第五章刚体力学基础
刚体力学基础
mA
第5章 刚体力学基础
2.7
刚体力学基础
解:研究对象:A、B、圆柱 用隔离法分别对各物体作受力 分析,如图所示。
mB
N
mA
f
mB m Bg
TB
TA
mA
aB T 'B
aA
mAg
T 'A
第5章 刚体力学基础
2.7
刚体力学基础
N
f
mB m Bg
TB
TA
T 'B
T 'A
mA mAg
aA
aB
A: mA g TA mAaA TB f mB aB B: N mB g 0
2.7
定点转动:
刚体力学基础
运动中刚体上只有一点固定不动,整个刚体绕过该
固定点的某一瞬时轴线转动. 如:陀螺的运动
i3
(转轴方向(2),绕轴转角(1))
第5章 刚体力学基础
2.7
刚体力学基础
二 刚体定轴转动的运动学描述 定轴转动:刚体上任意点都绕同一 轴在各自的转动平面内作圆周运动
特征:刚体各个部分在相同时间内绕 转轴转过的角度(角位移)都相同 引入角量描述将非常方便。
oo mi vi 垂直于z轴。
i
th
刚体 mi
oo mi vi ri mi vi
z
我们只对z方向的分量感兴趣:
Liz ri mi vi mi ri 2
Lz Liz mi ri
2
ω,α vi
△ mi
ri O’ × 刚体 × O
刚体定轴转动的动能=绕质心转动的动能+
刚体携总质量(质心)绕定轴作圆周运动的动能
第05章刚体力学基础学习知识补充
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A 端并嵌入其内。
那么碰撞后A 端的速度大小:(A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中L5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球的线速度:(A)B A v v = (B) B A v v < (C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
大学物理 第五章.
时,
刚体定轴转动的 角动量守恒定律
35
§5.4 刚体的角动量定理及守恒定律
例5.6:如图,质量为M,半径为R的转台,可绕通过中心竖直轴
转动,阻力忽略不计,质量为m的人站在台的边缘,人和台原来都 静止,如果人沿转台的边缘绕行了一周,问相对地面转台转过了多 少角度?
解:把人和转台看做一个系统
系统的角动量守恒 规定:逆时针转动为正方向,以 地面为参考系。 设人的角速度为ω,转台的角速度为Ω。
或
A = ∫ Mdθ = Mθ
42
例5.9:一质量为m,长为 l的匀质杆,两端用绳悬挂杆处于水平 状态,现突然将杆右端的悬线剪断,求(1)此瞬间另一根绳受到 的张力 ;(2)剪断绳子之后任一时刻杆的角速度 ω与转过角度 θ之 间的关系。 解: (1)首先考虑杆绕O点的的转动 根据转动定律: T O
匀变速运动
6
§5.1 刚体及其定轴转动描述
例5.1:一汽车发动机的转速在5s内由200r(转)/min均匀地增加 到3000r(转)/min。(1)求在这段时间内的初角速度、末角速 度和角加速度;(2)求这段时间内转过的角度;(3)发动机轴 上装有一半径为R=0.15m的飞轮,求轮边缘上一点在这第5s末的 切向加速度、法向加速度和总加速度。
24
§5.3 刚体转动的功和能
回顾: 质点 质量 牛顿运动定律
M = Jβ
刚体 转动惯量 转动定律
力做功
力矩做功
25
§5.3 刚体转动的功和能
一、力矩的功
轴
dθ dr α r
α
F 在转动平面内
ω
元功: dA = F • dr = F dr cos α = F ( rdθ ) cos α F ( r cos α )dθ = Mdθ
刚体力学基础
非专业训练,请勿模仿
例 解 由转动定律得
1 mgl sin J 2 1 2 式中 J ml 3 3g sin 得 2l
角加速度与质量无关,与长 度成反比,竹竿越长越安全。
-------------------------------------------------------------------------------
刚体的一般运动 质心的平动
+
绕质心的转动
-------------------------------------------------------------------------------
二、刚体绕定轴转动定律
F外力 F内力 mi ai
ai :质元绕轴作圆运动
-------------------------------------------------------------------------------
二、定轴转动的角动量守恒定律
质点角动量(相对O点)
定轴转动刚体
L r p r mv
-------------------------------------------------------------------------------
解:
M 1l gdl cos M mgL cos 2 m g1 l cos dl cos mgl M 2 3g cos L 1 22 J 2l M ml L g 3 cos L 2 3g cos d d d d 1 2 l dt cos d d mgL dt 2
2 法向: F cos F cos m r 法向力的作用线过转轴 i i i i. 内力 ,其力矩为零 外力 切向:F外力 sin i F内力 sin i mi ri
第5章 刚体力学
F Fz F
z k Fz来自 F M z k r F M z rF sin
O
r
F
2)合力矩等于各分力矩的矢量和
大学物理讲义
M M1 M 2 M 3
3) 刚体内作用力和反作用力的力矩互相抵消
M ij
大学物理讲义
四
角量与线量的关系
d dt
d d 2 dt dt
2
a
an r
et v a
t
at r an r
2
大学物理讲义
5.2 转动定律 转动惯量 平行轴定理
一 力矩
刚体绕 O z 轴旋转 , 力 F
M
F
作用在刚体上点 P , 且在转动 平面内, 为由点O 到力的 作用点 P 的径矢 . Z 的力矩 F 对转轴
>0
z
z
<0
d dt
定轴转动(fixed-axis rotation)的特点 1) 每一质点均作圆周运动,圆面为转动平面;
2) 任一质点运动 , , 均相同,但 v, a 不同;
3) 运动描述仅需一个坐标变量 .
