动态平衡试题,死结和活结

合集下载

高考物理专题“死结”与“活结”及动态平衡问题易错分析

高考物理专题“死结”与“活结”及动态平衡问题易错分析

二、“死结”与“活结”及动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。

“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。

(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。

“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。

绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。

典例1 如图所示,AO 、BO 、CO 是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO 先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO 总是先断答案 C 以结点O 为研究对象,受力情况如图所示,根据对称性可知,BO 绳与CO 绳拉力大小相等,由平衡条件得,F AO =2F BO cos θ2,当钢梁足够重时,AO 绳先断,说明F AO >F BO ,则有2F BO cos θ2>F BO ,解得θ<120°,故选项C 正确。

典例2 (多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O 点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b 。

外力F 向右上方拉b,整个系统处于静止状态。

若F 方向不变,大小在一定范围内变化,物块b 仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力Ga,C项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N +T1cos θ+F sin α-Gb=0f+T1sin θ-F cos α=0FN、f均随F的变化而变化,故B、D项正确。

死结活结及动态平衡(含答案)

死结活结及动态平衡(含答案)

“死结活结”问题及共点力的动态平衡“活结”与“死结”模型“死结”模型1. 质量为m 的物体用轻绳AB 悬挂于天花板上。

用水平向左的力F 缓慢拉动绳的中点O ,如图所示。

用T 表示绳OA 段拉力的大小,在O 点向左移动的过程中A. F 逐渐变大,T 逐渐变大B. F 逐渐变大,T 逐渐变小C. F 逐渐变小,T 逐渐变大D. F 逐渐变小,T 逐渐变小2. 如图所示,某健身爱好者手拉着轻绳,在粗糙的水平地面上缓慢地移动,保持绳索始终平行于地面。

为了锻炼自己的臂力和腿部力量,可以在O 点悬挂不同的重物C 则A.若健身者缓慢向右移动,绳OA 拉力变小B. 若健身者缓慢向左移动,绳OB 拉力变大C. 若健身者缓慢向右移动,绳OA 、OB 拉力的合力变大D. 若健身者缓慢向左移动,健身者与地面间的摩擦力变小“活结”模型【例4】 (多选)(2017·天津卷,8)如图14所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态。

如果只人为改变一个条件,当衣架静止时,下列说法正确的是( )A.绳的右端上移到b′,绳子拉力不变 B.将杆N向右移一些,绳子拉力变大C.绳的两端高度差越小,绳子拉力越小 D.若换挂质量更大的衣服,则衣架悬挂点右移3.如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上:一细线穿过两轻环,其两端各系一质量为m的小球。

在a和b之间的细线上悬挂一小物块。

平衡时,a、b间的距离恰好等于圆弧的半径。

不计所有摩擦。

小物块的质量为()A. B. C. m D. 2m4.如图所示,A、B两物体的质量分别为和,且,整个系统处于静止状态,滑轮的质量和一切摩擦均不计如果绳一端由Q点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角如何变化A. 物体A的高度升高,角变小B. 物体A的高度降低,角不变C. 物体A的高度升高,角不变D. 物体A的高度不变,角变小动态平衡5(角度变).如图所示,质量分别为M,m的两个物体系在一根通过轻滑轮的轻绳两端,M放在水平地面上,m被悬在空中,若将M沿水平地面向右缓慢移动少许后M仍静止,则( )A. 绳中张力变大B. 滑轮轴所受的压力变大C. M对地面的压力变大D. M所受的静摩擦力变大6.(大小变)一光滑的轻滑轮用细绳悬挂于O点,站在地面上的人用轻绳跨过滑轮拉住沙漏斗,在沙子缓慢漏出的过程中,人握住轻绳保持不动,则在这一过程中()A. 细线OO’与竖直方向夹角逐渐减小B. 细线OO’的张力逐渐增大C. 人对地面的压力将逐渐增大D. 人对地面的摩擦力将逐渐增大7.如图所示,光滑小球置于竖直墙壁和挡板间,挡板绕O点于图示位置缓慢转至水平的过程中,球对墙壁和挡板的压力如何变化( )A. 对墙壁的压力减小,对挡板的压力也减小B. 对墙壁的压力减小,对挡板的压力增大C. 对墙壁的压力减小,对挡板的压力先增大后减小D. 对墙壁的压力先增大后减小,对挡板的压力增大8.如图所示,一个球放在光滑斜面EF和挡板EQ中,挡板通过轴E固定在斜面上,斜面与水平面夹角为,当挡板由竖直位置转到水平位置的过程中,斜面对球的作用力,挡板对球的作用力的变化情况是( )A. 变小,先变小后变大B. 变大,先变小后变大C. 变大,变大D. 不变,变小9.如图所示,一根粗糙的水平横杆上套有A、B两个轻环,系在两环上的等长细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则A. 杆对A环的支持力变大B. B环对杆的摩擦力变小C. 杆对A环的力不变D. 与B环相连的细绳对书本的拉力变大10.如图所示,用OA、OB两根轻绳将花盆悬于两竖直墙之间,开始时OB绳水平。

“死结”与“活结”及动态平衡问题易错分析可自主编辑

“死结”与“活结”及动态平衡问题易错分析可自主编辑

二、“死结”与“活结”及动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。

“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。

(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。

“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。

绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。

典例1如图所示,AO、BO、CO是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO总是先断答案 C 以结点O为研究对象,受力情况如图所示,根据对称性可知,BO绳与CO绳拉力,当钢梁足够重时,AO绳先断,说明F AO>F BO,则有2F BO 大小相等,由平衡条件得,F AO=2F BO cos ??2>F BO,解得θ<120°,故选项C正确。

cos ??2典例2(多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。

外力F向右上方拉b,整个系统处于静止状态。

若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力G a,C 项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N+T1cos θ+F sin α-G b=0f+T1sin θ-F cos α=0F N、f均随F的变化而变化,故B、D项正确。

高考物理 3年高考2年模拟1年原创 专题2.5 活结与死结(含解析)

高考物理 3年高考2年模拟1年原创 专题2.5 活结与死结(含解析)

专题2.5 活结与死结【考纲解读与考频分析】所谓活结是指光滑滑轮或光滑挂钩,活结的特征是光滑滑轮或光滑挂钩可自由移动,光滑滑轮或光滑挂钩两侧细绳中的拉力相等;所谓死结是指几段细线连接在一起,死结的特征组成结的细绳中一般拉力不相等。

高考经常以活结与死结为情景命题,考查灵活运用知识的能力。

【高频考点定位】:活结死结考点一:活结【3年真题链接】1.(2019全国理综I卷19)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。

一细绳跨过滑轮,其一端悬挂物块N。

另一端与斜面上的物块M相连,系统处于静止状态。

现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。

已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加【参考答案】BD【命题意图】本题考查动态平衡及其相关知识点。

