第6章内力和内力图
第6章内力和内力图
B2
1
C
D
工程力学电子教案
内力和内力图
33
思考题6-4
试作图示杆的轴力图。
20 kN 40 kN
30 kN
A
B
C
D
0. 5 m 0. 5 m
1m
工程力学电子教案
内力和内力图
思考题6-4参考答案:
20kN 40kN
30kN
A
B
C
D
0. 5 m 0. 5 m
1m
FN /kN 20 10
O
20
34
x
工程力学电子教案
MT (kN·m) 1.5 0.5 + x
2
工程力学电子教案
内力和内力图
47
思考题6-7
作杆的扭矩图。
0.1 m 4 kN
0.2m 1m
2 kN 1 kN
1m
0.1 m
工程力学电子教案
内力和内力图
48
思考题6-7参考答案
0.1m 4 kN
0.2m 1m
2 kN 0.1m
1 kN 1m
MT /kN·m
21
思考题6-2
试用截面法计算图示桁架中指定杆件的内力。
F
a 2 F
13
4a
F
a
A
B
a
工程力学电子教案
内力和内力图
思考题6-2参考答案:
F
a 2 F
13
4a
F
a
A
B
a
22
F1= F F2= - 2F F3= 2.828F F4= - 3F
工程力学电子教案
内力和内力图
23
第6章弯曲内力(1,2)
背口诀,快速记(42字)
剪力等于外力和;
弯矩等于力矩和; 左上右下剪为正;
左上右上弯为正;
左顺右逆弯为正; 与上不符皆为负。
3、简便法求梁内力的步骤 步骤: (1)先分别判断梁上各外力在截面上 引起的内力符号,并求出相应的内力数 值。 (2)由外力与内力大小规律,将截面 上的各内力代数和,即为所有外力作用 下梁截面的内力。
F 0, M 0,
y F
FSF FRB 0 M F FRB d 0
解得:
FSF FRB
-
M F FRB d +
(二)简便法求内力
1、外力与内力大小规律
a A
F1
m
F2 b B x
F
y
0:
m
FAy
a F1
x
F By
F2 b
FAy F1 FQ 0
FQ FAy F1
FAy
x
FQ
FQ
F By
任一横截面上的剪力等于该横截面任一侧所有外力的 代数和。
a
F1
m
F2 b B x
M
C
0:
A
m
x
FAy x F1 x a M 0 M FAy x F1 x a
FAy
FAy
a F1
F By
F2 b
M
M
x
四. 剪力方程和弯矩方程· 剪力图和弯矩图
剪力方程和弯矩方程实际上是表示梁的横截面上的剪力 和弯矩随截面位置变化的函数式,它们分别表示剪力和弯矩
随截面位置的变化规律,或称为内力方程。显示这种变化规
律的图形则分别称为剪力图和弯矩图,它们是梁配钢筋和承 载能力计算的依据。 梁剪力图的画法:取纵横坐标轴,横坐标轴与梁轴线平行,表 示梁的截面位置,纵坐标轴表示梁截面对应的剪力的大小,规 定正剪力画在横坐标轴的上方,负剪力画在横坐标轴的下方, 画出的图形即为梁的剪力图。 梁弯矩图的画法:取纵横坐标轴,横坐标轴与梁轴线平行,表 示梁的截面位置,纵坐标轴表示梁截面对应的弯矩的大小,规 定梁的弯矩图画在梁的受拉侧,因为正弯矩使梁下侧受拉,所 以正弯矩画在横坐标轴的下方;负弯矩使梁的上侧受拉,所以 负弯矩画在横坐标轴的上方,画出的图形即为梁的弯矩图。
第六章 杆件的内力内力图
3.求特殊点内力值,作剪力图和弯矩图。
M a) Ma / l (
例6-11 简支梁受均布载荷作用试写出剪力和弯矩方程,并画
出剪力图和弯矩图。
y
q
解:1.求约束反力 B
x
A x
FAY
FAy= FBy= ql/2 2.写出剪力和弯矩方程
C
l
FBY
FQ ql / 2
FQ x =ql / 2 qx 0 x l
2
(2)求特殊点内力值,画剪力图和弯矩图
x
FQ 0 =0
FQ l =ql
ql / 2M 0=0 M l/2 =ql 2 / 8 M l =ql 2 / 2
M
ql 2 / 8
x
由剪力图、弯矩图可见,最大剪力