大学物理讲义
三
匀变速转动公式
大学物理讲义
质点运动
转动(rotation):刚体中所有的点都绕同一直线 做圆周运动. 转动又分定轴转动和非定轴转动
刚体的一般运动 质心的平动
+
绕质心的转动
大学物理讲义
二 刚体转动的角速度和角加速度
角坐标 (t ) 约定 沿逆时针方向转动 r 角位移
刚体力学基础
v p 0
1。微分形式
M dt d L
dL M r F dt
L2 L1
2。积分关系
dL
t2
t1
M dt
刚体→质点系(连续体)
L
t2
M外 d t d L
dL M外 dt
t1
M dt
t2 L M 外 d t
3.刚体的转动(rotation): 刚体上的各点绕同一直线做圆周运动。这条直线称作转轴。
定轴转动──转轴相对参考系固定不动的转动。 特征:各点的角位移、角速度、角加速度相同。但线 位移、线速度、线加速度不同。
4.复杂运动可视为平动和转动的叠加。 二、刚体定轴转动的角量描述 1。转动平面:刚体定轴转动时,任一 质点作圆周运动的垂直于转轴的平面 某一时刻, 不同点的:
二、转动惯量J 1.定义:
Moment of inertia
J mi ri2
第i质元到转轴的垂直距离
J 的单位:kg· m2
m
第i质元的质量
如质量连续分布,则有:
2 r dm J lim mi ri 0
2 m i 0
质量分布
2。物理意义:物体转动惯性大小的量度
t1
[例题6]一棒长l,质量m,其质量分布与到 O点的距离成正比,将细 棒放在粗糙的水平面上,棒可绕O点转动,如图,棒的初始角速 度为ω0 棒与桌面的摩擦系数为μ。 求:(1)细棒对O点的转动惯量。(2)细棒绕O点的摩擦力矩。 (3)细棒从以ω0 开始转动到停止所经历的时间。 解:
(1) d m d r
2 2
J c md 0
5《学习指南 试题精解》 第五章 刚体力学
第5章 刚体力学5.1 本章要求:1、通过质点在平面内的运动情况理解角动量、动量矩和角动量守恒定律,了解转动惯量的概念;2、理解刚体的定轴转动的转动定律和刚体在定轴转动情况下的角动量定理和角动量守恒定律;3、能应用角动量定理和角动量守恒定律解简单的刚体运动的力学问题。
5.2 内容提要1、质点的角动量v r m P r L ⨯=⨯=;2、质点的角动量定理作用于质点的冲量矩等于质点的角动量的增量。
积分形式00L L d dt LL tt -==⎰⎰ ,微分形式dtd M =外 3、角动量守恒定律如果某一固定点,质点所受合外力矩为零,则此质点对该固定点的角动量矢量保持不变。
则0=dtLd , ∑=ii L L = 常矢量 4、刚体物体内任意两点间的距离在外力作用下始终保持不变,从而其大小和形状都保持不变的物体,称为刚体。
刚体也是物体的一种理想模型。
5、平动 刚体运动时,连接刚体中任意两点的直线始终保持它的方位不变。
这种运动称为刚体的平动或平移。
6、转动刚体运动时,如果刚体内各点都绕同一直线作圆周运动,这种运动称为刚体的转动;这一直线称为转轴。
如果转轴相对于所取的参考系是固定不动的,就称为定轴转动。
如果转轴上一点静止于参考系,而转动的方位在变动,这种转动称为定点转动。
刚体的一般运动,可以看作平动和转动所合成。
7、质心质心是与质点系的质量分布有关的一个代表点,它的位置在平均意义上代表着质点分布的中心。
对于有许多质点组成的系统,如果用i m 和i r 表示第i 个质点的质量和位矢,用c r 表示质心的位矢,则有Mrm r iii c ∑=,式中∑=ii m M 为质点系的总质量。
质心位置的坐标为:Mzm z M ym y M xm x iii c iii c iii c ∑∑∑===,,。
对于质量连续性分布的物体,质心的位矢为⎰=Mrdmr c其坐标为⎰⎰⎰===zdm Mz ydm M y xdm M x c c c 1,1,1。
