圆的对称性(教案)
九年级数学下册《圆的对称性》教案、教学设计
-使用直观演示法,利用多媒体和几何画板等工具,形象直观地展示圆的对称性质,帮助学生克服难点。
2.教学过程:
-导入:通过展示生活中具有对称美的圆形物体,激发学生的兴趣,引导学生关注圆的对称性。
-新课导入:以学生已有的知识为基础,引导学生通过观察、思考和讨论,发现圆的对称性质。
-知识讲解:系统讲解圆的轴对称和中心对称的概念,强调对称轴和对称中心的作用。
-实践应用:设计具有挑战性的问题,让学生运用圆的对称性解决问题,巩固所学知识。
-归纳总结:引导学生总结圆的对称性质,形成知识体系,加深理解。
3.教学评价:
-采用形成性评价,关注学生在课堂上的表现,及时给予反馈,指导学生改进学习方法。
-结合圆的对称性质,尝试解决以下问题:如何在圆中找到一条弦,使得这条弦平分给定的两条弧?
3.创新作业:
-利用圆的对称性,设计一个创意图案,要求具有美观性和实用性,如可以作为装饰画或应用于生活用品;
-与同学合作,开展一次关于圆的对称性的研究,可以选择历史、文化、艺术等方面的课题,进行深入研究并撰写研究报告。
九年级数学下册《圆的对称性》教案、教学设计
一、教学目标Βιβλιοθήκη (一)知识与技能1.理解圆的轴对称和中心对称的概念,掌握圆的对称轴和对称中心;
2.学会运用圆的对称性分析解决问题,如求圆上的对称点、对称线段等;
3.能够运用圆的对称性进行简单的图案设计,培养学生的审美观念和创新能力;
4.掌握圆的弦、弧、圆心角等基本概念,并能运用其性质解决相关问题。
五、作业布置
为了巩固学生对圆的对称性的理解,提高他们的几何思维和创新能力,特布置以下作业:
小学数学《圆的对称性》教案
小学数学《圆的对称性》教案教学目标:1. 了解圆的对称轴和对称中心的概念。
2. 能通过画图判断圆是否有对称轴或者对称中心。
3. 能通过对称绘制图形。
教学重点:1. 圆的对称轴的概念和判断方法。
2. 圆的对称中心的概念和判断方法。
3. 对称绘制图形的方法。
教学难点:1. 对称绘制复杂图形。
2. 发现和利用圆的对称性质。
3. 培养学生观察、推理和绘图能力。
教学准备:1. 教师准备圆盘、圆规、铅笔等。
2. 学生准备笔、纸、橡皮等。
教学过程:一、导入新课1. 介绍圆的对称性质。
2. 引导学生回忆以前所学无线扭结的对称性质,进一步巩固学生对“对称”的理解。
二、讲授新课1. 圆的对称轴1)定义:将一个圆分成两个部分的直线叫做圆的对称轴。
2)判断方法:如果有一条直线让以它为对称轴对称的两个部分完全重合,那么这条直线就是圆的对称轴。
3)练习:教师出示一些图形,让学生判断圆的对称轴。
2. 圆的对称中心1)定义:它是圆上任意两点的中垂线的交点。
2)判断方法:圆上的任意两点的中垂线应相交于同一点上,这个点就是圆的对称中心。
3)练习:让学生结合图形,判断圆的对称中心。
3. 对称绘制图形1)定义:利用圆的对称性质进行绘制。
2)练习:让学生利用圆的对称中心和对称轴,画出不同的图形。
三、课堂练习1. 让学生在小组内练习对称绘制图形。
2. 教师出题,让学生分组展开竞赛。
四、作业布置1. 巩固课堂所学的内容,完成课后习题。
2. 要求学生在日常生活中,注意观察圆的对称性质。
五、课堂总结通过本节课的学习,学生掌握了圆的对称轴和对称中心的概念,能利用圆的对称性质进行对称绘制图形,这也为日常生活中的很多情况做好了准备。
(完整版)《圆的对称性》教案
《圆的对称性》教案教学目标1.知识与技能(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.2.过程与方法(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.3.情感、态度与价值观经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点重点:对圆心角、弧和弦之间的关系的理解.难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.小红认为»¼''=AB A B ,''=AB A B ,她是这样想的: ∵半径OA 重合,'''∠∠=AOB A O B ,∴半径OB 与OB '重合,∵点A 与点A '重合,点B 与点B '重合,∴»AB 与¼A B ''重合,弦AB 与弦A B ''重合, ∴»AB =¼A B '',AB =A B ''. 