【解题思路】用水平向左的拉力缓慢拉动N,水平拉力一定逐渐增大,细绳对N的拉力一定一直增大,由于定滑轮两侧细绳中拉力相等,所以M所受细绳的拉力大小一定一直增大,选项A错误B正确;由于题述没有给出M、N的质量关系,所以M所受斜面的摩擦力大小可能先减小后增大,选项C错误D正确。

【方法归纳】解答此题也可设出用水平向左的拉力缓慢拉动N后细绳与竖直方向的夹角,分析受力列出解析式,得出细绳的拉力随细绳与竖直方向的夹角表达式,进行讨论。

2.(2017天津理综卷)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服的衣架钩是光滑的,挂于绳上处于静止状态。

如果只人为改变一个条件,当衣架静止时,下列说法正确的是A .绳的右端上移到b ',绳子拉力不变B .将杆N 向右移一些,绳子拉力变大C .绳的两端高度差越小,绳子拉力越小D .若换挂质量更大的衣服,则衣架悬挂点右移【参考答案】AB【名师解析】设两杆间距离为d ,绳长为l ,Oa 、Ob 段长度分别为l a 和l b ,则b a l l l +=,两部分绳子与竖直方向夹角分别为α和β,受力分析如图所示。

2020届高考物理必考经典专题 专题02 共点力的平衡(含解析)

2020届高考物理必考经典专题 专题02 共点力的平衡(含解析)

2020届高考物理必考经典专题专题2: 共点力的平衡考点一平衡条件的应用1.解决平衡问题的常用方法合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平效果分解法衡条件物体受到三个或三个以上力的作用时,将物体所受的力分解为相互垂直的两组,每组力都满足正交分解法平衡条件对受三力作用而平衡的物体,将表示力的矢量平移使三力组成一个首尾依次相接的矢量三角力的三角形法形,然后根据数学知识求解未知力考点二“死结”与“活结”“动杆”与“定杆”问题1.“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等.2.“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.3.“动杆”:轻杆用转轴或铰链连接,可以绕轴自由转动.当杆处于平衡时,杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.4.“定杆”:轻杆被固定不发生转动.则杆所受到的弹力方向不一定沿杆的方向.杆所受到的弹力方向可以沿着杆,也可以不沿杆.考点三动态平衡问题1.动态平衡平衡物体所受某力发生变化,使得其他力也发生变化的平衡问题.2.基本思路化“动”为“静”,“静”中求“动”.3.分析动态平衡问题的两种方法方法步骤解析法(1)列平衡方程求出未知量与已知量的关系表达式(2)根据已知量的变化情况来确定未知量的变化情况图解法(1)根据已知量的变化情况,画出力的平行四边形(或三角形)边、角的变化(2)确定未知量大小、方向的变化考点四平衡中的临界极值问题1.“临界状态”:可理解为“恰好出现”和“恰好不出现”某种现象的状态.2.三种临界条件(1)两接触物体脱离与不脱离的临界条件:相互作用力为0(主要体现为两物体间的弹力为0).(2)绳子断与不断的临界条件:绳中的张力达到最大值;绳子绷紧与松弛的临界条件为绳中的张力为0.(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件:静摩擦力达到最大静摩擦力. 3.突破临界和极值问题的三种方法解析法根据物体的平衡条件列方程,在解方程时采用数学知识求极值.通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等图解法根据物体的平衡条件作出力的矢量关系图,作出平行四边形或者矢量三角形进行动态分析,确定最大值或最小值极限法是指通过恰当选取某个变化的物理量将问题推向极端(“极大”“极小”“极右”“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解.典例精析★考点一:平衡条件的应用◆典例一:【2019·新课标全国Ⅲ卷】用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示。

2-“死结”与“活结”及 动态平衡问题易错分析 高考物理(山东)复习专题

2-“死结”与“活结”及 动态平衡问题易错分析 高考物理(山东)复习专题

二、“死结”与“活结”及 动态平衡问题易错分析“死结”与“活结”的比较(1)“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点。

“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等。

(2)“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点。

“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的。

绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。

典例1 如图所示,AO 、BO 、CO 是完全相同的绳子,并将钢梁水平吊起,若钢梁足够重时,绳子AO 先断,则( )A.θ=120°B.θ>120°C.θ<120°D.不论θ为何值,AO 总是先断答案 C 以结点O 为研究对象,受力情况如图所示,根据对称性可知,BO 绳与CO 绳拉力大小相等,由平衡条件得,F AO =2F BO cos θ2,当钢梁足够重时,AO 绳先断,说明F AO >F BO ,则有2F BO cosθ2>F BO ,解得θ<120°,故选项C 正确。

典例2 (多选)(2016课标Ⅰ,19,6分)如图,一光滑的轻滑轮用细绳OO'悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b。

外力F向右上方拉b,整个系统处于静止状态。

若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则( )A.绳OO'的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化答案BD 系统处于静止状态,连接a和b的绳的张力大小T1等于物块a的重力Ga,C项错误;以O'点为研究对象,受力分析如图甲所示,T1恒定,夹角θ不变,由平衡条件知,绳OO'的张力T2恒定不变,A项错误;以b为研究对象,受力分析如图乙所示,则F N +T1cos θ+F sin α-Gb=0f+T1sin θ-F cos α=0FN、f均随F的变化而变化,故B、D项正确。

绳的活结与死结模型、动杆和定杆模型-2024年高考物理一轮复习热点(解析版)

绳的活结与死结模型、动杆和定杆模型-2024年高考物理一轮复习热点(解析版)

绳的活结与死结模型、动杆和定杆模型特训目标特训内容目标1绳子类的“死结”问题(1T -4T )目标2绳子类的“活结”问题(5T -8T )目标3有关滑轮组的“活结”问题(9T -12T )目标4定杆和动杆问题(13T -16T )【特训典例】一、绳子类的“死结”问题1如图所示,质量为m =2.4kg 的物体用细线悬挂处于静止状态。

细线AO 与天花板之间的夹角为53°,细线BO 水平,若三根细线能承受最大拉力均为100N ,重力加速度g 取10m/s 2,不计所有细线的重力,sin37°=0.6,cos37°=0.8。

下列说法正确的是()A.细线BO 上的拉力大小30NB.细线AO 上的拉力大小18NC.要使三根细线均不断裂,则细线下端所能悬挂重物的最大质量为8kgD.若保持O 点位置不动,沿顺时针方向缓慢转动B 端,则OB 绳上拉力的最小值为19.2N 【答案】C【详解】AB .以结点O 为研究对象,受到重力、OB 细线的拉力和OA 细线的拉力,如图所示根据平衡条件结合图中几何关系可得细线BO 上的拉力大小为F BO =mg tan37°=18N 同理,可解得细线AO 上的拉力大小F AO =mgcos37°=30N 故AB 错误;C .若三根细线能承受的最大拉力均为100N ,根据图中力的大小关系可得,只要OA 不拉断,其它两根细线都不会拉断,故有m max g =F max cos37°解得m max =F max cos37°g =100×0.810kg =8kg ,故C 正确;D .当OB 与OA 垂直时,OB 细线的拉力最小,根据几何关系结合平衡条件可得F min =mg sin37°=2.4×10×0.6N =14.4N 故D 错误。

