期末总结_高等土力学
高等土力学主要知识点整理(李广信版)
第二章 土的本构关系(一)概述材料的本构关系是反映其力学性能的数学表达式,一般为应力-应变时间-强度的关系,也称本构定律、本构方程。
土的强度是土受力变形的一个阶段,即微小应力增量小,发生无限大(或不可控制)应变增量,实际是本构关系一个组成部分,是土受力变形的最后阶段。
第一应力不变量kk z y x I σσσσ=++=1第二应力不变量kk yz xz xy z y z x y x I στττσσσσσσ=---++=2222第三应力不变量22232xyz xz y yz x yz xz xy z y x I τστστστττσσσ---+= 坐标系选择使剪应力为零 3211σσσ++=I ,3231212σσσσσσ++=I 3213σσσ=I 球应力张量)(31)(3131321332211σσσσσσσσ++=++==kk m 偏应力张量ii kk ij ij s δσσ31-=,其中⎩⎨⎧=≠=j i j i ii 10δ,克罗内克解第一偏应力不变量01≡=kk s J 第二偏应力不变量()()()[]23123222126121σσσσσσ-+-+-==ji ij s s J 第二偏应力不变量()()()213312321322227131σσσσσσσσσ------==ki jk ij s s s J 1.土的应力应变特性:非线性(应变/加工硬化、应变/加工软化)、剪胀性、弹塑性、各向异性、结构性、流变性(蠕变、应力松弛)。
加工硬化:应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定(正常固结黏土、松砂)加工软化:应力一开始随应变增加而增加,超过一个峰值后,应力随应变增加而减小,最后趋于稳定(超固结黏土、松砂)剪胀性:剪应力引起的体积变化,含剪胀和剪缩土的结构性:由土颗粒空间排列集合、土中各相和颗粒间作用力造成,可明显提高土的强度和刚度。
灵敏度:原状黏性土与重塑土的无侧限抗压强度之比土的蠕变:应力状态不变条件下,应变随时间逐渐增长的现象,随土的塑性、活动性、含水量增加而加剧土的应力松弛:维持应变不变,材料内应力随时间逐渐减小的现象压硬性:土的变形模量(指无侧限,压缩模指完全侧限)随围压而提高的现象。
高等土力学总结
高等土力学高等土力学是在本科土力学教材的基础上的进一步延伸,共分七章,包括:土工试验与测试,土的本构关系,土的强度,土中水与土中渗流及其计算,土的压缩与固结,土工数值计算(包括土体稳定的极限平衡计算,土的渗流与固结的有限元计算)。
二、本 构 关 系“本构关系”是英文Constitutive Relation 的意译。
在力学中,本构关系泛指普遍的应力—应变关系。
因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。
因此材科的本构关系或普遍的应力—应变关系可以表示为; 应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。
例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。
因此应力和应变之间存在着唯一对应的关系。
当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。
塑性本构关系要比弹性本构关系复杂得多。
如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。
本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。
各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。
非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。
弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。
即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。
土力学心得期末总结
土力学心得期末总结一、引言土力学是土木工程中的一门基础课程,主要研究土体在荷载作用下的力学性质及其应用。
通过学习土力学可以了解土体的力学特性,并解决土体工程中的各种问题。
本文将对期末总结进行详细阐述。
二、理论学习1. 弹性力学弹性力学是土力学的基础,主要研究线弹性情况下土体的力学性质。
通过学习弹性力学,我了解到了土体在受力后会产生变形,而变形会导致土体内部的应力情况发生变化,从而影响土体的稳定性。
在实际工程中,需要根据土体的弹性特性对土体进行合理的受力设计。
2. 塑性力学塑性力学是土力学中较为复杂的一部分,主要研究土体的塑性变形特性。
在学习塑性力学的过程中,我了解到了土体的塑性变形是由于土体中颗粒之间的摩擦力和吸力引起的。
在实际工程中,需要对土体的塑性特性进行准确评估,进而采取相应的处理措施,确保土体的稳定和安全。
3. 荷载传递理论荷载传递理论是土力学中的重要内容,主要用于研究土体在外部荷载作用下的变形和破坏规律。
通过学习荷载传递理论,我了解到了土体的变形行为是由于荷载在土体内部传递引起的。
在实际工程中,需要通过合理设计荷载传递路径,减小荷载对土体的损伤,确保土体的稳定和安全。
4. 应力路径与破裂理论应力路径与破裂理论是土力学中的重要内容,主要用于研究土体的应力变化规律和破裂机制。
通过学习应力路径与破裂理论,我了解到了土体在荷载作用下会发生应力变化,并由此引起土体的破坏。