生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三、例题讲解例:如图3-9,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且»»=AD CE ,BE 与CE 的大小有什么关系?为什么?解:BE =CE ,理由是:∵∠AOD =∠BOE ,∴»»=AD BE , 又∵»»22=+AD CEa b∴»»=BE CE,∴BE=CE.议一议在得出本结论的过程中,你用到了哪些方法?与同伴进行交流.四、随堂练习1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形但不是轴对称图形;(3)既是轴对称图形又是中心对称图形.3.已知,A,B是⊙O上的两点,∠AOB=120°,C是»AB的中点,试确定四边形OACB 的形状,并说明理由.五、知识拓展如图,在△ABC中,∠C=90°,∠B=25°,以点C为圆心,AC为半径的圆交AB于点D,求»AD所对的圆心角的度数.六、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获?2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些困惑?七、布置作业7273-P习题1-3题.。
初中数学初三数学下册《圆的对称性》教案、教学设计
-在证明圆的对称性质和相关定理时,学生可能会出现推理不严、论证不完整的情况。
-教学中应注重培养学生的逻辑思维能力,通过师生共同讨论、互评作业等方式,提高证明的严密性和准确性。
(三)教学设想
1.创设情境,激发兴趣。
-教学将从生活中的圆引入,如车轮、硬币等,让学生感受到圆的对称美和实用性,激发学习兴趣。
(三)学生小组讨论
1.问题驱动的讨论:教师提出具有挑战性的问题,引导学生进行小组讨论,共同探讨圆的对称性质在实际问题中的应用。
-设计不同难度的题目,让学生在讨论中逐步掌握圆的对称性质。
-学生在小组内分享解题思路和策略,提高合作交流能力。
2.教师巡回指导:教师在各小组之间巡回指导,观察学生的讨论过程,给予及时的反馈和建议。
3.培养学生的逻辑推理能力和批判性思维。
-在证明圆的相关性质时,学生需要运用严密的逻辑推理,教师指导学生进行批判性思考,检验证明过程的严密性和正确性。
(三)情感态度与价值观
1.培养学生欣赏数学美的情感,激发学习数学的兴趣。
-通过展示圆在各种文化和艺术中的应用,让学生体会圆的对称美,从而增强对数学美的感知和欣赏。
3.培养学生的几何直观和空间想象力。
-通过作图和观察几何图形,学生应能够发展对圆及其相关图形的直观认识。
-教学设想中应包含多种直观教具和动态软件,帮助学生构建几何图形的空间想象。
(二)教学难点
1.圆的对称性质在复杂几何问题中的运用。
-学生在解决涉及圆的复杂问题时,往往难以发现对称性的应用。
-教学中应采用问题驱动的教学方法,引导学生通过分析问题特点,逐步发现并运用对称性质。
-教师可以通过展示生活中的圆实例,让学生体验圆的对称美,提高他们对数学美的感知能力。
圆的对称性 教案
圆的对称性教案教案标题:圆的对称性教案目标:1. 理解圆的对称性概念;2. 掌握圆的对称性特征及其应用;3. 培养学生观察、分析和解决问题的能力;4. 提高学生的几何思维能力和创造力。
教学重点:1. 圆的对称性概念;2. 圆的对称性特征;3. 圆的对称性应用。
教学难点:1. 理解圆的对称性特征;2. 运用圆的对称性解决问题。
教学准备:1. 教学投影仪或黑板;2. 圆规、直尺、铅笔等绘图工具;3. 圆形物体或图片。
教学过程:Step 1:导入新知1. 引入圆的对称性的概念,与学生一起回顾对称性的概念和常见形状的对称性特征。
2. 提问学生:你们知道圆是否具有对称性吗?为什么?Step 2:探究圆的对称性特征1. 展示一个圆形物体或图片,让学生观察,并讨论圆的对称性特征。
2. 引导学生发现圆的对称轴,并解释圆的对称性特征。
Step 3:巩固对称性特征1. 给学生分发练习题,让他们找出圆的对称轴并标出。
2. 学生互相交换练习题,检查答案并互相讨论。
Step 4:应用圆的对称性解决问题1. 引导学生思考如何利用圆的对称性解决实际问题。
2. 给学生提供一些实际问题,让他们运用圆的对称性进行解答。
Step 5:拓展活动1. 给学生展示一些具有圆对称性的艺术品或建筑物,让他们欣赏并分析其中的对称性特征。
