五年级奥数假设法解题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数:假设法解题
专题分析:
假设法解题是一种常用的思维方法,在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
【例题】:有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?
【思路】:先假设有14张5元的,则总数是70元,那么与实际相差30元,所以这30元就是10元人民币少出来的,因此10远人民币的张数是30÷(10-5)=6(张)。也可以假设有14张10元的……
练习一:
1、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?
2、一堆2分和5分的硬币共39枚,共值1.5元。问2分和5分的银币各有多少枚?
3、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。求换来的这两种人民币各多少张?
【例题】:用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。现有18车货,价值3024元。若每箱便宜2元,则这批货物价值2520元。问大小汽车各多少辆?
【思路】:根据“若每箱便宜2元,则这批货物价值2520元。”可以知道一共便宜了504元,这样可以计算出货物有252箱。假设18辆都是大汽车,可以装324箱,比实际多装72箱。用一辆大汽车换一辆小汽车可少运6箱,所以有12辆小汽车。6辆大汽车。
练习二:
1、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。平均每天运14次。这几天中有几天是雨天?
2、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。问大箩、小箩各有多少个?
3、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜?
【例题】:甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。两人各投10次,共得152分。其中甲比乙多得16分,问两人各中多少次?
【思路】:根据共得152分。其中甲比乙多得16分,可计算甲得84分,乙得68分。甲投10次,假设全中。应得100分,这样比实际多了16分,由于脱靶一次扣6分,所以甲脱靶一次应扣16分,这样可计算出甲脱靶了1次。同理可计算乙脱靶了2次。那么计算甲乙投中的次数就容易了。
练习三:
1、百货公司委托搬运站送500只玻璃瓶,双方商定每只运费0.24元。如果打破
一只,不但不给运费,而且还要赔偿1.26元,结果,搬运站共得运费115.50元。问搬运中打破了几只?
2、某次数学竞赛共有20道题,每答对一道得5分,答错一道不仅不给分,还倒扣2分。这次数学竞赛小明得了86分,问他答对了几道题?
3、甲组工人生产一种零件,每天生产250个,按规定每个合格记4分,生产一个不合格的零件要倒扣27分。该组工人4天共得了3752分。问生产合格零件多少个?
【例题】:有一元、二元、五元的人民币50张,总面值为116元。已知一元的比二元的多2张,问三种面值的人民币各有多少张?
【思路】:如果减少2张一元的,那么,总张数就是48张,总面值就是114元,这样一元和二元的张数就同样多了。假设48张都是5元的,则总面值为240元,比实际多了126元,这126元不仅包括把一元的假设为5元,而且包括把二元的假设为5元,这样在两张5元中就多了7元。所以二元的就有18张,一元的就有20张,五元的有12张。
练习四:
1、有3元、5元和7元的电影票400张,一共价值1920元。其中7元的和5元的张数相等,三种价值的电影票各有多少张?
2、有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?
3、有1角、2角、4角、5角的邮票共26张,总计6.9元。其中,1角和2角的张数相等,4角和5角的张数相等。求这四张邮票各有多少张?
【例题】:有黑白棋子一堆,其中黑子个数是白子个数的2倍。如果从这堆棋子中每次取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子余18个?
【思路】:假设每次取出3个白子,黑子应取出6个,那么白子剩下1个时,黑子应剩下2个。而实际剩下了18个,是因为每次少取了2个黑子。所以取了(18)÷(6-4)=8(次)。
练习五:
1、有黑白棋子一堆,其中黑子个数是白子个数的3倍。如果从这堆棋子中每次同时取出黑子6个,白子3个,那么取了多少次后,白子余5个,黑子余36个?
2、操场上有一群同学,男生人数是女生的4倍,每次同时有2名男生和1名女
生回教室,若干次后,男生剩下8人,女生剩下1人?操场上共有多少名同学?
课后练习:
1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?
2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?
3. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?
4. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?
5. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?
6. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?
7. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?