在实际工程中,需要根据土体的应力变化规律对土体进行合理的设计和施工,以确保土体的稳定和安全。
三、实践应用1. 土体的力学性质测试在实验室中,我通过对土体进行力学性质测试,了解了土体的基本力学性质。
通过测量土体的体积重、含水量以及抗剪强度等指标,可以评估土体的稳定性和安全性,为工程设计提供依据。
2. 土体的加固与处理在实际工程中,我参与了一些土体的加固与处理工程。
通过对土体的改良、加固和处理,可以提高土体的稳定性和安全性,满足工程对土体强度和稳定性的要求。
土力学与基础工程期末总结
土力学与基础工程期末总结一、引言土力学与基础工程是土木工程专业的一门重要课程,主要研究土壤的物理力学性质和土体的结构、变形与破坏规律,以及土体与基础工程的相互作用关系。
本学期土力学与基础工程课程内容涵盖了土壤的力学性质、土的应力分析、地下水流动、地基的承载力与变形等方面的知识。
在学习过程中,我通过课本的学习、实验的实践和习题的考核等方面全面提高了我对土力学与基础工程的理解和应用能力。
在此期末总结中,我将从学习的内容、实验的实践和应用的能力等方面进行总结。
二、学习内容1. 土壤力学性质的学习:本门课程首先讲解了土壤的力学性质,包括土的颗粒级配、孔隙比、堆实度等,通过学习了解土壤的基本物理性质,为后续学习提供了基础。
2. 土的应力分析:土的应力分析是土力学与基础工程中的重要内容,通过学习,了解了土体受力的基本原理和方法,掌握了计算土体内应力和应变的计算方法。
3. 地下水流动:地下水流动对土体的力学性质和地基工程的设计与施工非常重要。
课程讲解了地下水流动的基本规律和计算方法,研究了地下水对土体的影响,为日后的工程实践提供了基础。
4. 地基承载力与变形:地基承载力与变形是土力学与基础工程中的核心内容,学习了地基承载力的计算方法及其与土质、开挖等因素的关系;同时研究了土体的变形特性和变形机制,深入理解了地基的变形原因和控制方法。
5. 基于基础工程实践的案例分析:在课程的最后阶段,老师安排了一些基础工程实践的案例分析,通过对实际工程的分析,将课程中学到的知识运用到实践中,提高了我们的解决问题的能力。
三、实验实践1. 水贯入试验:在本学期的实验实践中,我们进行了水贯入试验,通过观察水贯入试验过程中的现象,了解了土壤的渗透性质,并学习了水贯入试验的数据处理和分析方法。
2. 压缩试验:压缩试验是土力学与基础工程中的重要实验之一,通过实验可以了解土体的压缩性质,掌握了压缩试验的操作流程和数据处理方法。
3. 剪切试验:剪切试验是土壤力学研究中的基本实验之一,通过实验可以获得土壤的剪切性质,学习了剪切试验的操作方法和数据处理技巧。
高等土力学部分知识总结
第七章 土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体逐渐排除,土体收缩的过程。
更确切地说,固结就是土体超静孔隙水应力逐渐消散,有效应力逐渐增加,土体压缩的过程。
(超静孔压逐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的情况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的情况下,随时间发展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向); 饱和土,水土二相; 土体均匀,土颗粒和水的压缩忽略不计,压缩系数为常数,仅考虑土体孔隙的压缩; 孔隙水渗透流动符合达西定律,并且渗透系数K 为常数; 外荷载为均布连续荷载,并且一次施加。
固结微分方程:ðu ðt=C vð2u ð2zu 为孔隙水压力,t 时间,z 深度C v =K m v γω=K(1+e)a γω渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
C v 土的固结系数,与土的渗透系数K 成正比和压缩系数m v 成反比。
初始条件:t=0,u =u 0(z); 边界条件:透水面 u=0不透水面ðu ðz=04.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=σ′σ=σ−u σ=1−uσ平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
U =1−∫udz H0∫σdzH 0固结度U 是时间因数Tv 的单值函数。
5.太沙基三维固结理论根据土体的连续性,从单元体中流出的水量应该等于土体的压缩量ðεv ðt =ðq xðx+ðq yðy+ðq zðz由达西定律:q i=−K iγw ðuði若土的各个方向的渗透系数相同,取K i=K将达西定律公式代入连续方程:ðεv ðt =−Kγw(ð2uð2x+ð2uð2y+ð2uð2z)=−Kγw∇2uεv=εx+εy+εz=1−2vE(σ1′+σ2′+σ3′)=1−2vE(σ1+σ2+σ3−3u)太沙基三维固结理论假设三向总应力和不随时间变化即:d(σ1+σ2+σ3)dt=0ðεv ðt =−3(1−2v)Eðuðt=−Kγw∇2u即3(1−2v)Eðuðt=Kγw∇2uðu ðt =E3(1−2v)Kγw∇2u=C v3∇2u C v3=E3(1−2v)Kγw6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流动。
固体力学期末总结
1 牛顿
Rx F1x F2 x ......Fnx Fix Fx
i 1 n
Ry F1 y F2 y ......Fny Fiy Fy
i 1
2 2 R Rx Ry
平面上力的平衡条件: 2, 刚体
F
x
0
F
y
0