2. 鼓励学生设计自己的圆对称艺术品或建筑物,并展示给同学们。
Step 6:总结与评价1. 与学生一起总结圆的对称性概念和特征。
2. 对学生的学习情况进行评价和反馈。
教学延伸:1. 鼓励学生探究其他形状的对称性特征,并与圆的对称性进行比较。
2. 给学生提供更复杂的圆对称性问题,培养他们的解决问题的能力。
教学资源:1. 圆形物体或图片;2. 练习题;3. 具有圆对称性的艺术品或建筑物图片。
教学评估:1. 教师观察学生在课堂上的参与情况;2. 学生完成的练习题和解答问题的能力;3. 学生设计的圆对称艺术品或建筑物的创造力和表现力。
数学圆的对称性教案设计
数学圆的对称性教案设计篇一:圆的对称性教学设计圆的对称性教学设计宝鸡市陈仓区贾村镇第二初级中学王彦红圆的对称性(第二课时)一、教学背景分析教学内容分析:本节圆的对称性(第二课时)主要内容是圆心角、弧、弦之间的关系,它由圆的旋转不变性引出,是圆的轴对称性学习之后圆的又一重要性质,圆心角、弧、弦之间的相等关系在以后的证明和计算中有着重要的作用。
学生情况分析:学生在第二学段已经学习过中心对称与中心对称图形,对于直线型的图形如平行四边形、矩形、菱形等中心对称图形有一定的了解,了解中心对称的概念以及相关的性质。
前一节已经学习过弦、弧等圆的有关概念和垂径定理的内容,利用垂径定理及推论解决了与直径、弦、弧等有关的问题,对于圆是中心对称图形和圆具有旋转不变性容易理解。
但对弦、弧以及要学到的圆心角、弦心距等之间的关系,并且怎样利用这些关系解决一些有关的证明和计算等方面,学生缺乏亲身体验和总结。
教学方式及教学准备:教学方式:任务驱动问题教学小组合作探究教学准备:学生课前准备圆形纸片(两个等圆);教师制作几何画板课件;辅助教学的CAI软件二、教学目标知识目标:理解圆的旋转不变性,掌握圆心角、弧、弦之间的关系定理及其推论,会用这三者之间的关系进行简单的证明。
能力目标:通过本节课的学习培养学生观察、实验、探究、归纳和概括能力。
情感态度与价值观:结合本课教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育;渗透圆的内在美。
并使得学生在小组合作中尝试交流,在“做数学”中体会数学的严谨性。
三、教学重点、难点重点:圆心角、弧、弦之间的关系定理及其推论难点:对定理中“在同圆或等圆中”前提条件的理解,以及从感性到理性的认识,发现归纳能力的培养。
四、教学过程设计教学进程创设情境直观感知教学内容知识链接:问题1:什么是中心对称图形?中心对称图形有什么性质?问题2:说出你所了解的中心对称图形。
情境引入:课件展示(我来转一转)如图是一个转盘,转盘分成六个相同的扇形,颜色分为红、绿两种颜色,指针的位置固定。
圆的轴对称性(教案)
圆的轴对称性教学目标:1. 让学生理解圆的轴对称性的概念。
2. 使学生掌握圆的轴对称性的性质和特点。
3. 培养学生的观察能力、思维能力和动手能力。
教学重点:1. 圆的轴对称性的概念。
2. 圆的轴对称性的性质和特点。
教学难点:1. 圆的轴对称性的性质和特点的理解和应用。
教学准备:1. 圆规、直尺、剪刀、彩笔等绘图工具。
2. 圆形教具和实物。
教学过程:一、导入(5分钟)1. 向学生介绍圆的轴对称性的概念。
2. 引导学生思考圆的轴对称性在实际生活中的应用。
二、新课(15分钟)1. 讲解圆的轴对称性的性质和特点。
2. 通过示例和练习,让学生理解和掌握圆的轴对称性的性质和特点。
三、课堂练习(10分钟)1. 让学生利用圆的轴对称性,剪出一个对称的图案。
2. 让学生观察和分析生活中常见的对称图案,并说明其轴对称性。
四、拓展(5分钟)1. 引导学生思考圆的轴对称性与其他几何图形的轴对称性的联系和区别。
2. 让学生举例说明圆的轴对称性在其他学科领域的应用。
1. 回顾本节课所学的内容,让学生巩固圆的轴对称性的概念和性质。
2. 鼓励学生在日常生活中发现和欣赏圆的轴对称性的美。
教学反思:本节课通过讲解、练习和拓展,使学生了解了圆的轴对称性的概念和性质,并能够应用到实际生活中。
在课堂练习环节,学生通过动手操作,进一步巩固了对称性的理解。
在拓展环节,学生思考了圆的轴对称性与其他几何图形的轴对称性的联系和区别,提高了思维能力。
总体来说,本节课达到了预期的教学目标。
六、案例分析(10分钟)1. 提供几个含有圆的轴对称性的案例,如圆形桌面、圆形门把手等。