大学物理:第 05 章 刚体力学基础
j
i
设作用在质元Dmi上的外力
位于转动平面内。
z
合外力对刚体做的元功: P
力矩的功:
功率:
三、刚体定轴转动的动能定理
合外力矩对刚体所作的功等于刚体转动动能的增量。
四、刚体的重力势能
以地面为势能零点,刚体和地球 系统的重力势能:
z
i O
五、 刚体定轴转动的功能原理
将重力矩作的功用重力势能差表示:
如:直立旋转陀螺不倒。
o
此时,即使撤去轴承的支撑作用, 刚体仍将作 定轴转动——定向回转仪—— 可以作定向装置。
二、非刚体( J 可变)的角动量守恒
当 J 增大, 就减小,当 J 减小, 就增大。
如:芭蕾舞,花样滑冰中的转动, 恒星塌缩 (R0,0) (R,) 中子星 的形成等。
[例5-11] 水平转台(m1 、 R ) 可绕竖直的中心轴转动,初角 速度0,一人(m2 )立在台中心,相对转台以恒定速度u沿 半径向边缘走去,计算经时间 t,台转过了多少角度。 解:人与转台组成的系统对竖直 轴的角动量守恒:
(2)
(3) (4)
[例5-16] 细杆A : (m , L)可绕轴转动,水平处静止释放, 在竖直位置与静止物块B : (m) 发生弹性碰撞,求碰后: (1)物块B的速度 vB ,(2)细杆A 的角速度2 , (3)细杆A 转过的最大角度 θmax 。 解: B
A
碰后反方向转动。
A
B
[例5-17] 圆锥体R,h,J,表面有浅槽,令以ω0转动, 小滑块m 由静止从顶端下滑,不计摩擦,求滑到底部滑 块相对圆锥体的速度、圆锥体角速度。
是关于刚体定轴转动的动力学方程。 (与 F = ma 比较) 推广到 J 可变情形: ——刚体定轴转动的角动量定理
第五章 刚体力学基础
第五章 刚体力学基础一、选择题1 甲乙两人造卫星质量相同,分别沿着各自的圆形轨道绕地球运行,甲的轨道半径较小,则与乙相比,甲的:(A)动能较大,势能较小,总能量较大; (B)动能较小,势能较大,总能量较大; (C)动能较大,势能较小,总能量较小;(D)动能较小,势能较小,总能量较小;[ C ]难度:易2 一滑冰者,以某一角速度开始转动,当他向内收缩双臂时,则: (A)角速度增大,动能减小; (B)角速度增大,动能增大; (C)角速度增大,但动能不变;(D)角速度减小,动能减小。
[ B ]难度:易3 两人各持一均匀直棒的一端,棒重W ,一人突然放手,在此瞬间,另一个人感到手上承受的力变为:(A)3w ; (B) 2w (C) 43w; (D) 4w 。
[ D ]难度:难4 长为L 、质量为M 的匀质细杆OA 如图悬挂.O 为水平光滑固定转轴,平衡时杆竖直下垂,一质量为m 的子弹以水平速度0v 击中杆的A端并嵌入其内。
那么碰撞后A 端的速度大小: (A)M m mv +12120; (B) Mm mv +330;(C) Mm mv +0; (D) M m mv +330。
[ B ]难度:中5 一根质量为m 、长为l 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒竖直地立起,如让它掉下来,则棒将以角速度ω撞击地板。
如图将同样的棒截成长为2l的一段,初始条件不变,则它撞击地板时的角速度最接近于:(A)ω2; (B)ω2; (C) ω; (D) 2ω。
[ A ]难度:难6 如图:A 与B 是两个质量相同的小球,A 球用一根不能伸长的绳子拴着,B 球用橡皮拴着,把它们拉到水平位置,放手后两小球到达竖直位置时绳长相等,则此时两球L的线速度:(A)B A v v = (B) B A v v <(C) B A v v > (D)无法判断。
[ C ]难度:中7 水平圆转台上距转轴R 处有一质量为m 的物体随转台作匀速圆周运动。