刚体是在任何情况下永远不变形的物体,是一种理想化的模型。通常,我们在考虑物体 机械运动的时候, 如果物体形变相对于它的运动来讲要小的多, 这时就可以忽略物体自身变 形而近似看作是刚体。 刚性地体:这长时间尺度内的一个概念,与褶皱带相比,在外力作用下,刚性地块变形 要小得多,这种块体的“成熟度”要高得多,它是经过漫长地质年代的地质作用(岩浆作用、 变质作用、褶皱作用等)的“千锤百炼”而形成的刚硬地块,所以在块体内部很少有地震。 3, 质点 在运动学里,质点是具有一定质量,但其形状与大小可以忽略不计的物体。 力作用在质点上不产生力矩,作用在刚体上会产生力矩。 质点系是由有限个或无限个有着一定联系的质点所组成的质点群。 4, 自由体和非自由体 自由体是可以在空间作任意运动的物体。 若物体运动时在某些方向受到其周围物体的限制,而不能沿这些方向有位移,这种物体 称为非自由体。 5, 约束和约束反力 阻碍物体运动的限制条件称为约束。 构成约束的周围物体本身, 为方便起见也称为约束。 约束限制了物体的自由运动,改变了物体的运动状态,因此,约束必然对物体有力的作 用,这种力就称为约束反力。 约束反力不是对抗约束的力。 6, 作用力和反作用力 总是同时发生、其大小相等、方向相反,沿同一直线分别作用在两个相互作用的物体上 的一对力。 7, 力矩 力对 O 点转动的效果,取决于 O 点到力 P 的作用线的垂直距离(d,称力臂) ,P 和 d
土力学期末知识点总结
土力学期末知识点总结第一章土的物理性质和工程分类在地基设计中,需要满足地基的强度条件和变形条件这两个条件。
土是由完整坚固岩石经过风化、剥蚀、搬运和沉积而形成的。
根据成因的不同,第四纪沉积物可以分为残积物、坡积物、洪积物、冲积物、海相沉积物、湖沼沉积物、冰川沉积物和风积物。
与其他材料(如钢材)相比,土具有强度低、压缩性大和透水性大的特性。
与一般建筑材料相比,土具有散体性、多相性、成层性和变异性等特性。
土的三相组成包括固体、液体和气体。
它们的比例与土的物理力学性质有关系。
当含水量增加时,土的抗剪强度会降低。
粒度成分是工程上常用来描述土的颗粒组成情况的指标,它是不同粒径颗粒的相对含量。
土中的水可以按静电引力的不同分为结合水和自由水。
结合水包括强结合水和弱结合水,自由水包括重力水和毛细水。
在粒度分析累计曲线法中,小于某粒径土的百分含量y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好。
土的毛细现象是指土在表面张力作用下,沿着细小孔隙向上或其它方向移动的现象。
它会对工程产生不利的影响,如路基冻害、地下室潮湿和土地的沼泽化等,从而引起地基承载力下降。
土粒间的连接关系包括接触连接、胶结连接、结合水连接和冰连接。
土的结构包括单粒结构、蜂窝结构和絮状结构。
土的构造包括层状构造、分散构造、结核状构造和裂隙构造。
土的基本指标测定方法包括土的密度测定方法(环刀法)、土的含水量测定方法(烘干法)和土的相对密度测定方法(比重瓶法)。
土的三相比例指标包括土的密度、土粒密度、含水量、干密度、饱和密度、浮重度、孔隙比、孔隙率和饱和度。
它们的计算公式分别为ρ=m/v、ρ=ms/vs、ω=mω/ms、ρd=ms/v、ρsat=(mw+ms)/v、γ’=γsat-γw、e=vv/vs、n=vv/v和XXX。
例如,试验土样体积为60cm3,质量为300g,烘干后质量为260g,则该土样的干密度为4.35g/cm3.粘性土的可塑性大小可以用塑性指数来衡量,而液性指数可以用来描述土体的状态。
高等土力学期末总结
土的强度理论
各强度理论的特点 参数 计算 优缺点 适用情况
第四章 土中水与土的 渗透及其计算
1. 渗透规律-达西定律 2. 有关渗流的工程问题 3. 渗透计算
渗透及达西定律
几种渗流势:重力、压力、基质势 渗透系数及其影响因素 渗流的基本方程,流网及其应用
有关渗流的工程问题
第二章 土的本构关系
应力、应变及其不变量的表示及换算 弹性模型-非线弹性模型-DuncanChang模型 弹塑性模型—基本理论基础-剑桥模型
土的应力变形特性
非线性 剪胀性 压密性 应变硬化与软化 弹塑性 平面应变状态的应力特点
弹性模型
非线性(增量)弹性- Duncan-Chang模型 模型特点 应力应变关系特点 参数确定的试验条件、参数的物理意义 模型的使用 模型参数的大体范围 非线性的计算基本方法
内因:组成、状态与结构。 状态:孔隙比e与土的强度: 粘性土的真强度理论、砂土的临界孔隙 比。 外因:应力水平( 3)、中主应力、应 力历史、应力速率、应力方向。
排水与不排水、饱和与不饱和土强度
砂土的流滑现象:松砂、密砂的固结不排 水试验; 砂土的动强度; 粘土的三轴试验强度指标:试验及其应用; 非饱和土强度机理与理论:吸力与水土特 征曲线。
p
第三章 土的强度
土的强度机理与影响因素 排水与不排水、饱和与不饱和土强度 土的强度理论
土的强度机理
土的强度-抗剪强度: 粘聚强度与摩擦强度: 粘聚力:机理,粘性土的微观结构; 假粘聚力:吸力、冰冻、机械咬和; 内摩擦角:表面摩擦与咬和-剪胀、破 碎与颗粒的重排列。
个人土力学总结
第一部分:概念总结1.土的密度:单位体积土的质量。
2.相对密度:土粒密度与4 ℃时纯水密度之比。
3.土的含水率:土中水的质量与土粒质量之比4.孔隙比:土中孔隙体积与土粒体积之比。
5.孔隙率:土中孔隙体积与土总体积之比以百分数计。
6.土的饱和度:土中被水充满孔隙体积与空隙总体积之比。
7.土的饱和密度:土中孔隙被水充满时土的密度。
8.土的干密度;单位体积中土粒的质量。
9.土的有效重度:对于地下水以下的土体,由于受到水的浮力作用,将扣除水浮力后单位体积所受的重力。
10.渗透力:水在土体中渗流,受到土骨架的阻力,同时水也对土骨架施加推力,单位体积所受到的水推力。