故选C 。

2如图所示,两个质量均为m 的小球a 和b 套在竖直固定的光滑圆环上,圆环半径为R ,一不可伸长的细线两端各系在一个小球上,细线长为23R 。

2.6活结和死结模型(教师版) 2025年高考物理100考点千题精练(新高考通用)

2.6活结和死结模型(教师版) 2025年高考物理100考点千题精练(新高考通用)

故选 D。
6. (2024 年 1 月福建部分重点高中期末) 如图所示,长度为 L 的光滑轻质晾衣绳,两端分别固定在两根
竖直杆的 A、B 两点,衣服通过衣架的挂钩悬挂在绳上并处于静止状态,此时两竖直杆间的距离为
d1
=
4 5
L
,绳子张力为
F
。保持
B. 轻绳上张力越来越大
C. 拉力 F 越来越小
D. 拉力 F 大小不变
【参考答案】D
【名师解析】
由于两杆间距离不变,绳长不变,根据几何关系可知,滑轮两边轻绳与竖直方向的夹角相等,
l1 sinq + l2 sinq = l sinq = d
则夹角不变,根据力的平衡可知,绳上的拉力始终不变,对环研究可知,根据力的平衡,拉力 F 不变。
B. 轻绳的张力先变大后变小 D. 轻绳对挂钩的作用力先变大后变小
设轻绳的夹角为q ,则轻绳上的拉力
F
=
mg 2 cos q
2
当甲缓慢站起至站直的过程中轻绳间的夹角q 先变大,当杆水平时轻绳间夹角最大,然后变小,轻绳的张
力先变大后变小,故 B 正确,ACD 错误。 。 4. (2024 宁夏银川一中第六次月考)荡秋千是一项古老的休闲体育运动。郭亮同学的质量为 m(视为质 点),他在荡秋千时,O 和 A 分别为其运动过程中的最低点和最高点,如图所示。两根秋千绳均长为 L,郭 亮同学运动到 O 位置时的速度大小为 v,重力加速度大小为 g,忽略空气阻力,不计秋千绳受到的重力,下 列说法正确的是( )
2F - mg = m vgL 2L
故 C 错误;
D.在 A 位置时,设绳子与竖直方向成q ,从 A 到 O,由动能定理有
mgL 1- cosq = 1 mv2

高一物理上册专题—“活结”和“死结”及“动杆”和“定杆”模型

高一物理上册专题—“活结”和“死结”及“动杆”和“定杆”模型

“活结”和“死结”、“动杆”和“定杆”模型重难讲练1.“活结”和“死结”问题(1)活结:当绳绕过光滑的滑轮或挂钩时,由于滑轮或挂钩对绳无约束,因此绳上的力是相等的,即滑轮只改变力的方向不改变力的大小,例如图乙中,两段绳中的拉力大小都等于重物的重力.(2)死结:若结点不是滑轮,是固定点时,称为“死结”结点,则两侧绳上的弹力不一定相等.“死结”一般是由绳子打结而形成的,“死结”两侧的绳子因打结而变成两根独立的绳子。

死结的特点:a.绳子的结点不可随绳移动b.“死结”两侧的绳子因打结而变成两根独立的绳子,因此由“死结”分开的两端绳子上的弹力不一定相等2.“动杆”和“定杆”问题(1)动杆:若轻杆用光滑的转轴或铰链连接,当杆处于平衡时杆所受到的弹力方向一定沿着杆,否则会引起杆的转动.如图甲所示,若C为转轴,则轻杆在缓慢转动中,弹力方向始终沿杆的方向.(2)定杆:若轻杆被固定不发生转动,则杆所受到的弹力方向不一定沿杆的方向.如图乙所示.【例1】(2016·全国卷Ⅲ·17)如图所示,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m2B.√32mC.mD.2m【答案】C【解析】如图所示,圆弧的圆心为0,悬挂小物块的点为c,由于ab=R,则△aOb为等边三角形,同一条细线上的拉力相等, F T=mg,,合力沿Oc方向,则Oc为角平分线,由几何关系知,∠acb=120°,故线的拉力的合力与物块的重力大小相等,即每条线上的拉力F T= G=mg,,所以小物块质量为m,故C对.【例2】如图甲所示,轻绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量M₁的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG 拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量M₂的物体,求:(1)轻绳AC段的张力F TAC与细绳EG的张力F TEG;之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.【答案】(1)M12M2(2)M1g方向和水平方向成30°指向右上方(3)√3M2g方向水平向右【解析】题图甲和乙中的两个物体M₁、M₂都处于平衡状态,根据平衡的条件,首先判断与物体相连的细绳,其拉力大小等于物体的重力;分别取C点和G点为研究对象,进行受力分析如图甲和乙所示,根据平衡规律一一求解.(1)图甲中轻绳AD跨过定滑轮拉住质量为M₁的物体,物体处于平衡状态,轻绳AC段的拉力F24c=F TCD=M1g图乙中由.F TEG sin30∘=M2g,得F TEG=2M2g.所以F14CF126=M12M2(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有F AC=F DAC=Mg,方向和水平方向成30°,指向右上方.(3)图乙中,根据平衡方程有F TEG sin30∘=Mg,F TBG cos30∘=F XG,所以F NG=M2gcot30∘=√3M2g,方向水平向右.专项训练1.如图所示,当重物静止时,节点O受三段绳的拉力,其中AO沿水平方向,关于三段绳中承受拉力的情况,下列说法中正确的是A.AO承受的拉力最大B.BO承受的拉力最大C.CO承受的拉力最大D.三段绳承受的拉力一样大【答案】B【解析】以结点O为研究对象,分析受力情况,受力分析如图:由平衡条件得:T₁=Gtanθ,T2=Gcosθ,故T1小于T2,G小于T2;所以BO承受的拉力最大;故B正确。

平衡中的死结与活结

平衡中的死结与活结

平衡中的死结与活结一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。

“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。

例1.建筑工人要将建筑材料运送到高处,常在楼顶装置一个定滑轮(图-1中未画出),用绳AB通过滑轮将建筑材料提到某一高处,为了防止材料与墙壁相碰,站在地面上的工人还另外用绳CD拉住材料,使它与竖直墙面保持一定的距离L不变。

若不计两根绳的重力,在提起材料的过程中,绳AC和CD的拉力T1和T2的大小变化情况是()A.T1增大、T2增大B.T1增大、T2不变C.T1增大、T2减小D.T1减小、T2减小解析:三根绳子连接于C点不动,所以属于“死结”的问题,三根绳上的张力不相等,画出C点的受力如图-2所示,因材料在上升过程中与墙保持L的距离不变,所以上升过程中α和β均增大,由力的平行四边形定则可知,T1、T2均增大,所以正确答案为A。