大学物理第五章刚体力学1
机械能守恒定律是物理学中的基本定律之一,对于刚体而言同样适用。如果一个刚体在 运动过程中不受外力矩作用,则其动能和势能之和保持不变。这意味着,如果刚体的动
能增加,则其势能必定减少,反之亦然。
05
刚体的振动和波动
简谐振动
简谐振动定义
物体在平衡位置附近做周期性往复运动的现象。
简谐振动方程
x=A*sin(ωt+φ),其中A为振幅,ω为角频率,φ为初相角。
THANK YOU
感谢聆听
转动惯量的计算
对于细长均匀杆,转动惯量I=mr^2/2;对于质量均匀分布的圆盘, I=mr^2/4。
03
刚体的角动量守恒定律
角动量守恒定律
角动量守恒定律
一个不受外力矩作用或者所受 外力矩的矢量和为零的刚体, 其角动量保持不变。
角动量
刚体绕某一定点的转动惯量与 刚体相对该点的角速度的乘积 。
角动量守恒的条件
刚体定义与特性
80%
刚体定义
刚体是一个理想化的物理模型, 在实际中并不存在。
100%
刚体特性
刚体具有不变形、不可压缩、无 摩擦等特性。
80%
刚体运动
刚体的运动可以用质点和刚体的 运动学来描述,其动力学则由牛 顿第二定律和转动定律来描述。
02
刚体的转动定律
刚体的角速度和角动量
角速度
描述刚体绕固定点转动的速度,用矢 量表示,单位为弧度/秒。
总结词
刚体的动能在数值上等于刚体 转动惯量与刚体角速度平方乘 积的一半。
详细描述
除了平动运动外,刚体还可以 进行转动运动。在转动运动中 ,刚体的动能等于刚体的转动 惯量与刚体角速度平方乘积的 一半。
刚体的势能
第5章 刚体力学基础
0
R 2λ d l
o
R
dm
质点作圆周运动、 质点作圆周运动、圆筒
例5-4(2)求质量为 、半径为 的均匀薄圆盘对中心轴的转 ( )求质量为m、半径为R 的均匀薄圆盘对中心轴的转 动惯量。 动惯量。 设面密度为σ 解:设面密度为 。 R r 宽为d 的薄圆环, 取半径为 r 宽为 r 的薄圆环
o
dr
5.2.2 转动惯量的计算: 转动惯量的计算:
描述刚体转动惯性大小的物理量。 描述刚体转动惯性大小的物理量。
1、定义:刚体对转轴的转动惯量: 、定义:刚体对转轴的转动惯量: 转轴的转动惯量
J = ∑ ∆m i ri
i =1
n
2
J = ∫ r2 dm
2、转动惯量的计算: 、转动惯量的计算: 若质量离散分布: 若质量离散分布:
舍去t t = 0 . 55 s ( 舍去 = 0 和 t = -0.55 ) 此时砂轮的角度: 此时砂轮的角度:
θ = ( 2 + 4 t 3 ) = 2 + 4 × 0.55 3 = 2.67 (rad)
一飞轮从静止开始加速, 补充例题 一飞轮从静止开始加速,在6s内其角速度均匀地 内其角速度均匀地 增加到200 rad/min,然后以这个速度匀速旋转一段时间,再予 增加到 ,然后以这个速度匀速旋转一段时间, 以制动,其角速度均匀减小。又过了5s后 飞轮停止了转动。 以制动,其角速度均匀减小。又过了 后,飞轮停止了转动。 若飞轮总共转了100转,求共运转了多少时间? 若飞轮总共转了 转 求共运转了多少时间? 解:整个过程分为三个阶段 ①加速阶段 ω 1 = β 1 t1 ②匀速阶段 θ 2 = ω 1 t 2
5.2 定轴转动刚体的功和能
大学物理力学第五章1刚体、转动定律
(12)
例1、如图所示,A、B为两个相同的绕着轻绳的定滑
轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且
F=Mg.设A、B两滑轮的角加速度分别为βA和β B,
不计滑轮轴的摩擦,则有
(A) β A= β B. (B) β A> β B. (C) β A< β B. (D) 开始时β A= β B,以后β A< β B.