11.临界水力梯度:土颗粒之间压力等到零,土颗粒处于悬浮状态,而失去稳定时的水头。
12.管涌:水在土中渗流时,土中的一些细小颗粒在渗透力作用下,可能通过粗颗粒的孔隙被水流带走的现象。
13.流砂:土颗粒之间压力等于零,处于悬浮状态而失去稳定的现象。
14.有效应力:土中总应力的一部分由土颗粒间接触面承担的力。
15.孔隙水压力:土中总应力的一部分由土体孔隙的水及气体承担的力。
16.超净孔隙水压力:由渗流所引起的,即超过静水位的那部分测压管水柱所产生的孔隙水应力。
17.土的抗剪强度:指土体对外荷载所产生的剪应力的极限抵抗能力。
18.地基承载力:指地基土单位面积上所能承受荷载的能力。
第二部分:简答论述总结1.粗粒划分原则(1)应满足在一定粒度范围内,土的工程性质相近原则,超过了这个粒径范围,土的性质就要发生质的变化。
(2)粗粒界限的确定,则视起主导作用的特性而定,而且要考虑与目前粒度成分的测定技术相适应。
2.颗粒级配的测定即表示方法(1)测定方法①筛选法②静水沉降分析法②静水分析法又分为:比重计法和移液管法(2)表示方法有①列表法②累计曲线法累计曲线法又分为:粒径分布曲线和粒组频率曲线。
3.土按颗粒级配的分类①巨粒:漂石(块石)粒(d > 200mm) 卵石(碎石)粒(200mm > d > 60mm )②粗粒:砾粒{粗砾(60mm > d > 20mm ) ,细粒(20mm > d > 2 mm) } ;砂粒(2mm > d > 0.075mm )③细粒:粉粒(0.075 mm > d > 0.05mm ) ,粘粒(d > 0.05 mm)4.土的工程分类的一般原则及分类和我国主要的土的性质分类情况(1)分类原则:综合考虑了粒度和塑性的影响,粗粒土考虑粒度为主,细粒土考虑塑性特性为主。
高等土力学期末考试试题汇总.总结
高等土力学期末考试试题汇总.总结高等土力学期末考试试题汇总.总结1、填空:主要影响土的因素应力水平,应力路径,应力历史2、填空:土的主要应力应变特性非线性,弹塑性,剪胀性3、概念:应力历史:包括自然土在过去地质年月中受到固结和地壳运动作用刘翰青一、论述题邓肯-张模型中参数a,b,B各代表什么含义?他们是怎样确定的?答:在邓肯-张模型中,a,b为试验常数。
在常规三轴压缩试验中,式子可写为由于δ2=δ3=0,所以有 =在起始点,有ε1=0, Et=Ei, 则Ei=1/a, 即a代表试验起始变形模量Ei的倒数。
当ε1趋向于﹢∞时,有s1-s3=(s1-s3)ult=1/b则b为极限应力偏差的倒数B为体变应量,在E-B模型中提出,用来代替切线泊松比γt。
其中,B与δ3有关。
a,b,B通常用阅历公式计算确定:二、名词解释次弹性模型:是一种在增量意义上的弹性模型,亦即只有应力增量张量和应变增量张量间存在一一对应的弹性关系,因此,也被称为最小弹性模型。
一般函数关系为dσij = Fij (σmn , dεkl),或dεij= Qij (εmn, dσkl)韩凯1:什么是加工硬化?什么是加工软化?答:加工硬化也称应变硬化,是指材料的应力随应变增加而增加,弹增加速率越来越慢,最终趋于稳定。
加工软化也称应变软化,指材料的应力在开头时随着应变增加而增加,达到一个峰值后,应力随应变增加而下降,最终也趋于稳定。
2说明塑性理论中的屈服准则、流淌规章、加工硬化理论、相适应和不相适应的流淌准则。
答:在多向应力作用下,变形体进入塑性状态并使塑性变形连续进行,各应力重量与材料性能之间必需符合肯定关系时,这种关系称为屈服准则。
屈服准则可以用来推断弹塑性材料被施加一应力增量后是加载还是卸载,或是中性变载,亦即是推断是否发生塑性变形的准则。
流淌规章指塑性应变增量的方向是由应力空间的塑性势面g打算,即在应力空间中,各应力状态点的塑性应变增量方向必需与通过改点的塑性势能面相垂直,亦即=(1)流淌规章用以确定塑性应变增量的方向或塑性应变增量张量的各个重量间的比例关系。
高等土力学学习总结
高等土力学学习总结姓名学号在*老师悉心教导下,通过一个学期对高等土力学的学习,我们对高等土力学有了初步的了解。
在这个学期的十一次课中,我们主要学习了第一、二、三章的内容。
在第一章中,我们学习了土的有效应力原理和应力路径,土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因;应力路径是指土体在外荷载作用下,各点应力在应力坐标图中的移动轨迹,应力路径可以分为总应力路径和有效应力路径两种。
第二章中,我们学习了土的压缩固结理论,在这一章中,我们研究了影响压缩实验成果的因素,并讨论了地基沉降计算、单向渗透固结理论中的一些问题及二向三向固结课题、次固结问题等。
第三章中,我们学习了土的抗剪强度问题,分别分析了砂土和粘性土的抗剪强度的组成和影响因素。
下面就各章所学知识点做一个简单的总结:1 有效应力原理及应力路径在第一章有效应力原理及应力路径中,我们学习了有效应力原理的概念,有关面积系数的问题,水下土体和毛细升高带土体中有效应力问题、渗流引起的有效应力问题、外荷载引起的土中超静水压力及其向有效应力的转化,有关术语的概念区别,孔隙压力系数,三相土的空隙气压力和空隙水压力,应力路径及应力路径对土应力—应变关系的影响等问题。
1.1 有效应力土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因。
1.2 面积系数问题面积系数主要包括有效应力传递面积系数a和孔隙水面积系数X两种,其中有效应力传递面积系数a也就是土颗粒接触面的面积系数,一般没有可靠的试验手段来测定它,而且它的绝对值对土性无多大意义,所以我们只需着重研究孔隙水面积系数X,并用X反推土断面上的有效应力。