2. 让学生分析这些案例中圆的轴对称性的应用和作用。
七、实践操作(15分钟)1. 让学生利用圆的轴对称性,设计一个对称的图案或艺术品。
2. 学生可以利用彩笔、剪刀、纸张等材料,发挥创造力,完成自己的设计作品。
八、课堂讨论(10分钟)1. 让学生展示自己的设计作品,并分享设计思路和感受。
圆的轴对称性(教案)
圆的轴对称性教学目标:1. 理解圆的轴对称性概念。
2. 学会运用圆的轴对称性解决实际问题。
3. 培养学生的观察能力、思考能力和动手能力。
教学重点:圆的轴对称性的概念及其应用。
教学难点:圆的轴对称性的理解和运用。
教学准备:圆形教具、剪刀、直尺、画纸等。
教学过程:一、导入(5分钟)1. 教师出示圆形教具,引导学生观察圆的特点。
2. 提问:你们能找出圆的对称轴吗?为什么?3. 学生回答,教师总结:圆的任何一条直径都可以作为圆的对称轴。
二、探究圆的轴对称性(10分钟)1. 教师引导学生动手操作,用剪刀沿圆的直径剪开,观察剪开后的两部分。
2. 提问:你们发现剪开后的两部分有什么特点?3. 学生回答,教师总结:剪开后的两部分完全重合,说明圆是轴对称图形。
三、学习圆的轴对称性(10分钟)1. 教师讲解圆的轴对称性的概念,引导学生理解圆的轴对称性。
2. 学生通过观察、思考,总结圆的轴对称性的性质和特点。
四、运用圆的轴对称性解决问题(10分钟)1. 教师出示实际问题,如:在圆形桌布上摆放餐具,如何使餐具的摆放对称?2. 学生运用圆的轴对称性解决实际问题,教师给予指导。
五、总结与拓展(5分钟)1. 教师引导学生总结本节课所学内容,巩固圆的轴对称性的概念和应用。
2. 学生通过动手操作,尝试创造具有轴对称性的图形,拓展思维。
教学反思:通过本节课的教学,学生应掌握圆的轴对称性的概念及其应用,能够运用圆的轴对称性解决实际问题。
在教学过程中,要注意引导学生观察、思考,培养学生的动手能力。
结合学生的实际情况,适当增加拓展环节,提高学生的创新能力。
六、案例分析:圆的轴对称性在生活中的应用(10分钟)1. 教师展示生活中具有轴对称性的物品,如剪刀、闹钟等,引导学生观察其对称性。
2. 提问:这些物品为什么设计成轴对称性?有什么好处?3. 学生回答,教师总结:轴对称性可以使物品更加美观、实用。
七、练习与巩固(10分钟)1. 教师出示练习题,要求学生运用圆的轴对称性解决问题。
圆的对称性教案
圆的对称性教案圆的对称性教案一、教学目标:1. 理解圆的对称性概念。
2. 能够识别并描述圆的各种对称图形。
3. 能够根据已知的对称点绘制圆的对称图形。
4. 能够应用圆的对称性解决实际问题。
二、教学重点:1. 理解圆的对称性概念。
2. 能够识别并描述圆的各种对称图形。
三、教学难点:1. 能够应用圆的对称性解决实际问题。
四、教学过程:1. 导入新课通过展示一些圆形的图案,引起学生的兴趣,引出课题:“你们看到的这些图案有什么共同之处?”让学生进行讨论。
2. 引入新知通过引导学生讨论,引出圆的对称性的概念,即圆上的任意一点和圆心之间的连线,在圆上折叠时能够重合。
引导学生发现圆的对称轴是通过圆心的。
3. 讲解示范通过讲解和示范,让学生理解并掌握圆的对称性的基本概念和性质。
4. 练习巩固让学生进行一些练习,巩固对圆的对称性的理解和应用。
5. 拓展延伸通过讲解一些拓展内容,如对称图形的绘制方法和实际应用等,拓展学生对圆的对称性的理解和应用。
6. 总结回顾通过与学生一起总结和回顾所学的知识,确保学生对圆的对称性有清晰的理解和掌握。
五、教学方法:1. 合作探究法:通过合作学习、讨论、实践等方式,引导学生主动参与学习和思考。
2. 示例法:通过展示实际例子和解释说明,帮助学生更好地理解和掌握知识。
3. 练习巩固法:通过练习题和问题,巩固和拓展学生的知识与能力。
六、教学资源:1. 教学课件。
2. 圆形图案。
3. 讲解示范用具。
七、教学评估:通过课堂讨论、练习和问题,对学生的掌握程度进行评估。
八、教学扩展:可以进一步引导学生探索圆的对称性在实际生活中的应用,如建筑设计、艺术作品等。
九、教学反思:通过本堂课的教学活动,学生对圆的对称性概念、性质和应用有了初步的了解。
但是在教学过程中,老师需要更加引导学生思考、参与和探索,提高学生的主动学习能力和解决问题的能力。
同时,老师还需根据学生的实际情况和学习进度,进行灵活的教学调整,以达到更好的教学效果。
2圆的轴对称性(教案)
2圆的轴对称性教学目标:1. 让学生理解圆的轴对称性概念。
