意义。

通过数学建模,我们可以更加科学地理解和解决实际问题,为决策提供参考和支持。

因此,数学建模在现代社会中具有重要的推广和应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例分析1: 自行车外胎的使用寿命问题:目前,自行车在我国是一种可缺少的交通工具。

它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。

但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。

扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。

为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换?分析:分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。

若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。

这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。

产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。

我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。

寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。

本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。

如换成自行车的路程寿命来比较,就好得多。

产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。

弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。

自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。

当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。

这样的数学模型面对着两个主要问题。

一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。

后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。

车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。

这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。

但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。

最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。

案例分析2:城市商业中心最优位置分析问题:城市商业中心是城市的基本构成要素之一。

它的形成是一个复杂的定位过程。

商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。

即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。

某市对老商业中心进行改建规划,使居民到商业中心最方便。

如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

分析:首先,应对居民到商业中心“最方便”这句话有个正确的理解。

“最方便”是居民到中心的总路程最短呢,还是途经的总时间最短?或者是两者都要考虑?也就是怎样衡量“方便”程度。

这主要凭个人的理解和根据具体情况采确定。

我个人认为用途经时间的长短来衡量方便程度比较好。

因为居民出行有步行、自行车;汽车等多种方式,仅用总路程还不足以表述方便程度。

以下也以总时间最少为例来说明怎样分析问题。

下一步很容易想到问题的实质是找一个点,使去商业中心的居民到此点所用的总时间最短。

这样我们便对所需解决的问题有了大概轮廓,即求点(x,y),使总时间的目标函数T(x,y)最小。

然后着手分析一下求T(x,y)所需要的数据和条件。

显然T(x,y)和每天(或一段时间)到商业中心的人次及各人的途经时间有关。

而一居民到商业中心的时间又和他的出行方式及距离有关。

关于人次的信息可以从调查每天到老商业中心的居民估算。

但每个居民到商业中心的时间却很不好求。

因为居民的住址各不相同且居民数量很大,而且出行方式也不一样。

作为一个建模者,需找个方法以获取必要的数据和信息。

我们抽样调查一些居民到商业中心所用的时间来近似获取全市居民到商业中心的平均时间。

也可以将城区划分成若干个小区,每个小区用一点来表示。

将该小区内居民到市中心等价于从表示该小区的那点出发。

再调查每个小区的人数、出行频率及出行方式所占比例,最后得到我们的目标函数。

总之,解题的方法不只一种,应视所具备的条件而定。

如以长远的眼光对商业中心进行选址,还应和城市规划结合起来。

对未来城市的人口分布、人口密度、居民出行方式、频率和道路的建设做出预测,结合前面的方法来选择最优的商业中心位置。