通过饱和水状态下对孔隙水面积系数X的测定,普遍得出X接近并略小于1的结论,这说明土颗粒接触面积相比孔隙水面积非常小,但由于土颗粒的刚度比孔隙水大得多,所以土颗粒接触点上的有效应力也是非常大的。
高等土力学复习要点——土的性质
土的性质一.土的定义、土按成因分类、土的工程分类土——土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,在原地残留或经过不同的搬运方式,在各种自然环境中形成的堆积物。
属第四纪沉积物。
根据地质成因类型划分,可将第四纪沉积物的土体分为:残积土、坡积土、洪积土、冲积土、湖积土、海积土、风积土及冰积土等。
土的工程分类:工程上是用某种最能反映土的工程特性的指标来进行系统的分类。
影响土的工程性质的三个主要因素是土的三相组成、土的物理状态和土的结构。
GB5007一2002 《建筑地基基础设计规范》将地基土分成六大类,即岩石、碎石土、砂土、粉土、粘性土和人工填土。
二.岩石按成因分类、按风化程度分类岩石按成因可分为岩浆岩、沉积岩和变质岩。
岩石按风化程度划分为微风化、中等风化和强风化三类。
三.土的颗粒级配:1.颗粒分析试验:分为筛分法和水分法二种。
筛分法适用于粒径大于0.074mm粒组的土。
水分法适用于分析粒径小于0.074mm的土。
2.颗粒级配曲线:综合上述筛分试验和比重计试验的全部结果,可以绘制如图所示的颗粒级配累积曲线。
3.颗粒级配曲线的应用:由土的颗粒级配曲线的坡度可以大致判断土的均匀程度。
如曲线较陡,则表示粒径大小相差不多,土粒较均匀,则级配不好;反之,如曲线平缓,则表示粒径大小相差悬殊,土粒不均匀,级配良好。
四.地下水1.地下水按埋藏条件可分为:毛细水,潜水,承压水地下水在土中的渗透属于层流现象,遵循达西渗透定律。
2.渗透性:地下水通过土颗粒之间的孔隙流动,土体可被水透过的性质。
3.达西渗透定律:水在砂土中的渗流速度与试样两端间的水头差成正比,而与渗流路径成反比。
其中i——水力梯度;k——渗透系数,即当i=1时的渗透速度,m/s;h1、h2——试样两端的水头;L——试样的长度,即渗流路径。
4.渗透系数k:单位水力坡降时的渗透速度。
K值的大小与土的名称、土粒粗细、粒径级配、孔隙比及水的温度等因素有关。
土力学期末考试重点复习资料
第一章土的形成和物理性质指标1、土质学:从工程地质学范畴发展起来,从土的成因和成分出发,研究土的工程性质的本子与机理(地质特性)。
2、土力学:从工程力学范畴发展起来,把土作为物理-力学系统,用数学力学方法求解土在各种条件下的应力分布、变形及土压力、地基承载力与边坡稳定等问题(工程特性)。
4、土:是由母岩风化,经过多种地质作用和搬移作用形成的,土是岩石风化的产物。
5、物理风化:只改变颗粒的大小和性质,不改变岩石的矿物成(量变)。
6、化学风化:不仅改变颗粒的大小和性质,不改变岩石的矿物成(质变)。
7、土的组成(1)固体颗粒固相(Solid) 构成土体骨架起决定作用(2)土中水液相(Liquid) 重要影响(3)土中气体气相(Air) 次要作用8、成土矿物(1)原生矿物 (物理风化,砂卵石料):颗粒较粗(cm~m),一般为无黏性土;主要有石英、长石、云母等;吸水力弱、稳定、无塑性;性质由矿物本身的性质反映,如颗粒大小组成、矿物类型、颗粒形状、表面特征、硬度等。
(2)次生矿物 (化学风化,黏土矿物):颗粒较细(<5μm),一般为黏土矿物;主要有高岭石、伊利石、蒙脱石;吸水力强、活泼、有塑性。
9、黏土矿物:是一种复合的铝-硅盐晶体,颗粒呈片状,是由硅片和铝片构成的晶包所组叠而成,可分成高岭石、蒙脱石和伊利石三种类型。
10、高岭石:产于酸性环境,是花岗岩风化后的产物,通常来源于长石的水解。
1:1型晶格,1硅片+ 1铝片=1晶层,晶层靠氢键连接,一个颗粒、多达近百个晶层。
特点:水稳性好,可塑性低,压缩性低。
11、蒙脱石:常由火山灰、玄武岩等转变而来,一般在碱性、排水不良的环境里风化形成。
2:1型晶格: 2硅片+ 1铝片= 1晶层,晶层没有钾离子连接,连接弱, 水分子进入。
特点:高塑性、高压缩性,低强度,遇水膨胀。
12、伊利石:碱性介质中风化产物,2:1型晶格,2硅片+ 1铝片= 1晶层,晶层靠钾离子连接,比较稳定,但不如氢键。
高等土力学部分知识总结
第七章 土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体逐渐排除,土体收缩的过程。
更确切地说,固结就是土体超静孔隙水应力逐渐消散,有效应力逐渐增加,土体压缩的过程。
(超静孔压逐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的情况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的情况下,随时间发展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向); 饱和土,水土二相; 土体均匀,土颗粒和水的压缩忽略不计,压缩系数为常数,仅考虑土体孔隙的压缩; 孔隙水渗透流动符合达西定律,并且渗透系数K 为常数; 外荷载为均布连续荷载,并且一次施加。
固结微分方程:ðu ðt=C vð2u ð2zu 为孔隙水压力,t 时间,z 深度C v =K m v γω=K(1+e)a γω渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
C v 土的固结系数,与土的渗透系数K 成正比和压缩系数m v 成反比。