转动惯量的计算
1)定义 J miri2
J r 2dm
i
m
2) 对称的 简单的 查表
3) 平行轴定理
典型的几种刚体的转动惯量
m
m
l
细棒转轴通过中 心与棒垂直
J ml 2 12
l
细棒转轴通过端 点与棒垂直
J ml 2 3
M,R
M,R
o
圆环转轴通过环心与环面垂直
J MR2
薄圆盘转轴通过 中心与盘面垂直
以 m1 为研究对象 m1g T1 m1a 以 m 2 为研究对象 T2 m2a 以 M 为研究对象
(T1 T2 )R J J 1 MR 2 2
m 2 T2 M , R
(1) T1
T1
(2)
m1
m1
M ,R
m1g (3)
T2
m2
T2
T1
补充方程:
a R
(4)
联立方程(1)---(4)求解得
J 1 MR 2 2
m 2r
r l
球体转轴沿直径
J 2mr 2 5
圆柱体转轴沿几何轴
J 1 mr 2 2
转动定律应用举例 解题步骤: 1. 认刚体;
3. 分析力和力矩;
第五章刚体力学参考答案
第五章 刚体力学参考答案(2014)一、 选择题[C ]1、【基础训练2】一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图5-7所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的X 力 (A)处处相等.(B) 左边大于右边. (C)右边大于左边.(D) 哪边大无法判断.【提示】:逆时针转动时角速度方向垂直于纸面向外,由于m 1<m 2,实际上滑轮在作减速转动,角加速度方向垂直纸面向内,设滑轮半径为R,受右端绳子向下拉力为T 2,左端绳子向下拉力为T 1,对滑轮由转动定律得:(T 2-T 1)R=J β[D ]2、【基础训练3】如图5-8所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大(A) 为41mg cos θ.(B)为21mg tg θ.(C)为mg sin θ.(D)不能唯一确定图5-8【提示】:因为细杆处于平衡状态,它所受的合外力为零,以B 为参考点,外力矩也是平衡的,则有:A B N f =A B f N mg +=θθθlcon N l f lmgA A +=sin sin 2三个独立方程有四个未知数,不能唯一确定。
[ C ]3、基础训练(7)一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图5-11射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度 (A) 增大. (B) 不变.(C) 减小. (D) 不能确定.【提示】:把三者看作同一系统时,系统所受合外力矩为零,系统角动量守恒。
设L 为每一子弹相对与O 点的角动量大小,ω0为子弹射入前圆盘的角速度,ω为子弹射入后的瞬间与圆盘共同的角速度,J 为圆盘的转动惯量,J 子弹为子弹转动惯量,据角动量守恒m 2m 1O 图5-7 O Mm m图5-11定律有:00()J L L J J J J J ωωωωω+-=+=<+子弹子弹[ C ]4、【自测提高4】光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31mL 2,起初杆静止.桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同速率v 相向运动,如图5-19所示.当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为 (A)L 32v .(B) L 54v . (C) L 76v . (D) L 98v . (E) L712v .图5-19【提示】:视两小球与细杆为一系统,碰撞过程中系统所受合外力矩为零,满足角动量守恒条件,所以2221[(2)]12lmv lmv ml ml m l ω+=++可得答案(C )[ A ]5、【自测提高7】质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫⎝⎛=R J mR v 2ω,逆时针.(C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫⎝⎛+=R mR J mR v 22ω,逆时针.视小孩与平台为一个系统,该系统所受的外力矩为零,系统角动量守恒:0Rmv J ω=-可得2()Rmv mR v J J Rω==。
理论力学第五章 点的运动和刚体的基本运动 [同济大学]
dv v2 τ n dt
a
r
O
`
v vτ
r
dv 2 v2 ) ( )2 dt ρ
tan
aτ an
1
例5-2 汽车以匀速度v=10m/s过拱桥,桥面曲线 y=4fx(L–x)/L2, f=1m,求车到桥最高点时的加速度。
解: aτ
例5-3 销钉A由导杆B带动沿固定圆弧槽运动。导杆B沿轴螺旋 立柱以不变的速度v0 =2m/s向上运动。试计算当θ=30° 时,销钉 A的切向和法向加速度。 解: 建立弧坐标s和直角坐标Oxy如图。 因 s=Rθ,
销钉A的加速度为
aτ v sin θ v0 θ cos θ
2 2 sin θ v0 12.32m/s 2 R cos3 θ
an
2 v2 v0 21.33m/s 2 R R cos 2 θ
例5-4
判别下图示曲线中加速度、速度矢量是否正确。
§5-4 刚体的基本运动平动,转动
则vD=vA=2rω
aDn=aAn=2rω2 aDτ=aAτ=2ra
0 dt
0
t