例2.如图-3所示,相距4m的两根固定柱子拴上一根长5m的细绳,小滑轮及绳子的质量、摩擦均不计。

当滑轮上吊一重180N的重物时,求绳子中的张力?解析:因滑轮可以在绳上自由滑动,所以滑轮与绳接触的点为“活结”,跨过滑轮的两段绳子上的张力相等,画出其受力如图-4所示。

由几何关系知:,所以α=530,绳中的张力:F=N=150N。

二、“活杆”与“死杆”轻杆是物体间连接的另一种方式,根据轻杆与墙壁连接方式的不同,可以分为“活杆”与“死杆”。

所谓“活杆”,就是用铰链将轻杆与墙壁连接,其特点是杆上的弹力方向一定沿着杆的方向;而“死杆”就是将轻杆固定在墙壁上(不能转动),此时轻杆上的弹力方向不一定沿着杆的方向。

例3.如图-5所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。

受力平衡问题中“死结”和“活结”模型

受力平衡问题中“死结”和“活结”模型

受力平衡问题中 死结 和 活结 模型ʏ孟德飞受力平衡问题中的绳模型是近年高考题中常考的模型㊂靠跨过滑轮或者绕过光滑杆㊁光滑钩等把绳子分成两段,且可以沿着绳子移动的结点称为 活结 ;而把绳子系在某位置且该结点不会沿绳子移动,这样把绳子分成两段的结点称为 死结 ㊂这类模型中的 死结 和 活结 问题考查的知识点丰富,题型变式多样,对同学们的思维能力要求高,是同学们学习的难点,同学们碰到这类问题时普遍有畏难情绪㊂但同学们如果掌握了该类问题的共性,也就是掌握其规律,再解答这类问题时就会容易得多㊂ 图1题型示例:如图1甲所示,右端固定有定滑轮的水平轻杆B C ,细绳左端固定在A 点,一质量为M 1的物体通过细绳挂在定滑轮上,其中øA C B =30ʎ;在图乙中,轻杆H G 一端用铰链(可让杆旋转)固定在竖直墙上,用固定在E 点的细绳拉住杆右端的G 点,也让E G 与水平方向成30ʎ,在G 点挂一质量为M 2的物体㊂求:(1)A C 绳与E G 段绳上的拉力之比;(2)绳在C 端对轻杆B C 的压力;(3)轻杆H G 所受到的压力㊂ 图2过程分析:(1)图甲中,物体M 1处于平衡状态,细绳A D 跨过定滑轮分成A C 段和C D 段,C 点是同一根上可移动的活结㊂由活结特点可知,绳子两端拉力相等且等于物体M 1的重力,即A C 段的拉力F T A C =F T C D =M 1g ㊂图乙中由F T EG s i n 30ʎ=M 2g ,得F T E G =2M 2g ㊂所以F T A C F T E G =M 12M 2㊂(2)要求绳在C 端对轻杆B C 的压力,需对结点C 进行受力分析㊂根据图2甲中的几何关系可知,三个力之间互成120ʎ的夹角㊂再根据平衡关系,可得F T A C =F N C =M 1g ,力的作用是相互的,压力方向与水平方向成30ʎ角指向左下方㊂(3)图乙中,对结点G 进行受力分析,根据共点力的受力平衡关系和几何关系,有F T E G s i n 30ʎ=M 2g ,F T E G c o s 30ʎ=F N G ,所以F N G =M 2g c o t 30ʎ=3M 2g ,压力方向水平向左㊂规律总结:在图2甲中,结点可以沿着绳子移动,这样的 活结 一般是由绳跨过滑轮或者绕过光滑杆㊁光滑钩等把绳子分成两段而形成的㊂因为两段绳实际上是同一根绳,在 活结 处由于弯曲而分开的两段绳上张力的大小相等㊂两分力和合力根据平行四边形定则构成菱形,菱形的对角线是两边夹角的角平分线㊂因此,两段绳子合力的方向就沿着两段绳子夹角的平分线㊂如图2乙所示,把绳子系在某位置且该结点不会沿绳子移动,这样把绳子分成两段的结点称为 死结㊂ 死结 两边的轻绳因结点不可移动而变成了两根受力相互独立的绳,要求解两段绳子上的弹力,要先根据力平行四边形定则进行力的合成与分解,再找几何关系来处理㊂因此,与 活结 不同的是,两段绳上张力不一定相等㊂综上所述,在受力平衡问题中, 死结活结 模型分析过程一般为:先明确研究对象,识别是符合 死结 还是 活结 模型;再根据 死结 活结 模型的解答规律来求解㊂在 活结 中,由结点分开的两段绳上张力的大小一定相等,且两段绳合力方向沿着其夹角的平分线㊂ 死结 分开的两段绳子要根据力平行四边形定则进行力的合成与分解,找出几何关系后分别求出两个力的大小和方向㊂作者单位:云南民族大学附属中学57基础物理 障碍分析 自主招生 2020年7 8月。

3.5.2+利用平衡条件解决动态平衡问题+课件+-2023-2024学年高一上学期物理人教版

3.5.2+利用平衡条件解决动态平衡问题+课件+-2023-2024学年高一上学期物理人教版
相距为4m的两杆的顶端 A、B,绳上挂一个光滑的轻质滑轮,
其下连着一个重为12N的物体,静止时绳的拉力T为多大?
解析:T1=T2
因为cosα

=

T1cosα=T2cosβ

; cosβ=

T1sinα+T2sinβ=G
α=β
+
= =
+

T1=T2 =
FN2
F
θ
变),使θ角变小(θ> 0)的过程中,问:挡板对小球
FN1
的支持力FN1和斜面对小球的支持力FN2大小如何变化?
(一)解析式法
解析:此时FN1=mgtanθ ;FN2=mg/cosθ
θ变小:tanθ变小,FN1变小
θ变小:cosθ变大,FN2 变小
mg
学习目标
新知学习
课堂总结
拓展:“动”态平衡
于平衡状态的是( C

学习目标
新知学习
课堂总结
2.如图,晒衣服的绳子轻且光滑,悬挂衣服的衣架的挂钩也是光滑的,轻绳两端
分别固定在两根竖直杆上的A、B两点,衣服处于静止状态,如果保持绳子A端位置
不变,将B端分别移动到不同的位置。
下列判断正确的是( AD )
A.B端移到B1位置时,绳子张力不变
B.B端移到B2位置时,绳子张力变小
直方向夹角为θ,悬挂物质量为m。已知θ角
为37°,物体质量为5kg。求AO、BO、CO三根
绳子拉力的大小(sin37°=0.6,
cos37°=0.8)。
学习目标
新知学习
课堂总结
2. 轻绳——“活结”
当绳子跨过光滑的滑轮、光滑的碗口、