2. 使学生掌握圆的轴对称性的性质和运用。
3. 培养学生的观察能力、思考能力和实践能力。
教学重点:1. 圆的轴对称性的概念。
2. 圆的轴对称性的性质和运用。
教学难点:1. 圆的轴对称性的性质的理解和运用。
教学准备:1. 教学课件或黑板。
2. 圆的模型或图片。
3. 剪刀、彩纸等手工材料。
教学过程:一、导入(5分钟)1. 向学生介绍轴对称性的概念,引导学生回顾已学的轴对称图形的知识。
2. 展示一些圆的图片,让学生观察并讨论这些圆是否具有轴对称性。
二、新课讲解(15分钟)1. 向学生讲解圆的轴对称性的定义和性质。
2. 通过示例和练习,让学生理解圆的轴对称性的运用。
三、课堂练习(10分钟)1. 让学生独立完成一些有关圆的轴对称性的练习题。
2. 引导学生互相讨论和解答疑问。
四、动手实践(10分钟)1. 让学生利用剪刀、彩纸等手工材料,制作自己喜欢的圆的轴对称图形。
2. 让学生展示自己的作品,并解释其轴对称性的运用。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的圆的轴对称性的概念和性质。
2. 引导学生思考如何运用圆的轴对称性解决实际问题。
教学延伸:1. 引导学生进一步研究其他图形的轴对称性。
2. 让学生尝试运用圆的轴对称性解决实际问题,如设计图案、规划路线等。
教学反思:本节课通过导入、新课讲解、课堂练习、动手实践和总结与反思等环节,让学生掌握了圆的轴对称性的概念和性质,并能够运用到实际问题中。
在教学过程中,注意引导学生观察、思考和实践,培养学生的观察能力、思考能力和实践能力。
通过学生的动手实践,培养了学生的创新意识和团队合作精神。
但在教学过程中,也要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。
六、课堂讨论与探索(10分钟)1. 引导学生进行小组讨论,探讨圆的轴对称性在实际生活中的应用,如设计、建筑、艺术等领域。
2. 各小组派代表分享讨论成果,总结圆的轴对称性的实际应用。
圆对称性教学设计
圆对称性教学设计一、教学目标1.认识和理解圆的对称性。
2.通过实例观察、探索和解决问题,培养学生的观察和分析能力。
3.培养学生的合作和沟通能力。
二、教学重点1.理解圆对称的概念。
2.能够在实例中发现并描述圆的对称性。
3.能够通过实例绘制具有圆对称性的图形。
三、教学内容与过程分析1.导入(10分钟)学生已经学习过对称性的知识,由此可引出圆的对称性,并通过提问让学生回顾对称性的概念。
2.学习(15分钟)通过展示一些具有圆对称性的图形,引导学生观察、发现并描述圆的对称性,并对对称轴、对称中心进行解释。
3.活动一:观察对称(30分钟)通过实例让学生观察、探究具有圆对称性的图形,分析并找出其中的对称轴和对称中心。
活动要求:学生分组,每组给予一张具有圆对称性的图形,要求观察图形并讨论找出其中的对称轴和对称中心,并展示给全班。
教师提示:教师可以提供一些具有圆对称性的图形,通过引导问题,让学生发现图形的对称轴和对称中心。
4.活动二:绘制对称图形(30分钟)学生通过对具有圆对称性的图形进行反复观察,根据观察的结果尝试绘制具有圆对称性的图形。
活动要求:学生分组,每组给予一张具有圆对称性的图形,要求学生通过观察图形,尝试用圆规绘制出对称部分,并展示给全班。
教师提示:引导学生明确绘制的步骤和方法,帮助学生理解圆规的作用和使用方法。
5.归纳(10分钟)学生通过活动的实践,得出圆对称性的特点,并进行归纳总结。
教师引导学生一起总结圆对称性的特点,并让学生记录在黑板上。
6.作业:完成练习册上的相关练习题(10分钟)布置相关练习题,要求学生在完成后交给老师。
四、教学手段与资源1.多媒体教学设备2.图形绘制工具:圆规、直尺等3.教学PPT4.练习册五、教学评估1.通过活动一和活动二中的小组展示,观察学生对圆对称性的理解和表达能力。
2.通过批改作业,了解学生对圆对称性的掌握程度。
六、教学延伸1.对称轴和对称中心不一定位于图形的中心,可以设计更多具有圆对称性的图形,引导学生发现不同位置的对称轴和对称中心。
初中数学《圆的对称性》优秀教案范例
折一次,平均成 4 等分,再对折就可以将圆平均分成 8 等分,再 对折,就可以平均分成 16 等分了,再对折 32 等分等等。
三、课堂练习 例1 四、小结作业 提问:今日有什么收获? 课后作业:思索当直径与弦垂直时,那所对的弧有什么关系?