这虽然较为复杂,但决不是可望而不可及的,这里就不再详述了。

按理分析3:不同管理模式的最佳选用问题:不同的历史时期,在不同国家出现过不同的管理模式。

如:“金字塔式”——从一般员工到最高决策层中间还有许多层次,由下到上各层人数递减,下层绝对服从其上层。

“矩阵式”——以总经理和管理委员会统领全局,各生产线设一名经理,全权负责生产、销售和市场,每个员工只有总经理和经理两个上司,各生产线间的配合,由相关经理协调。

“实验室式”——由一名主任总体协调,但没有绝对决定权,公司决策由集体投票表决,成员活动不完全受集体限制。

请建立模型分析各管理模式的适用范围,评价其优缺点,并预测每种管理模式的发展前景。

分析:这是一个经济管理方面的问题,涉及比较广阔的时空领域。

经济管理是目前广泛存在的一种社会现象。

评价某种管理模式的优劣有许多指标。

如何客观准确地加以评价,并讨论每种模式的应用范围,预测其发展前景,都是模型应涉及的方面。

如何从定性化到定量化便是本模型的关键所在。

首先,我们可作出适当的假设,分别讨论在不同社会制度、区域经济下的管理模式。

经实际调查和分析提炼,我们可考虑以下评价指标:1.整个管理系统工作的秩序性。

2.管理系统决策的灵活性。

3.管理系统决策和实施的快捷性和准确性。

4.系统盈利及职工工资福利等。

5.系统的发展前景。

根据这些指标,可找出实际管理行为中影响这些因素的条件。

诸如:(1)公司的规模。

(2)生产产品更新速度。

(3)市场灵敏程度。

(4)市场导向程度和对生产方向准确性要求程度等等。

我们应抓住关键因素,着重分析其在评价模型中所占的比重。

为此,我们可从两方面入手:(I)建立一有关管理模式的评价函数。

可结合诸如层次分析法等方法确定各因素所占比重。

这是将抽象的经济政策归结为具有一定规律的数学公式的思维方法。

用定量指标来描述管理模式的优劣性。

(II)可利用实际数据建立专家系统,构成神经网格模型,并将模型用于实际,考察实际条件,来选择恰当的管理模式。

此外,还应分析模型的灵敏度,讨论其在实际生活中的应用,进—步预测其发展前景。

案例分析4:轮胎生产方案问题:某汽车轮胎公司能够生产尼龙和玻璃纤维两种轮胎,在未来的三个月中将要交付的轮胎数量如下,适的模子。

在未来的三个月内,这两台机器可供使用的生产小时数如下:每台机器生产每种轮胎的效率以每只轮胎需要多少小时表示如下:5美元,每只轮胎每个月的存储费用0.1美元,每只尼龙轮胎和玻璃纤维轮胎的材料费用分别为3.10美元和3.90美元,每只轮胎的装配、包装和运输费用是0.23美元,每只尼龙轮胎的价格是7.00美元,每只玻璃纤维的价格是9.00美元。

该公司管理人员提出以下问题:1)为了以最小的成本来满足交货需要,应该怎样安排生产?2)从这一最优的生产安排中所得到的总收益是多少?3)一台新的惠林硫化机预定在九月初到达。

如果支付200美元的小费,就可以提前在八月二日到达,这样八月份就可增加172小时的机器工作时间。

这台硫化机到底要不要提前到达?4)两台机器每年一次的维修检查安排在何时为宜?分析:通过粗略估算,每只轮胎的成本总是低于售价:所以一般来说,厂家生产越多,获利越大。

但受机器可提供的生产时间和市场需求量等条件的限制,厂家要达到最小成本并满足定货需求的目标,必须制定出合理的生产计划。

那么哪些因素对轮胎成本有影响呢/显然库存总费用和材料总费用是关系成本的直接因素,另外,机器的生产时间越长所花费的生产费用也越多,还会抬高成本。

关于生产计划的安排,我们可以提出以下疑问:(1)制约条件本月机器可供使用的生产时能满足月末的供货需求吗?(2)制约条件和生产计划的关系问题①若(1)不能满足,是否应在前一个月或前两个月多生产一些轮胎呢?②考虑存储费用和轮胎生产费用,假如要多生产,应多生产多少呢?(3)生产计划两台机器的生产效率有差异,应该怎样分配每月它们生产的轮胎数量和种类呢?(生产率越高,生产相同数目的轮胎所需工作时间越少,轮胎生产的总生产费用减少从而使成本降低)。

读者还能提出哪些与生产计划有关的问题呢?通过解决这些疑问,我们的生产计划也就逐渐形成了。

管理人员提出的第二个问题与第一个问题紧密相关。

因为:总收益=轮胎总售价-轮胎总成本轮胎总售价=轮胎数量轮胎价格。

背景材料给出了诸多费用和定货量的值,可以算出总售价,由先前的生产计划可得到总成本,因而总收益可求。

至于第三个问题,我们可不可以看作模型灵敏度问题呢?在所给条件发生变化的情况下,原来的生产计划模型是否仍适用?或者,能用相似的建模方法、原则作出一个新的生产计划吗?假如上述两种方案都不能采用,我们应着手寻找新的途径。

如果所给条件是机器提前到达,那么若在此条件下的最小成本(再附加200美元)比第一个问题中的最小成本高,则可认为不必要提前到达。

作进一步的思考,现有的两台机器能否满足生产需求,有没有必要增加一台机器?如果所给条件是定货量变化,又会怎样呢?而对于第四个问题,背景材料只给出了六、七和八三个月份的资料,是不是已知条件不足?假如仅就这些材料作检修安排,我们需不需要做出假设,比如一年中轮胎需求量、机器可供使用的工作时间的变化规律等。

在合理的假设下,作适当的维修检查安排。

案例分析5:血型分布规律的探讨问题:在A、B、O血型系统中各个民族的血型分布情况极不相同。

例如:我国汉族B型血所占的比例大约是欧洲人的三倍。

那么,血型分布有何规律。

各个国家、地区、民族的极不相同的血型分布情况又为何能长期稳定存在?血型遗传的简单常识:在A、B、O血型系统中有三种血型基因——A、B、O基因。

相关文档
最新文档