“死结”和“活结”问题

“死结”和“活结”问题

“死结”和“活结”问题金菊英一根绳打死结,如在死结处施力便成了两根绳,两根绳的性状便由死结处断开表现不同.这里的活结是不打结绳是光滑的,在随便一处施力,尽管我们还是看成两边都受力,但还是一条绳中的张力必然相同,这就决定了两边施力受力大小相等.【例1】如图1所示,AO 、BO 和CO 三根绳子能承受的最大拉力相等,O 为结点,OB 与竖直方向夹角为θ,悬挂物质量为m .求OA 、OB 、OC 三根绳子拉力的大小 .解析:O 为结点,就是“死结”,OA 、OB 、OC 分别为三根不同的绳所以三根绳子的张力是不相同的.分析节点O 的受力如图2所示,T 1不等于T 2 ,它们的合力与G 等大反向. 悬挂物质量为m ,物体处于平衡状态,由平衡条件可知,OC 拉力的大小为mg .由结点的受力情况和平衡条件结合三角函数知识知道,OB 绳拉力的大小 T 1=mg θtan 、OB 绳拉力的大小T 2=θcos /G .【例2】如图3所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体,平衡时,问:绳中的张力T 为多少?解析:图3中因为是一个光滑的轻质挂钩,属于“活结”所以整个绳子处处张力相同.以轻质挂钩为分析对象,其受力情况的如图4所示,由平衡条件可知,T 1、T 2和G 三力平衡,且T 1=T 2, 故 T 1sin α+T 2sin α=T 3=G即T 1=T 2=αsin 2G ①.又因为AO.cos α+BO.cos α= CD, cos α(AO+ BO )=CD 代入数据得cos α=0.8 ,于是sin α=0.6 ② . 由①②并代入重力值得T 1=T 2=10N .由例1例2我们明显可以看出“死结”与“活结”的不同特点,对于例2中的光滑的轻质挂钩可以换为滑轮.通过进一步的分析还可以知道当,例1AB 两点中有一点做稍微的移动重新平衡后绳OA 、OB 的张力均要发生变化.而例2的重新平衡后,绳与水平面夹角,绳中张力均保持不变.图1 图4。

模型05“活结”和“死结”问题(解析版)-备战2021年高考物理模型专题突破

模型05“活结”和“死结”问题(解析版)-备战2021年高考物理模型专题突破

5
的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一个竖直向上的拉力,使小滑块沿杆缓 慢上升,整个过程中小球始终未脱离斜劈,则有
A.小球对斜劈的压力保持不变 B.轻绳对小球的拉力先减小后增大 C.竖直杆对小滑块的弹力先增大再减小 D.对小滑块施加的竖直向上的拉力逐渐增大 【答案】D 【详解】 A、B、对小球受力分析,受重力、支持力和细线的拉力,如图所示:
重力之和,故 N+T=mg+Fsin30°,故 T≤1.5mg,0≤N≤1.5mg.可知地面对 A 的支持力可能等于 0,根据
牛顿第三定律,球 A 对地面的压力可能为零.故 D 错误;故选 C.
考点:考查共点力平衡的条件及其应用;物体的弹性和弹力.
【名师点睛】该题考查共点力作用下物体的平衡,解答本题关键是先后对两个小球受力分析,然后根据
由以上分析可知,当
3 4
m1 m2
6 5
时,物体
P
6
有沿斜面向下运动的趋势;当
11
m1 m2
3 4
时,物体 P
有沿
斜面向上运动的趋势,当
m1 m2
3 4
时,物体
P 与斜面间没有相对运动趋势,C、D 情况物体
P 不能静止,
与题目条件矛盾,故 ACD 错误,B 正确。 故选 B。 7.如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上
A.球 A 对竖直墙壁的压力大小为 1 mg 2
B.弹簧对球 A 的弹力大于对球 B 的弹力 C.绳 OB 的拉力大小等于 mg D.球 A 对地面的压力不可能为零 【答案】C 【解析】 试题分析:C、对 B 球受力分析,受重力、支持力和拉力,如图;

高中物理 动态平衡问题(含答案)

高中物理     动态平衡问题(含答案)

受力分析:动态平衡问题所谓动态平衡问题,是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于一系列的平衡状态,常用方法:1:公式法。

2:矢量三角形法。

3:相似三角形法。

4:拉密定理。

1.如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O 点转至水平位置,则此过程中球对挡板的压力F 1和球对斜面的压力F 2的变化情况是( ).答案 BA .F 1先增大后减小,F 2一直减小B .F 1先减小后增大,F 2一直减小C .F 1和F 2都一直减小D .F 1和F 2都一直增大2.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F 1、半球面对小球的支持力F 2的变化情况正确的是( ). 答案 BA .F 1增大,F 2减小B .F 1增大,F 2增大C .F 1减小,F 2减小D .F 1减小,F 2增大3.如图,半圆形金属框竖直放在粗糙的水平地面上,套在其上的光滑小球P 在水平外力F 的作用下处于静止状态,P 与圆心O 的连线与水平面的夹角为θ,现用力F 拉动小球,使其缓慢上移到框架的最高点,在此过程中金属框架始终保持静止,下列说法中正确的是( ) 答案 DA .框架对小球的支持力先减小后增大B .水平拉力F 先增大后减小C .地面对框架的支持力先减小后增大D .地面对框架的摩擦力一直减小4.甲、乙两人用两绳aO 和bO 通过装在P 楼和Q 楼楼顶的定滑轮,将质量为m 的物块由O 点沿Oa 直线缓慢向上提升,如图.则在物块由O 点沿直线Oa 缓慢上升过程中,以下判断正确的是( ) 答案 DA .aO 绳和bO 绳中的弹力都逐渐减小B .aO 绳和bO 绳中的弹力都逐渐增大C .aO 绳中的弹力先减小后增大,bO 绳中的弹力一直在增大D .aO 绳中的弹力一直在增大,bO 绳中的弹力先减小后增大5.如图所示,A 是一均匀小球,B 是一14圆弧形滑块,最初A 、B 相切于圆弧形滑块的最低点,一切摩擦均不计,开始B 与A 均处于静止状态,用一水平推力F 将滑块B 向右缓慢推过一段较小的距离,在此过程中 ( ) 答案 BA .墙壁对球的弹力不变B .滑块对球的弹力增大C .地面对滑块的弹力增大D .推力F 减小6、(单选)如图所示,一物块受一恒力F 作用,现要使该物块沿直线AB 运动,应该再加上另一个力的作用,则加上去的这个力的最小值为( ).答案 BA .F cos θB .F sin θC .F tan θD .F cot θ7、(多选)如图所示,质量均为m 的小球A 、B 用两根不可伸长的轻绳连接后悬挂于O 点,在外力F 的作用下,小球A 、B 处于静止状态.若要使两小球处于静止状态且悬线OA 与竖直方向的夹角θ保持30°不变,则外力F 的大小( ).答案 BCDA .可能为33mgB .可能为52mgC .可能为2mgD .可能为mg8、(多选)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力F ,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有( ) 答案ADA .轻绳对小球的拉力逐渐增大B .小球对斜劈的压力先减小后增大C .竖直杆对小滑块的弹力先增大后减小D .对小滑块施加的竖直向上的拉力逐渐增大9.重力都为G 的两个小球A 和B 用三段轻绳按如图所示连接后悬挂在O 点上,O 、B 间的绳子长度是A 、B 间的绳子长度的2倍,将一个拉力F 作用到小球B 上,使三段轻绳都伸直且O 、A 间和A 、B 间的两段绳子分别处于竖直和水平方向上,则拉力F 的最小值为( ) 答案 AA.12GB.33G C .G D.233G 10.如图所示,两个小球a 、b 的质量均为m ,用细线相连并悬挂于O 点.现用一轻质弹簧给小球a 施加一个拉力F ,使整个装置处于静止状态,且Oa 与竖直方向夹角为30°,已知弹簧的劲度系数为k ,重力加速度为g ,则弹簧的最短伸长量为( ) 答案 BA.mg 2kB.mg kC.3mg 3kD.3mg k11.用力F 拉小球b ,使两个小球都处于静止状态,且细线Oa 与竖直方向的夹角保持θ=30°,如图20所示,重力加速度为g ,则F 达到最小值时Oa 绳上的拉力为( ) 答案 AA.3mg B.mgC.32mg D.12mg12.[注意“活结”和“死结”的区别] (多选)如图所示,顶端附有光滑定滑轮的斜面体静止在粗糙水平地面上,三条细绳结于O点。