初始条件:t=0,u =u 0(z); 边界条件:透水面 u=0不透水面ðu ðz=04.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=σ′σ=σ−u σ=1−uσ平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
U =1−∫udz H0∫σdzH 0固结度U 是时间因数Tv 的单值函数。
5.太沙基三维固结理论根据土体的连续性,从单元体中流出的水量应该等于土体的压缩量ðεv ðt =ðq xðx+ðq yðy+ðq zðz由达西定律:q i=−K iγw ðuði若土的各个方向的渗透系数相同,取K i=K将达西定律公式代入连续方程:ðεv ðt =−Kγw(ð2uð2x+ð2uð2y+ð2uð2z)=−Kγw∇2uεv=εx+εy+εz=1−2vE(σ1′+σ2′+σ3′)=1−2vE(σ1+σ2+σ3−3u)太沙基三维固结理论假设三向总应力和不随时间变化即:d(σ1+σ2+σ3)dt=0ðεv ðt =−3(1−2v)Eðuðt=−Kγw∇2u即3(1−2v)Eðuðt=Kγw∇2uðu ðt =E3(1−2v)Kγw∇2u=C v3∇2u C v3=E3(1−2v)Kγw6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流动。
高等土力学结课总结
授课老师: 汇报学生:
李彰明(教授)授课 教材《软土地基加固的理论、设计与施工》 14周(新进展) 18位同学做PPT讲解 3次作业(针对各个同学的PPT也有作业) 要求掌握73个基本概念 提出了41个思考问题 9个计算分析与推导(部分)
基本情况
1、预备知识(4.1~4.2) 2、土的工程及物理性质(第3章)
测试系统的组成
控制阀
液压泵
法 向 千 斤 顶 水 平 千 斤 顶
法向液压传感器
节 理 试
法向位移传感器 剪切液压传感器
动态电阻 应变仪
模 数 转 换 板
计 算 机
件
剪切位移传感器
控制阀
ห้องสมุดไป่ตู้
位移 变送器
反馈回路
直剪试验计算机辅助测试系统框架
测试系统的各部分:
荷载系统:使被测对象处于受力状态下,使与被测对 象有关的力学量之间的联系显露出来,以便进行有效 测量的一种专门系统。 测量系统:将被测非电量转换成便于放大、记录的电 量的系统,由传感器和测量电路组成。 信号处理系统:将信号进一步进行处理以排除干扰, 或输出不同的物理量的系统。 显示和记录系统:将被测对象所测得的有用信号及变 化过程显示或记录下来的系统。
测试系统选择原则: 1.灵敏度 2.准确度 3.线性范围 4.稳定性 5.各特性参数之间的配合
在土木工程中,所测量的物理量大多是非电量,如 位移、压力、应力、应变等。为了方便测量,必须把它们 转换为电量,这种将被测物理量直接转换为相应的容易检 测、传输或处理的信号的原件称之为传感器,也称换能器 、变换器或探头。 应力计和应变计 电阻式传感器 钢弦式传感器 电容式、电压式和压磁式传感器
土力学期末知识点总结2024
引言概述:土力学是土壤力学的研究,主要研究土壤的力学性质及其在工程中的应用。
土力学是土木工程中重要的一门基础学科,对于工程建设具有重要的指导意义。
本文将综合总结土力学的期末考试知识点,包括土壤力学基本概念、土壤力学性质及其测试方法、土壤固结与压缩性、土壤自重与有效应力、土壤侧压力及土体的强度性质以及其他相关的工程应用等内容。
正文内容:一、土壤力学基本概念1.土壤力学的定义及研究对象2.土壤颗粒特性和颗粒间的力学相互作用3.土壤的固结与压缩行为4.土壤中的孔隙与孔隙水5.土壤的液态和塑性行为二、土壤力学性质及其测试方法1.重度、容重和饱和度的概念及计算方法2.孔隙比、孔隙度和孔隙率的定义与计算3.土壤的渗透性和渗透系数的测定方法4.土壤的抗剪强度及剪切参数的测定方法5.土壤的压缩性与压缩参数的测定方法三、土壤固结与压缩性1.土壤的固结现象及固结指标的使用2.增加土壤支持力的方法和施工控制3.土壤的固结后稳定性分析4.应力路径对土壤固结和压缩行为的影响5.土壤对附加应力作用的响应四、土壤自重与有效应力1.土壤的自重力和土体重度的概念及计算方法2.土壤的有效应力和有效应力比的定义与计算3.土壤的有效承载力和有效压缩模量的计算4.孔隙水的压力与有效应力的关系5.应力路径对土壤自重和有效应力的影响五、土壤侧压力及土体的强度性质1.土壤侧压力的产生机制和计算公式2.土体的摩擦角与内聚力的确定方法3.土体的弯曲和剪切破坏研究4.土壤的固结和压缩对强度性质的影响5.土壤强度参数的利用和工程应用其他相关的工程应用1.地基的设计和加固2.地下工程的开挖与支护3.填土与挖土工程4.地基沉降的控制与补偿5.施工过程中的土壤力学问题分析结论:土力学作为土木工程中的重要学科,研究土壤的力学性质及其在工程中的应用。
本文综合总结了土壤力学的期末考试知识点,包括土壤力学基本概念、土壤力学性质及其测试方法、土壤固结与压缩性、土壤自重与有效应力、土壤侧压力及土体的强度性质以及其他相关的工程应用等内容。
高等土力学一二三章整理总结
高等土力学高等土力学是在本科土力学教材的基础上的进一步延伸,共分七章,包括:土工试验与测试,土的本构关系,土的强度,土中水与土中渗流及其计算,土的压缩与固结,土工数值计算(包括土体稳定的极限平衡计算,土的渗流与固结的有限元计算)。
二、本 构 关 系“本构关系”是英文Constitutive Relation 的意译。
在力学中,本构关系泛指普遍的应力—应变关系。
因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。
因此材科的本构关系或普遍的应力—应变关系可以表示为; 应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。