y x
θ θ0 ω0t
t
0 0
t
αdtdt
角加速度为常量:
两个独立方程
0 t,
1 θ θ0 ω0 t t 2 2
1 θ θ0 (ω0 ω)t , 2
t 0
'2 1 1 y " k y
切线
v r S M* + M
dτ s v lim n d t lim t 0 t t 0 s t
an
第5章 刚体力学基础 动量矩
5.2.2 刚体绕定轴转动微分方程
第 k个质元 Fk f k mk ak
切线方向
rk
fk
Fk
Fk f k mk ak
在上式两边同乘以 rk 对所有质元求和
k
Fk rk f k rk mk ak rk mk rk rk
k k k
Fr f r
刚体的总动能
z
O
rk
vk
P
• Δmk
1 1 1 2 E Ek Δmk rk 2 Δmk rk 2 2 J 2 2 2 2 结论 绕定轴转动刚体的动能等于刚体对转轴的转动惯量与其 角速度平方乘积的一半
Xi’an Jaotong University
第5章 刚体力学基础
本章内容:
5.1 刚体和刚体的基本运动 5.2 力矩 刚体绕定轴转动微分方程 动能定理
动量矩
5.3 绕定轴转动刚体的动能 5.4 动量矩和动量矩守恒定律
5.1 刚体和刚体的基本运动
5.1.1 刚体的概念 在力作用下,大小和形状都保持不变的物体称为刚体。 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 5.1.2 刚体的平动和定轴转动 1. 刚体的平动 刚体运动时,若在刚体内 所作的任一条直线都始终 保持和自身平行
Xi’an Jaotong University
2. 刚体绕定轴的转动 刚体内各点都绕同一直线(转轴)作圆周运动 转轴固定不动 — 定轴转动 描述刚体绕定轴转动的角量 I 角坐标 角速度 角加速度
_____
刚体转动
z
f (t )
d f ' (t ) dt
05.刚体力学
a at R
联立四式解得:
---- (4)
m1 g
m2 g
Mf m2 m1 g R a 1 m1 m2 m 2
Mf m2 m1 g R a 1 m1 m2 m 2 m1 M f m 2 m 2 m1 g 2 R T1 m1 g a m m1 m 2 2 m2 M f m 2 m1 m 2 g 2 R T2 m 2 g a m m1 m 2 2
P
vP
4
y
单位均为cm s
3
o
x
2 k rad s1
z
5
rP 3i 4 j 5 k cm
该时刻P点的速度为: 3
rP
P
vP
4
y
o
v r 0 3
i
j 0 4
k 2 5
x
-1 v 25.1i 18.8 j (cm s )
* 简化为研究转动平面内的运动
* 用角量作整体描述
* 在轴上选正方向,各角量均表示为代数量
四.角速度矢量
角速度:
旋转方向 O
d lim t 0 t dt
角速度矢量
R
P
v
方向:右手螺旋法则 垂直于运动平面,沿轴
o
r
v r
2 3L 4
z
A L4
m o
L
C
B
解1:
解2: J z J C m L 1 mL2 m L 7 mL2 48 4 12 4
力学 第五章刚体的转动
J 2 mR2 511
* 平行轴定理
以 m 表示刚体的质量,Jc 表示它通过其质心 c 的轴
的转动惯量。若另一轴与此轴平行并且相距为d,则此刚
体对于后一轴的转动惯量为:J
例:
L
c
m
Jc
Jc 1
12
md mL2
2
L
J ( 1 mL2 ) m( L)2 1 mL2
t1
2.刚体定轴转动的角动量
L J (Pv mvv)
3.刚体系定轴转动的角动量定理
vv 微分形式 Mdt dL
v M
v dL dt
积分形式
t2 t1
v M 外 dt
n 1
v Li 2
n 1
v Li1
Jv2 Jv1
40
4.刚体系角动量守恒定律
mr,2 则挖去小圆盘后剩余
部分对于过o点且垂直于盘面的转轴的转动惯量为多少?
答案:
R
o
r
J 1 (4M 3m)r2 2
13
四、 转动定律的应用
刚体定轴转动的两类问题:
M J d J
dt
(t ) (t ) (t ) J M 用求导的方法
M
J
(t
)
(t )
xdm m
N
yimi
ydm
yc i1 m
m
N
zimi zdm
zc i1 m
m
质心是相对于质点系本身的一个特定位置, 其相对位置不随坐标系选择而变化。
26
例:任意三角形的每个顶点有一质量m,求质心。
刚体力学 (5)
若刚体转动过程中只有重力矩作功, 机械能守恒。 若刚体转动过程中只有重力矩作功,则 机械能守恒。 例2. 一质量为 m 长为 L 的均匀细棒 A OA 可绕通过其一端的光滑轴 O 在竖 直平面内转动, 直平面内转动,今使棒从水平位置开 始自由下摆, 始自由下摆,求细棒摆到竖直位置时 (1)质心 C 和端点 A 的线速度 ) (2)质心 C 的线加速度 ) 解法一( )研究对象: 解法一(1)研究对象:细棒 r r 受力分析: 不考虑) 受力分析: mg ( N 不考虑)
L
L
m
⋅c
m
*垂直轴定理 垂直轴定理
1 J c = mL2 12 1 L 2 2 J = ( mL ) + m ( ) 12 2
z
1 2 = mL 3
Jz = J x + J y
x
y
8
4. 刚体定轴转动定律 r 对转轴的力矩) (1)力矩(力 F 对转轴的力矩) )力矩(
r τ = rF sin θ
1 2 ' ' a = Rβ , J = mR , T1 = T1 , T2 = T2 2
12
T2 m2 g
联立求得: 联立求得:
问:如何求角加速度? 如何求角加速度?