02活结与死结、定杆与动杆

02活结与死结、定杆与动杆

【例题1】 如图(a)所示,轻绳AD 跨过固定在水平轻杆BC 右端的定滑轮(重力不计)挂住一个质量为M 1的物体,∠ACB =30°;如图(b)所示,轻杆HG 一端用铰链固定在竖直墙上,另一端G 通过轻绳EG 拉住,EG 与水平方向也成30°角,一轻绳GI 悬挂在轻杆的G 端并拉住一个质量为M 2的物体,重力加速度为g ,则下列说法正确的是( D )A .图(a)中BC 杆对滑轮的作用力大小为M 1g2B .图(b)中HG 杆受到的作用力大小为M 2gC .轻绳AC 段的张力T AC 与轻绳EG 段的张力T EG 的大小之比为M 1∶M 2D .轻绳AC 段的张力T AC 与轻绳EG 段的张力T EG 的大小之比为M 1∶2M 2(1)像滑轮这样的“活结”,结点两侧绳的拉力相等.(2)像图(b)中的“死结”,结点两侧绳的拉力一般不同,各自的大小可以采用正交分解法或矢量三角形法求出.(3)图(a)中水平直杆左端固定于竖直墙上,是“定杆”,杆对结点弹力的方向可以不沿杆的方向. (4)图(b)中轻杆左端用铰链固定,是“动杆”,轻杆在缓慢转动的过程中,弹力方向始终沿杆的方向. 【例题2】如图所示,一根粗糙的水平横杆上套有A 、B 两个轻环,系在两环上的登场细绳拴住的书本处于静止状态,现将两环距离变小后书本仍处于静止状态,则 A. 杆对A 环的支持力变大 B. B 环对杆的摩擦力变小 C. 杆对A 环的力不变D. 与B 环相连的细绳对书本的拉力变大 【答案】B【例题3】如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。

一细绳跨过滑轮,其一端悬挂物块N 。

另一端与斜面上的物块M 相连,系统处于静止状态。

现用水平向左的拉力缓慢拉动N ,直至悬挂N 的细绳与竖直方向成45°。

已知M 始终保持静止,则在此过程中 A .水平拉力的大小可能保持不变 B .M 所受细绳的拉力大小一定一直增加 C .M 所受斜面的摩擦力大小一定一直增加 D .M 所受斜面的摩擦力大小可能先减小后增加【答案】BD【例题4】如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆M 、N 上的a 、b 两点,悬挂衣服的衣架钩是光滑的,挂于绳上处于静止状态。

高一物理多力平衡“活结和死结”“活杆和死杆”

高一物理多力平衡“活结和死结”“活杆和死杆”

例2、将一根轻而柔软的细绳,一端拴在天花板上 的A点,另一端拴在墙上的B点,A和B到O点的距离 相等,绳的长度是OA的两倍,在一个质量可忽略的 动滑轮K的下方悬挂一个质量为M的重物,现将动滑
轮和重物一起挂到细绳上,在达到新的平衡时,绳 子所受的拉力是多大?
O A
K
M B
S
A
O
TA
B
TB
θ1 θ2
θ
TAO
θ
O
BF
Hale Waihona Puke CF二、“活结”
当绳子跨过光滑的滑轮、光滑的碗口、 钉子等光滑的节点时,此时节点是“活” 节, “活结”可理解为把绳子分成两段, 此时绳子为同一根绳子,张力大小处处相 等。
T
T合
T
活结的特点:
1.结点不固定,可随绳子移动。绳子虽然因活结 而弯曲,但实际上是同一根绳子。所以由活结 分开的两段绳子上弹力的大小一定相等。
模型:轻绳
绳的质量不计,伸长忽略不计,绳上 任何一个横截面两边相互作用的拉力 叫做“张力”,因此轻绳只有两端受力 时,任何一个横截面上的张力大小都 等于绳的任意一端所受拉力的大小, 即同一轻绳张力处处相等
绳是物体间连接的一种方式,当多个物体 用绳连接的时候,其间必然有“结”的出现,根 据“结”的形式不同,可以分为“活结”和“死 结”两种。
CD的拉力T1和T2的大小变化情况A是( )
A.T1增大、T2增大 B.T1增大、T2不变 C.T1增大、T2减小 D.T1减小、T2减小
练习3.轻绳AB一段固定于A点,另一端自由。在绳 中某处O点打结系另一轻绳OC,下挂一质量为m的 物体。现保持O点的位置不变,在OB段由水平方向 缓慢转到竖直方向的过程中,拉力F和绳OA的张力 变化? A

(江苏专用)高考物理三轮冲刺 第二篇 中档题防错 一“死结”与“活结”的比较-人教版高三全册物理试题

(江苏专用)高考物理三轮冲刺 第二篇 中档题防错 一“死结”与“活结”的比较-人教版高三全册物理试题

一、“死结〞与“活结〞的比拟结点问题是高考考查的热点,主要以平衡状态为主,当然,还可以出现在非平衡状态中,其中受力分析和利用不同结点的特征与规律解答是纠错必备。

例1如图(a),轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为M1的物体。

∠ACB=30°;图(b)中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G端用细绳GF拉住一个质量为M2的物体,如此如下说法中正确的答案是( )A.图(a)中BC杆对滑轮的作用力为M1g2B.图(b)中HG杆受到的作用力为M2gC.细绳AC段的张力F AC与细绳EG的张力F EG之比为1∶1D.细绳AC段的张力F AC与细绳EG的张力F EG之比为M1∶2M2答案 D解析图(a)中物体处于平衡状态,根据平衡条件可判断,与物体相连的细绳的拉力大小等于物体的重力大小,取滑轮为研究对象,进展受力分析,如下列图。