例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。
因此应力和应变之间存在着唯一对应的关系。
当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。
塑性本构关系要比弹性本构关系复杂得多。
如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。
本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。
各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。
非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。
弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。
即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。
高等土力学复习要点——土体的变形
土体的变形第一部分 影响因素一. 土的压缩性1.定义:土在压力作用下体积缩小的特性称为土的压缩性。
土的压缩——土中孔隙体积的减少,在这一过程中,颗粒间产生相对移动,重新排列并互相挤紧,同时,土中一部分孔隙水和气体被挤出。
土体完成压缩过程所需的时间与土的透水性有很大的关系。
土的固结——土的压缩随时间增长的过程,称为土的固结。
2.土的侧限压缩试验:不允许土样产生侧向变形(侧限条件)的室内压缩试验3.侧限条件:侧向限制不能变形,只有竖向单向压缩的条件。
侧限条件的适用性:自然界广阔土层上作用着大面积均布荷载的情况;土体的天然土的自重应力作用下的压缩性。
4.侧限压缩试验的方法:试验方法:加荷载,让土样在50、100、200和400kpa 压力作用下只可能发生竖向压缩,而无侧向变形。
测定各级压力作用下土样高度的稳定值,即压缩量。
将压缩量换算成每级荷载后土样的孔隙比e 。
则可整理的压缩试验的结果,压缩曲线e-p 、e-logp 。
)1(000e H s e e +-=5.侧限压缩性指标压缩系数——e-p 曲线上任一点的切线斜率a ,即 dp de a -= 物理意义:压缩系数a 越大,曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。
为了便于应用和比较,通常采用压力间隔由p 1=100kpa 增加到p 2=200kpa 时所得的压缩系数a 1-2来评定土的压缩性如下:当 a 1-2 < 0.1Mpa -1时,属于低压缩性土0. 1≤a 1-2 < 0.5Mpa -1时,属于中压缩性土a 1-2 ≥ 0.5Mpa -1时,属于高压缩性土。
压缩指数——土的e-p 线改绘成半对教压缩曲线e-logp 曲线时,它的后段接近直线,其斜率Cc 称为土的压缩指数。
同压缩系数a 一样,压缩指数Cc 值越大,土的压缩性越高压缩模量(侧限压缩模量)——土在完全侧限条件下的竖向附加压应力σz 与相应的应变εz 之比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗流条件下土坡的稳定
单元abcd的重量与总渗透力的合力为R
j
图4-46 渗流条件下土坡的稳定分析
[cili ( wi cos i ui li ) tan i] Fs Wi sin i
高等土力学期末总结
各章复习内容要点总结
第一章 土工试验与测试
室内试验 模型试验 现场测试 注意试验与其它各章的联系和综合
几种不同应力路径的三轴试验
HC:静水压力(各向等压)试验=2=3 PL:比例加载试验: / 3为常数 CTC:常规三种压缩试验 :3为常数(围压) CTE:常规三轴伸长(挤长)试验: 3(轴压)为常数 TC: p为常数三轴压缩试验(轴压增-围压减) TE: p为常数三轴伸长试验(轴压减-围压增) RTC:减压三轴压缩试验: (轴压)为常数 RTE:减压三轴伸长试验:1 (围压)为常数, 3减小 它们与各种强度理论的关系,与孔隙水压力的关系,与膜 嵌入间关系等。
剑桥模型与物态边界面
物态边界面方程:
q M ( N v ln p) p v N ln p / M ( )
剑桥模型与修正剑桥模型
物态边界面概念:正常固 结线、临界状态线、固结 不排水试验有效应力路径 。 剑桥模型与修正剑桥模型 q 的屈服面:物理意义、公 式推导、曲线形式。 剑桥模型的硬化参数、流 动规则、增量应力应变关 系式。
垂直向外 Fs 1 1.15i
垂直向内
Fs 1 1.15i
挡土构造物上的土压力和水压力
2. 不同渗流情况下的水土压力
图4-52 不同含水土层的土压力
P a ka sat z
z(j)z
j= wi i=1
Pw=0
j=( + w)
= sat
图4-53 有上层滞水时的主动土压力 J w
第四章 土中水与土的渗透及其计算
1. 渗透规律-达西定律 2. 有关渗流的工程问题 3. 渗透计算
渗透及达西定律
几种渗流势:重力、压力、基质势 渗透系数及其影响因素 渗流的基本方程,流网及其应用
渗透计算
基本微分方程 边界条件 数值计算基本原理
有关渗流的工程问题
固结问题的简化计算
均匀加载、分期加载 不均匀土层与分层土
比奥固结理论与太沙基—伦杜立 克准三维固结理论(扩散方程)
基本方程与条件 主要假设 效应 工程应用与误差范围
6、7章
土坡稳定的主要计算方法及平衡条件 土坡稳定的主要影响因素 土工数值计算的基本原理,基本方法 ,边界条件,影响因素
沉降计算