第3页 共3页
第1页 共3页
进一步提问:在同一个圆呢?还是在两个圆中?若在两个圆中 存在,这两个圆是什么关系。
师生共同总结得出:在等圆和同一个圆中,假如圆心角相等, 那么它们所对的弧相等,所对的弦相等。
提问:能否说说上述结论中的条件和结论。 预设:条件是在同圆或等圆中,圆心角相同,结论是:①所 对的弧相等,②所对的弦相等。 引导学生思索:假如互换条件和结论,那命题是否还正确? 预设 1:在同圆或等圆中,所对的弧相等,那么它们所对的 圆心角相等,所对的弦也相等。 预设 2:在同圆或等圆中,所对的弦相等,那么它们所对的 圆心角相等,所对的弧也相等。 最终师生共同得出:在同圆或等圆中,已知三个量中的其中 一个量相等,就可以得出另外两个量也相等。 组织学生进行动手操作,折一折,说说圆是什么样的图形? 进一步提问它的对称轴是什么?对称轴有多少条? 最终师生共同得出:圆是对称图形,它的随意一条直径所在 的直线都是它的对称轴。 引导学生思索:怎样将圆平均分成 2 等分,4 等分、8 等分? 进一步提问还可以将圆平均分成多少等分? 最终师生共同得到:将圆沿直径对折平均分成 2 等分,再对
二、探究新知 对于导入中的问题,老师引导学生画两个完全相同的圆,然 后将其中的一个圆剪下一个扇形 AOB,引导学生将扇形 AOB 放在 另外一个圆上,将顶点放在圆心上,画出扇形 AOB,然后再引导 学生将其旋转,再画出扇形 A39;OB39;,视察前后两个扇形是完全相同的。 提问:扇形的大小由什么确定? 预设:扇形的大小由圆心角确定。 提问:能否用一句话说说上述的发觉。 预设:假如圆心角相等,那么它们所对的弧相等,所对的弦 相等。
圆的对称性精品课件教案
06
圆的对称性教学建议
教学重点与难点
教学重点
01
02
掌握圆的对称性定义和性质。
能够应用圆的对称性解决实际问题。
03
04
教学难点
如何引导学生理解圆的对称性概念。
05
06
如何帮助学生掌握圆的对称性的应用技巧 。
教学策略与方法
教学策略 采用直观教学,通过实物或图形展示圆的对称性。
结合生活实例,引导学生发现圆的对称性在生活中的实际应用。
圆的对称性精品课件 教案
汇报人:任老师 2023-12-27
目录
• 圆的对称性概念 • 圆的对称性分类 • 圆的对称性应用 • 圆的对称性证明方法 • 圆的对称性习题与解析 • 圆的对称性教学建议
01
圆的对称性概念
定义与性质
定义
圆是对称的,当且仅当对于圆上 任意一点P,存在圆内或圆外的点 Q,使得PQ的中点是圆心。
几何图形设计
总结词:丰富多样
艺术创作:艺术家可以利用圆的对称性进行创作 ,如绘制圆形图案、设计旋转对称的图案等,以 创造出具有美感和视觉冲击力的艺术作品。
设计图案:利用圆的对称性,可以设计出各种丰 富多样的几何图案,如圆形、环形、椭圆等。这 些图案在自然界和日常生活中广泛存在,如星球 、花朵、车辆等。
手段。
THANKS
感谢观看
组合对称
总结词
组合对称是指圆同时具备多种对称性质。
详细描述
在实际的几何图形中,许多圆不仅具备单一的对称性质,还同时具备多种对称性质。例如,一些圆既具有中心对 称性,又具有轴对称性,或者同时具有中心对称性和点对称性等。这种多种对称性质的组合使得圆在几何学中具 有更加丰富的性质和表现形式。
圆的轴对称性(教案)
教案:圆的轴对称性教学目标:1. 让学生理解圆的轴对称性的概念。
2. 培养学生运用圆的轴对称性解决实际问题的能力。
3. 培养学生对圆的轴对称性的兴趣和好奇心。
教学重点:1. 圆的轴对称性的概念。
2. 圆的轴对称性的性质和应用。
教学难点:1. 圆的轴对称性的概念的理解。
2. 圆的轴对称性的性质的证明和应用。
教学准备:1. 教学课件或黑板。
2. 圆规和直尺。
3. 圆形教具。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的轴对称图形,如门窗、桌子等。
2. 提问:同学们,你们知道什么是轴对称性吗?3. 总结:轴对称性是指图形可以沿着某条直线对折,对折后的两部分完全重合。