a=
(m2 − m1 )g −
τr
R
根据 a τ = β R 可求得 注意: 注意:当不计滑轮的质量 及摩擦阻力时: 及摩擦阻力时:
1 m1 + m2 + m 2
1 τr m1[(2m2 + m)g − ] R 2 T = 1 1 m1 + m2 + m 2
m = 0,
τr = 0
( m 2 − m1 ) a= g m1 + m 2
第五章 刚体力学基础 动量矩参考答案
第五章 刚体力学基础 动量矩班级______________学号____________姓名________________一、选择题1、力kNj i F )53(+=,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩大小为 ( B )(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。
2、圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。
由于恒力矩的作用,在10s 内它的角速度降为40rad /s 。
圆柱体损失的动能和所受力矩的大小为( D ) (A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。
3、 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 ( D )(A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。
4、如图所示,一轻绳跨过两个质量均为m 、半径均为R 的匀质圆盘状定滑轮。
绳的两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。
将系统由静止释放,且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。
( D )(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。
5、一根质量为m 、长度为L 的匀质细直棒,平放在水平桌面上。
若它与桌面间的滑动摩擦系数为μ,在t =0时,使该棒绕过其一端的竖直轴在水平桌面上旋转,其初始角速度为0ω,则棒停止转动所需时间为 (A )(A)μωg L 3/20; (B) μωg L 3/0; (C) μωg L 3/40; (D) μωg L 6/0。
6、关于力矩有以下几种说法,其中正确的是 ( B )(A )内力矩会改变刚体对某个定轴的角动量(动量矩); (B )作用力和反作用力对同一轴的力矩之和必为零;(C )角速度的方向一定与外力矩的方向相同;(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此
n
30
( rad / s )
2 1200 1 rad / s 40 rad / s 60 2 2880 2 rad / s 96 rad / s 60
2017/3/3
8
5.1 刚体的基本运动
轮子做匀加速定轴转动,故有
(96 40) rad / s 2 t 8 7 rad s2 22.0 rad s2
2017/3/3
(t )
(t t ) (t )
(包含p并与转轴垂直) 转动平面 转轴
t2 t1 t d lim t 0 t dt
2 1
5
5.1 刚体的基本运动
角速度方向
SI: rad/s 弧度/秒
② 与质量、形状、大小及质量对转轴的分布情况有关 ③ 质量连续分布的刚体用积分 线分布 细杆 面分布 薄板 体分布 实球
2017/3/3
Jz
v
r 2 dm
线密度 面密度 体密度
dm l dl dm s ds
v
dm dv
J l r 2 dl
J s r 2 ds
5.1 刚体的基本运动
速度的方向:垂直于
和 ri
⑥. 匀加速转动
组成的平面,符合右手螺旋法则 z
0 t
1 0 0t t 2 2
2 2 ( ) 2 0 0
R i O、
v ri
p y
O x
ri
2017/3/3
2 2
)g
m1 m2
2017/3/3
FT 2
(2m1m2
m2 m0 m0
2 2
)g
m1 m2
19
5.3 刚体定轴转动的动能定理
1.刚体定轴转动的动能
设物体绕一固定轴转动,其转动动能就是刚体中 每个质元做圆周运动的动能之和。
1 Ek Eki mi vi 2 i i 2 1 2 1 2 mi Ri J 2 2 2 i
可 当 质 点 处 运动。
理。 人步行 电机转子转动
2017/3/3
平动。
车轮的滚动
玩具陀螺转动
4
5.1 刚体的基本运动
3.定轴转动的描述
①. 角坐标 转动运动方程 刚体
刚体中任 一点 (t+△t) (t) 参考 方向
SI: rad 弧度
②. 角位移 t 时间 内角坐标的变化 ③. 角速度矢量 平均角速度 瞬时角速度
J J c md 2
2017/3/3
1 1 l ml 2 m ml 2 12 3 2
17
2
5.2 力矩
转动定律
F ma
4.转动定律的应用
力矩的瞬时作用规律: M J 平行转动定律解题思路:
① ② ③ ④
确定研究对象. 求出力对转轴的力矩,对不产生力矩的力不做分析. 分析转动特点,有无角加速度. 规定转动正方向,列方程求解,结果讨论.