1 单向压缩分层总和法 2 考虑三向效应的单向压缩计算法(Skempton— Bjerrum) 3 4 5 6 7 三向变形计算法(黄文熙法) 弹性理论法 应力路径法 剑桥模型法 其他方法及数值计算
固结
(1)单向固结的普遍方程及一般条件下的单向 固结问题: 加载时间 分层土 厚度随时间变化 (2)砂井固结问题:井阻、涂抹、加载时间 (3)比奥固结理论与太沙基(Terzaghi)—伦杜 立克(Rendulic)准三维固结理论(扩散方程)
D d
w 1 w i d Di w Dd
T
第三章 土的强度
土的强度机理与影响因素 排水与不排水、饱和与不饱和土强度 土的强度理论
土的强度机理
黏聚强度与摩擦强度: 黏聚力:机理,粘性土的微观结构; 假黏聚力:吸力、冰冻、机械咬合; 内摩擦角:表面摩擦与咬合-剪胀、 破碎与颗粒的重排列。
Ew2 Ea w
R
Ew1
图4-56 滑动面与楔体平衡
发现正孔压的滑裂 面与墙夹角大于 =37 无孔压, =30
图4-57 超静孔压对土压力的影响
负孔压时,滑裂面 倾角小于 =27.4
图4-58 土中的负孔压对土压力的影响
超静孔压与土压力
图4 非饱和土的强度包线
c ua tan ua uw tan
f
c ua tan
f
土的强度理论
1.莫尔-库仑(Mohr-Coulomb)强度准则
2.密塞斯(Von Mises)准则及其广义准则
3.屈雷斯卡(Tresca)准则及其广义准则
边 坡 稳 定 分 析
极限分析; 极限平衡; 有限元法。
极限平衡法:使用的条件,基本假设等。
整体圆弧法; 简单(瑞典)条分法; 简化毕肖甫法; Janbu法; Spencer方法; Morgenstern-Price方法。
瑞典条分法
瑞典条分法所得安全系数较小, 在圆弧中心角较大和孔隙水压力较大时 ,安全系数的误差较大,计算结果甚至 会出现异常。
d :
' tg Fs= tg sat
tg
w =
顺坡渗流 水平渗流
Fs 1/ 2
临界状态 Fs=1.0
Fs 1/ 3
16.10 150
i cos 3 sin
i 3 sin cos
e:
' cos w i tg 'sin ' cos w i tg 'sin
4.莱特-邓肯(e-Duncan)强度准则
5.松冈元-中井照夫 (Matsuoka- Nakai)破坏准则
6.其他强度理论
7.联合强度理论(抗拉与抗剪)
土的强度理论
各强度理论的特点 参数 计算 优缺点 适用性情况 基本试验确定强度理论的参数预 估其他应力路径的试验破坏应力。
f d d ij
p ij
M
p d ij
p p0 /2 p0
Lade-Duncan模型和清华弹塑性模型
屈服函数与屈服面; 硬化参数; 流动规则; 模型的功能
土的损伤模型基本概念
土的结构性:原因与表现; 土的损伤模型的基本原理:损伤变量 及其演化规律,增量形式的损伤矩阵 。
现场测试基本知识
第二章 土的本构关系
应力、应变及其不变量的表示及换算; 土的应力应变关系的特点; 弹性模型-非线弹性模型:Duncan-Chang模 型; 弹塑性模型:弹塑性模型的基本理论:剑桥 模型、清华模型和Lade-Duncan模型。 土的损伤模型基本概念
土的应力变形特性
渗透水流以一定角度从坡面逸出时
该点抗滑稳定的临界水力坡降 渗流
图4-50 坡面的局部稳定分析
坡面
sin w icr cos( ) [ cos w icr sin( )]tan
图4-49
b : ' w tg 2 C: sat tg
强度的影响因素
内因:组成、状态与结构。 状态:孔隙比e与土的强度: 黏性土的真强度理论、砂土的临界孔隙 比。 外因:应力水平(3)、中主应力(2) 、应力历史、应力速率、应力方向。
排水与不排水、饱和与不饱和土强度
砂土的流滑现象:松砂、密砂的固结不排水试验; 最大应力比与最大应力差; 砂土的动强度; 黏土的三轴试验强度指标:试验及其应用,不同应 力路径的排水与不排水试验及其强度指标; 非饱和土强度机理与理论:吸力与水土特征曲线。
Duncan-Chang模型参数确定试验条件
d 1 1 d 1 t (d 2 d 3 ) Et Et
d2=d3=0 时:
d ( 1 3 ) Et d 1
1-3
1
Duncan-Chang模型参数确定
试验类型 常规三轴排水压缩试验(CD) 常规三轴固结不排水压缩试验 (CU) 三轴减载压缩试验 三轴伸长试验 应力路径特点 d3=0 d3=d3+du=0 d1=0, d3=d2<0 d1=d2=0, d3<0 d3=0, d2=td1
Wi (hi1 sat hi 2 hi 3 )bi
ui w (hw hi 3 )
图4-47 孔压u的计算
hi
i
Ni ( sat w )hi x cos i
Qi ( sat w )hi x sin i
浮重度 饱和重度-滑 面上的孔压uili
Ni ( sat w / cos 2 i )hi x cos i
Qi sathi x sin i
对于第n-1土条,由于n-1<0,会造成更大的误差.
坡面处的几种局部渗流的情况
不透水层
图4-48 土坡的局部渗流与抗滑稳定
坡面处的几种局部渗流的情况
J
图4-49坡 面处的几种局部渗流的情况
弹性模型-增量广义虎克定律
1 d x E [d x (d y d z )] d 1 [d (d d )] y z x y E d z 1 [d z (d x d y )] E d 2(1 ) d xy xy E 2(1 ) d yz d yz E 2(1 ) d d zx zx E
各种三轴试验的应力路径
1= 3 ; 减压试验特点; 不排水情况; 与摩尔-库伦准则关系; 试验的技术; 应力应变关系曲线。 剑桥模型的物态边界面: p, q, e的唯一性。