二、探究圆的轴对称性(15分钟)1. 提问:圆有没有轴对称性呢?如果有,又是怎样的呢?2. 学生分组讨论,并尝试画出圆的轴对称线。
3. 邀请几组学生分享他们的发现。
4. 总结:圆的轴对称线就是圆的直径,圆可以沿着任意直径对折,对折后的两部分完全重合。
三、圆的轴对称性的性质(15分钟)1. 提问:同学们,你们能找出圆的轴对称性的一些性质吗?2. 学生分组讨论,并尝试总结圆的轴对称性的性质。
3. 邀请几组学生分享他们的发现。
4. 总结:a. 圆的轴对称线是圆的直径。
b. 圆的轴对称线将圆分成两个半圆,两个半圆的面积相等。
c. 圆的轴对称线上的任意一点到圆心的距离等于对称线另一侧对应点到圆心的距离。
四、圆的轴对称性的应用(10分钟)1. 提问:同学们,你们能用圆的轴对称性解决一些实际问题吗?2. 学生分组讨论,并尝试解决实际问题。
3. 邀请几组学生分享他们的解题过程和答案。
4. 总结:圆的轴对称性可以应用于解决一些几何问题和实际问题,如计算圆的面积、画对称图形等。
五、总结与反思(5分钟)1. 提问:同学们,你们觉得圆的轴对称性有什么意义呢?2. 学生分享他们的思考和感悟。
3. 总结:圆的轴对称性是圆的一种重要性质,它可以帮助我们更好地理解和应用圆。
圆的对称性教案
圆的对称性教案标题:圆的对称性教案教案概述:本教案旨在帮助学生了解圆的对称性,以及对称性在生活中的应用。
通过多种教学方法和活动,学生将能够理解圆的对称性的概念,并能够在实际生活中应用这一概念。
教学目标:1. 了解圆的对称性的概念。
2. 能够识别和描述圆的对称性。
3. 掌握圆的对称性在日常生活中的应用。
教具准备:1. 圆形的物体:球、扔子等。
2. 黑板或白板。
3. 教学PPT或投影仪。
教学步骤:引入活动:1. 引导学生观察身边的物体,询问他们有没有注意到某些物体具有对称性。
2. 让学生分享他们观察到的对称物体,并对他们进行讨论。
概念解释:1. 通过投影仪或黑板上的图片,解释圆的对称性概念。
强调圆在任何方向上都具有对称性。
2. 展示一些圆的图片,并与学生一起探讨这些图片是否具有对称性。
引导学生发现圆的任何一条直径都具有对称轴。
3. 让学生自己尝试画出一些圆,并找出其中的对称轴。
引导学生注意对称轴与圆心的关系。
活动一:探索圆的对称性1. 让学生分成小组,给每个小组发放一些圆形的物体。
2. 学生围坐在一起,观察自己手中的物体,并发现其中的对称轴。
3. 每个小组成员依次分享他们找到的对称轴。
4. 引导学生讨论这些物体是否在不同的方向上都具有对称性。
活动二:圆的对称性在生活中的应用1. 展示一些生活中常见的具有圆对称性的物体图片,如钟表、车轮等。
2. 让学生思考并讨论这些物体为什么需要具有对称性。
3. 分组活动:每个小组选择一个具有圆对称性的物体,并設計一则广告,展示这个物体的对称性在生活中的应用。
4. 让每个小组展示他们的广告,并进行讨论和评价。
总结:1. 回顾本堂课所学的内容,强调圆的对称性的重要性。
2. 确保学生理解并掌握了课程的目标,并解答他们的问题。
3. 鼓励学生在生活中寻找更多具有圆对称性的事物,并加深对圆对称性的理解。
教案评估:1. 监测学生在活动一中对圆的对称性的理解程度,以小组分享和讨论的形式评估。
圆的对称性教学案:培养学生的几何思维
圆的对称性教学案:培养学生的几何思维培养学生的几何思维一、教学目标:1.知识与技能:认识圆的对称性,掌握圆内、圆外、圆周上的各种对称性操作。
2.能力与素养:培养学生的几何思维,提高学生的空间想象能力和逻辑推理能力,并能在实际问题中灵活运用所学知识。
3.情感态度与价值观:使学生感受到几何学科的美和魅力,激发学生对几何学科的兴趣和热爱。
二、教学重点:1.认识圆的对称性。
2.掌握圆内、圆外、圆周上的各种对称性操作。
三、教学难点:1.如何让学生理解圆的对称性,提高学生的空间想象能力。
2.如何教学灵活运用所学知识,提高学生的实际问题解决能力。