绳AC段的拉力大小为F AC=F CD=M1g由几何关系得BC杆对滑轮的作用力F C=F AC=M1g方向与水平方向成30 °角斜向右上方图(b)中物体处于平衡状态,与物体相连的轻绳的拉力大小等于物体的重力,取G点为研究对象,进展受力分析,如下列图。

由F EG sin 30°=F GF=M2g得F EG=2M2g由F EG cos 30°-F G=0解得F G=2M2g cos 30°=√3M2g方向水平向右如此HG杆受到的作用力为√3M2g。

F AC∶F EG=M1∶2M2【比拟】像滑轮这样的“活结〞,轮两侧绳拉力相等。

而像图(b)中的“死结〞,结点两侧的力一般不同,各自大小可以采用正交分解法或三角形法求解。

不管哪种,静态平衡问题用平衡规律,动态变速过程用牛顿运动定律,但是有临界状态出现时要积极采用放大法将临界状态暴露出来。

死结、活结与固定杆、活动杆学案、试题、答案

死结、活结与固定杆、活动杆学案、试题、答案

绳子死结、活结与固定杆、活动杆一、“活结”与“死结”1. “活结”“活结”一般是由绳跨过滑轮、光滑钉子或者绳上挂一光滑挂钩而形成的,结点可以沿绳子移动。

绳子虽然因“活结”而弯曲,但实际上是同根绳,两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线。

2.“死结”“死结”一般是由绳子打结而形成的,结点不可沿绳子移动。

可理解为绳子因打结而变成两根独立的、拉力可不相同的绳子。

1、如图,一个重为G 的吊椅用三根轻绳AO 、BO 固定,绳AO 、BO 相互垂直,α>β,且两绳中的拉力分别为FA 、FB ,物体受到的重力为G ,则( )A .F A 一定大于GB .F A 一定大于F BC .F A 一定小于F BD .F A 与F B 大小之和一定等于G2、如图所示,A 、B 两物体的质量分别为、,且,整个系统处于静止状态,滑轮的质量和一切摩擦均不计,如果绳一端由Q 点缓慢地向左移到P 点,整个系统重新平衡后,绳的拉力F 和两滑轮间绳、水平方向的夹角θ与物体A 的高度变化情况是( )A .F 变大,θ角变大,A 升高B .F 变小,θ角变小,A 升高C .F 不变,θ角变小,A 降低D .F 不变,θ角不变,A 升高3、如图,将一根不可伸长、柔软的轻绳左、右两端分别系于A 、B 两点上,一物体用动滑轮悬挂在轻绳上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为1F ;将绳子右端移到C 点,待系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为2F ;将绳子右端再由C 点移到D 点,待系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为3F ,不计摩擦,并且BC 为竖直线,则( )A.123θθθ==B.123θθθ=<C.123F F F >>D.123F F F =>二、“活动杆”与“固定杆”1.“活动杆”“活动杆”就是用铰链或者转动轴将轻杆与墙壁连接,其特点是杆上的弹力方向一定沿着杆的方向;2.“固定杆”“固定杆”就是将轻杆固定在墙壁上(不能转动),此时轻杆上的弹力方向不一定沿着杆的方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★★★★★高一物理培优讲义2分析动态平衡问题1.动态平衡问题:通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,从宏观上看,物体是运动变化的,但从微观上理解是平衡的,即任一时刻物体均处于平衡状态。

2.图解法:对研究对象进行受力分析,再根据三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度变化判断各力的变化情况。

3.图解法分析动态平衡问题,往往涉及三个力,其中一个力为恒力,另一个力方向不变,但大小发生变化,第三个力则随外界条件的变化而变化,包括大小和方向都变化。

解答此类“动态型”问题时,一定要认清哪些因素保持不变,哪些因素是改变的,这是解答动态问题的关键4.典型例题:例1:半圆形支架BCD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置逐渐移至竖直的位置C的过程中,如图所示,分析OA绳和OB绳所受力的大小如何变化?例2:如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的压力为F N1,球对板的压力为F N2.在将板BC逐渐放至水平的过程中,下列说法中,正确的是()A.F N1和F N2都增大B.F N1和F N2都减小C.F N1增大,F N2减小D.F N1减小,F N2增大思考:1如图所示,电灯悬挂于两壁之间,更换水平绳OA使连结点A向上移动而保持O点的位置不变,则A点向上移动时()A.绳OA的拉力逐渐增大;B.绳OA的拉力逐渐减小;C.绳OA的拉力先增大后减小;D.绳OA的拉力先减小后增大。

例3:如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化?思考:2.如图所示,细绳一端与光滑小球连接,另一端系在竖直墙壁上的A 点,当缩短细绳小球缓慢上移的过程中,细绳对小球的拉力、墙壁对小球的弹力如何变化?思考:3重G 的光滑小球静止在固定斜面和竖直挡板之间。

若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2各如何变化?4.相似三角形法分析动态平衡问题: (1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。

(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。

相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。

例4:如图所示,在半径为R 的光滑半球面上高为 h 处悬挂一定滑轮,重力为G 的小球被站在地面上的人用绕过定滑轮的绳子拉住,人拉动绳子,在与球面相切的某点缓慢运动到接近顶点的过程中,求小球对半球的压力和绳子的拉力大小将如何变化 ?5.平衡方程式法:平衡方程式法适用于三力以上力的平衡,且有一个恒力,通过它能够建立恒定不变的方程式。

根据其中一个力的变化情况,求出另一个力的变化情况。

例5:人站在岸上通过定滑轮用绳牵引低处的小船,若水的阻力不变,则船在匀速靠岸的过程中,下列说法中正确的是( ) (A )绳的拉力不断增大 (B )绳的拉力保持不变(C )船受到的浮力保持不变 (D )船受到的浮力不断减小课后练习1. 如图所示,电灯悬挂于两墙之间,更换绳OA ,使连接点A向上移,但保持O 点位置不变,则A 点向上移时,绳OA 的拉力A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大2. 如图所示,质量不计的定滑轮用轻绳悬挂在B 点,另一条轻绳一端系重物C ,绕过滑轮后,另一端固定在墙上A 点,若改变B 点位置使滑轮位置发生移动,但使A 段绳子始终保持水平,则可以判断悬点B 所受拉力F T 的大小变化情况是:A .若B 向左移,F T 将增大 B .若B 向右移,F T 将增大C .无论B 向左、向右移,F T 都保持不变D .无论B 向左、向右移,F T 都减小 3.轻绳一端系在质量为m 的物体A 上,另一端系在一个套在粗糙竖直杆MN 的圆环上。