④. 角加速度 d d 2 k
v an r 2 r dv d at r r dt dt
SI: rad/s2 弧度/秒2
2017/3/3
dt
2
dt 2
⑤. 线量与角量的关系
速度的大小:v ri sin
6
v ri
[例5.4]
已知如右图 试求:定滑轮转动的角
加速度和绳中的张力
2017/3/3
轮轴无摩擦 轻绳不伸长 轮绳不打滑
m0 r
m2
m1
18
5.2 力矩
转动定律
FT 2 FT 2
[解] 对于平动物体m1,m2应用牛顿第二
m1 g FT 1 m1a FT 2 m2 g m2 a
2017/3/3
10
5.2 力矩
转动定律
①. 外力不垂直于转轴的平面内 外力分解为两个分力,一个与转轴 平行(力矩为零),另一个与转轴
垂直的平面内
M (F) M ( F ) r F
②. 力对点的力矩
力矩的大小:
M0 r F
M 0 Fr sin
① 理想化模型,绝对刚体不存在 ② 特殊的质点系,各质元间无相对运动
2.刚体的基本运动形式
平动: 在运动中,连接刚体内任意两点的直线在任意 时刻的位置都与初始位置的连线保持平行。 转动 :在运动中,刚体上任一质元都绕同一直线做圆 周运动,包括定轴转动和定点转动。 一般运动:平动+转动
2017/3/3
5.2 力矩
[例5.3]
转动定律
(1)求质量为m, 半径为R的均质细圆环,对过圆心与圆平面垂直的转
轴的转动惯量;(2)如果将圆环换做质量仍为且半径仍为的匀质圆盘,转轴位置 不变,其转动惯量为多少。
[解] (1)将细圆环视为有许多段微小圆弧组成每段质量为dm
dJ 0 R 2 dm
J dJ 0
16
5.2 力矩
转动定律
3.转动惯量及其计算
由以上两例题可以得: 转动惯量不仅与刚体的总质量和转轴的位置 有关,还与刚体质量的空间分布有关 平行轴定理:刚体对任一轴的转动惯量J,等于过中心的 平行轴的转动惯量 Jc 与二轴间的垂直距离 d 的平方和刚 体质量的乘积之和。
J Jc md 2
如例题5.2
dAi Fi dri Fi cosdri Fi cos Rd i
Fi
Ri d
Mi FR i i sin FR i i cos
所以 dAi M i d 设刚体从0转到 ,则力 F 做的功为 i
A Ai ( M i d ) ( M i )d
大学物理(上)
第5章 刚体力学基础
授课人: 院 系:
2017/3/3
1
第5章 刚体力学基础
目录
5.1 5.2 5.3 5.4 5.5
刚体的基本运动
力矩 转动定律
CONTENTS
刚体定轴转动的动能定理 角动量 角动量守恒定律 旋进 回转效应
2017/3/3
2
5.1 刚体的基本运动
1.刚体
刚体:任何情况下形状和大小(体积)都不发生变化。
图5.9
力矩的方向:垂直于矢径和力组成 的平面,指向由右手螺旋法则确定
2017/3/3
图5.10
11
5.2 力矩
转动定律
2.转动定律 z 某质元 mi 受外力 F外i 和内力 F内i ,刚
ri m i
图5.11
体绕 z 轴转动,以 ri 为半径做圆周运动, 由牛顿第二定律 dvi F外i F内i =mi dt 将此矢量式投影到质元 i 的圆轨迹切线方向上
3
5.1 刚体的基本运动
平 动 定轴转动 平面运动 定点运动 一般运动
刚 体 任 意 两 刚 体 各 质 元 刚 体 质 心 限 刚体绕过一固 转 动 与 平 动
点 的 连 线 保 绕一固定不动 制 在 一 平 面 定点的某一瞬 的叠加。 持方向不变。 的轴线作圆周 内 , 转 轴 可 时轴线的转动。
m
0
R 2 dm mR 2
m
0
d rr
R
(2)将圆盘视为有许多半径为r,宽为dr的细圆环,
m 圆盘的质量面密度 s R2
Rቤተ መጻሕፍቲ ባይዱ
dm
取半径为r,宽为dr的细圆环 dm s 2 rdr dJ 0 r 2 dm 2 s r 3 dr R 1 3 J dJ 0 2 s r dr mR 2 0 2 2017/3/3
x
dx l
2
l 2
O
x
3 m m x 1 2 2 J 1 l x dx ml 2 l 3 l 12 2 l 2 l m 1 2 2 (2) J 2 0 l x dx 3 ml O x 转动惯量与转轴位置有关 l
2017/3/3
dm
x
dx l
15
0
2017/3/3
23
5.3 刚体定轴转动的动能定理
(2) 应用转轴的动能定理
h
y C
A Ek Ek 0
1 2 E J Ek 0 0 k 2 1 2 J ml 3 l 1 2 2 mg ml 0 2 6
i i
Ai M i d
0
0
0
i
Md
2017/3/3
0
力矩的功
21
5.3 刚体定轴转动的动能定理
3.刚体定轴转动的动能定理
质点系的动能定理也适用于刚体
A外 +A 内 =Ek Ek 0
对刚体而言,内力相对位置不变,做功为零
A外 =Ek Ek 0
又有
A Md
Ft外i Ft内i =mi ati mi ri 将此两边乘以 ri ,并对整个刚体求和
2017/3/3
12
5.2 力矩
转动定律
2 i i
F
i
t外i i
r Ft内i ri ( mi ri )
内力矩成对抵消 称为刚体对z轴 的转动惯量
合外力矩 M Z
J
转动定律
Mz
J v r 2 dv
14
5.2 力矩
[例5.2]
转动定律
一质量为 m , 长为 l 的均匀细棒,求细棒相对于