四、教学方法:1.形象化教学法:通过图像、实物等形式进行教学,增强学生的感性认识和理解。
2.体验式教学法:通过生动、具体的教学情景,让学生亲身体验,加深对知识的理解和记忆。
3.问题式教学法:以问题为出发点,引导学生思考、探究、发现,培养学生分析和解决问题的能力。
五、教学内容:一、圆的对称性圆的对称性是指圆上任意两点关于圆心O对称的一种变换,称为圆的中心对称。
它是一种保形变换,即变换前圆内、圆外的点,在变换后仍在圆内、圆外,圆上的点变换后仍在圆上。
二、圆内的对称性圆内的对称性是指圆内任意两点关于圆心O的对称,可以形成一条由圆心O出发的射线,将圆分成两个对称的部分,称为圆的内中心对称。
三、圆外的对称性圆外的对称性是指关于圆心O将圆上的一个点P对称到圆上的另一个点Q的变换称为圆的外中心对称。
圆外对称的应用非常广泛,如在建筑、机械加工、航空、航天等领域应用很多。
四、圆周上的对称性圆周上的对称性是指圆上任意两点关于圆周上的另一点R对称,称为圆的周对称。
圆周对称是一种非常重要的概念,通过它我们可以得到一些重要的结论,如根据圆周角定理,圆周上两个等角所对的弧是相等的。
六、教学步骤:1.引入通过展示物品或相关图形等启发学生思考圆的对称性,让学生产生兴趣,引导学生主动探究。
2.讲解知识点让学生了解圆的对称性、圆内、圆外、圆周上对称和做一些相关的示例,巩固学生的记忆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 圆的对称性(二)
班级姓名学号
学习目标
1.理解圆的对称性(轴对称)及有关性质.
2.理解垂径定理并运用其解决有关问题.
学习重点:垂径定理及其运用.
学习难点:灵活运用垂径定理.
教学过程
一、情境创设
(1)圆是轴对称图形吗?
(2)你是如何验证的?
设计意图1、体验折叠是验证轴对称图形的非常好的方法。
2、确信圆是轴对称图形,圆的对称轴是直径所在的直线,这样的对称轴有无数条。
圆是轴对称图形,我们这节课就来研究与圆的轴对称有关的性质。
二、探索与发现
如图,AB是⊙O的直径,画弦CD⊥AB,垂足为P,探索图形中的相等关系。
你是如何发现的?
教学设计:
经历从感性到理性的认知过程
通过观察操作说理等方法获取结论。
垂径定理
文字语言:_________________________________________________________。
符号语言:。
三、例题讲解
2cm,你能求出圆心O到CD的距离吗?例1. 已知:如图,直径AB⊥CD,⊙O的半径为2cm,若弦CD=3
例2. 如图,以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D.AC与BD相等吗?为什么?
四、及时巩固:
1.如图,OA=OB ,AB 交⊙O 与点C 、D ,AC 与BD 是否相等?为什么?
2.填空
(1)如图,已知⊙O 的半径为13cm ,AB 为⊙O 的一条弦,点O 到AB 的距离为5cm ,则AB=____.
(2)如图,已知⊙O 的直径为10cm 中,弦AB=8cm ,P 是AB 上的一个动点。
OP长度的范围是。
(3)如图,以点P 为圆心的圆弧与X 轴交于A ,B 两点,点P 的坐标为(4,2),点A 的坐标为(2,0)则点B 的坐标为_________.
第(1)题 第(2)题 第(3)题
五、应用与拓展:
1.某居民区一处圆形下水管道破裂,修理人员准备更换一段与原管道同样粗细的新管道.如图所示,已知污水水面宽度为60cm ,水面至管道顶部距离为10cm ,问修理人员应准备半径多大的管道?
思考: 如果水面宽度由60cm 变为80cm ,那么污水面下降了多少厘米?
2. (思维拓展)已知⊙O 的半径为5cm ,点P 是⊙O 内一点,OP=4cm ,则过点P 的所有弦中,最短弦的长为多少cm?
过点P 的所有弦中,长度为整数的弦有几条?
O B
A P O
B A
三、归纳总结
1.圆的轴对称性及有关性质.
2.理解垂径定理并运用其解决有关问题.。