现用水平力F 拉住绳子上一点O ,使物体A 从图中实线位置缓慢下降到虚线位置,但圆环仍保持在原来位置不动。

则在这一过程中,环对杆的摩擦力F 1和环对杆的压力F 2的变化情况是A .F 1保持不变,F 2逐渐增大B .F 1逐渐增大,F 2保持不变C .F 1逐渐减小,F 2保持不变D .F 1保持不变,F 2逐渐减小4.A 、B 为带有等量同种电荷的金属小球,现用等长的绝缘细线把二球悬吊于绝缘墙面上的O 点,稳定后B 球摆起,A 球压紧墙面,如图所示。

现把二球的带电量加倍,则下列关于OB 绳中拉力及二绳间夹角的变化的说法中正确的是: A.二绳间的夹角增大,OB 绳中拉力增大 B.二绳间的夹角增大,OB 绳中拉力减小 C.二绳间的夹角增大,OB 绳中拉力不变D.二绳间的夹角不变,OB 绳中拉力不变5.如图所示,绳子的两端分别固定在天花板上的A 、B 两点,开始在绳的中点O 挂一重物G ,绳子OA 、OB 的拉力分别为F 1、F 2。

若把重物右移到O '点悬挂(B O A O '<'),绳A O '和B O '中的拉力分别为'1F 和'2F ,则力的大小关系正确的是:A.'>11F F ,'>22F FB. '<11F F ,'<22F FC. '>11F F ,'<22F FD. '<11F F ,'>22F FBB6.如图所示,将一根不可伸长的柔软轻绳的两端系在两根立于水平地面上的竖直杆M 、N 等高的两点a 、b 上,用一个动滑轮悬挂一个重物G 后挂在绳子上,达到平衡时,两段绳子的拉力为T 1,现将绳子b 端慢慢向下移动一段距离,待系统再次达到平衡时,两绳子的拉力为T 2,则A.T 2>T 1B.T 2=T 1C.T 2<T1D.由于b 点下降高度未知,T 1和T 2的关系不能确定7. 如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重物D 用绳拴住通过滑轮固定于墙上的A 点。

若杆、滑轮及绳的质量和摩擦均不计,将绳的固定端从A 点稍向下移,则在移动过程中 (A )绳的拉力、滑轮对绳的作用力都增大 (B )绳的拉力减小,滑轮对绳的作用力增大 (C )绳的拉力不变,滑轮对绳的作用力增大 (D )绳的拉力、滑轮对绳的作用力都不变8.重力为G 的重物D 处于静止状态。

如图所示,AC 和BC 两段绳子与竖直方向的夹角分别为α和β。

α+β<90°。

现保持α角不变,改变β角,使β角缓慢增大到90°,在β角增大过程中,AC 的张力T 1,BC 的张力T 2的变化情况为 : A .T 1逐渐增大,T 2也逐渐增大 B .T 1逐渐增大,T 2逐渐减小 C .T 1逐渐增大,T 2先增大后减小 D .T 1逐渐增大,T 2先减小后增大9.如图所示,均匀小球放在光滑竖直墙和光滑斜木板之间,木板上端用水平细绳固定,下端可以绕O 点转动,在放长细绳使板转至水平的过程中(包括水平):A .小球对板的压力逐渐增大且恒小于球的重力B .小球对板的压力逐渐减小且恒大于球的重力C .小球对墙的压力逐渐增大D .小球对墙的压力逐渐减小 10.(全国)有一个直角支架AOB ,AO 是水平放置,表面粗糙.OB 竖直向下,表面光滑.OA 上套有小环P ,OB 套有小环Q ,两环质量均为m ,两环间由一根质量可以忽略.不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P 环向左移一小段距离,两环再次达到平衡,那么移动后的平衡状态和原来的平衡状态相比较,AO 杆对P 的支持力F N 和细绳上的拉力F 的变化情况是: A .F N 不变,F 变大 B .F N 不变,F 变小 C .F N 变大,F 变大 D .F N 变大,F 变小11.如图所示,小船用绳牵引.设水平阻力不变,在小船匀速靠岸的过程中A 、绳子的拉力不断增大B 、绳子的拉力保持不变C 、船受的浮力减小D 、船受的浮力不变12. 一根水平粗糙的直横杆上,套有两个质量均为m 的小铁环,两铁环上系着两条等长的细线,共同栓住一个质量为M 的球,两铁环和球均处于静止状态,如图,现使两铁环间距稍许增大后系统仍处于静止状态,则水平横杆对铁环的支持力N 和摩擦力f 的变化是(A )N 不变,f 不变 (B )N 不变,f 变大(C )N 变大,f 变大 (D )N 变大,f 不变13. 如图所示,OA 为一遵守胡克定律的弹性轻绳,其一端固定在天花板上的O 点,另一端与静止在动摩擦因数恒定的水平地面上的滑块A 相连.当绳处于竖直位置时,滑块A 与地面有压力作用。

B 为一紧挨绳的光滑水平小钉,它到天花板的距离BO 等于弹性绳的自然长度。

现用水平力F 作用于A ,使之向右作直线运动,在运动过程中,作用A 的摩擦力:A .逐渐增大B .逐渐减小C .保持不变D .条件不足,无法判断 14.如图所示,当人向左跨了一步后人与物体保持静止,跨后与垮前相比较,下列说法错误的是:A .地面对人的摩擦力减小B .地面对人的摩擦力增加C .人对地面压力增大D .绳对人的拉力变小 15.如图所示,两个质量都是m 的小球A 、B 用轻杆连接后斜放在墙上处于平衡状态。

已知竖直墙面光滑,水平地面粗糙,现将A 向上移动一小段距离,两球再次平衡,那么将移动后的平衡状态和原来的平衡状态比较,地面对B 球的支持力N 和轻杆上的压力F 的变化情况是:A.N 不变,F 变大B.N 不变,F 变小C.N 变大,F 变大D.N 变大,F 变小16.一个质量为m=2.0kg 的物体,放在倾角为θ=300的斜面上静止不动。

若用竖直向上的力F=5.0N 提物体,物体仍静止(g=10m/s 2),则下述结论正确的是 A .物体受到的合外力减少5.0N B.物体受到的摩擦力减少5.0N C .斜面受到的压力减少5.0N D.物体对斜面的作用力减少5.0N 17.如图所示,两个物体A 、B 的质量均为1kg ,各接触面间的动摩擦因数为0.3,同时有F=1N 的两个水平力分别作用于物体A 和物体B 上,则地面对物体B 、物体B 对物体A 的摩擦力分别为A .6N ,3N B.1N ,1N C.0,1N D 0,2N18.如图,轻杆A 端用光滑水平铰链装在竖直墙面上,B 端用水平绳结在墙C 处并吊一重物P ,在水平向右力F 缓缓拉起重物P 有过程中,杆AB 所受压力( )A .变大 B.变小 C.先变小再变大 D.不变警示易错试题警示1::注意“死节”和“活节”问题。

相关文档
最新文档