和弯矩分别为
FQ max =ql
M max=ql 2 / 2
25
FN1 F1 0
FN1 F1 10kN
FN1 FN2 F2 F2
10
Fx 0
FN 2 F2 F1 0
FN 2 F1 F2 10kN
F1
F3
+ _
10
Fx 0
FN 3 F1 F2 F3 0
FN 3 F1 F2 F3 25kN
剪力和弯矩都可表示为x的函数, FQ = FQ (x) ,M = M (x)。 称为梁的剪力方程和弯矩方程。 一般,剪力方程和弯矩方程是x的分段函数,集中力、集 中力偶、分布力的起点和终点为函数分段点。
剪力、弯矩图:表示剪力、弯矩沿轴线的变化规律的图形。 FQ = FQ (x) ,M = M (x)
压力向下画,最后归零。
材料力学第6章 弯曲内力
精品文档
6.1 梁的内力—剪力和弯矩
例题 6-2
(2)计算(jìsuàn)指定截面上的剪力和 弯矩
C截截面面C左(以侧梁的左力半:边为研究对象):
FAy 2 kN () (+)
FSC Fy FAy 2kN
C截面左侧的力矩:
FAy * 2m (+)
M e 8kN m (-)
M C
M F 2m - M -4kN m O
19
精品文档
6.2 剪力图和弯矩图
例题 6-3
(2) 作剪力图(lìtú)和弯矩图
由剪力、弯矩方程画剪力、弯矩图。
注意: 画图时应将剪力图、弯矩图与计算简图 对齐,并注明图名(FS图、M图)、 峰值点的值及正负号。
秦飞 编著《材料力学》 第6章 弯曲(wānqū)内
20
力
精品文档
6.2 剪力图和弯矩图
(plane bending)。当所有外力均作用在纵向对称面内时,梁只发生平面弯曲。
秦飞 编著《材料力学》 第6章 弯曲(wānqū)内力
6
精品文档
6.1 梁的内力(nèilì)—剪力和弯 矩
梁在外力作用下,其任一横截面上的内力可用截面法确定。
(1)截:在横截面m-m处假想地将梁分为两段
原来处于平衡状态的梁,被截出的任意段也处于平衡状态。
秦飞A编y 著《材料力学(cái lieào lìxué)》 第6章 弯
16
曲内力
精品文档
6.1 梁的内力(nèilì)—剪力和弯矩 例题 6-2
截面B(以梁右半边为研究对象):
B左截面
F 2kN (+)
FBy 4kN (-)
FSB左 F FBy -2kN
第六章内力及内力图
Fy 0 F Fs1 0
Fs1 F
MC1 0 M1 Fa 0
M1 Fa
1 M1
1 Fs1
§6.4 剪力和弯矩
由前面的例题可以看出,在一般情况下,梁横截面上的剪力和弯矩是随横截面 的位置而变化的。
若沿梁轴方向选取x坐标表示横截面位置,则梁的各横截面上的剪力和弯矩 可以表示为x的函数,即
Fb l
x
FA
y
Fs称为剪力,它是横截面上切向分布内力的 合力。
M称为弯矩,它是横截面上法向分布内力的
合力偶矩。
FA
取右: Fy 0
FS
Fb l
MC 0
M Fb x l
a
F b
m
x ml
FS M
C
x
ax F M
C
FS
lx
B
FB
FB
剪力、弯矩正负号规定:
1、剪力FS
解: (1) 写出剪力方程和弯矩方程
F
FS (x) F (0 x l)
A
x
l
M (x) Fx (0 x l)
(2) 作剪力图和弯矩图
FS
FS(x)为一常量,故剪力图为一条水平直线。
F
M(x)为x的一次函数,故弯矩图为一条斜直线。
x 0时 M 0
x l时 M Fl
从动轮上外力偶矩的转向和轴 的转向相反
例 已知:传动轴转速n=300r/min,主动轮C输入功率PC =360kW,三个从动轮输出功率分别 为PA =60kW ,PB =120kW , PD =180kW试绘该轴的扭矩图。
解: 1.计算外力偶矩
转向
工程力学(第二版)章图文 (6)
(1) 一体重为700 N (2) 要求两名体重均为700 N的工人抬着1500 N的货物安全 走过,木板的宽度不变,重新设计木板厚度h。
第6章 弯 曲
解 (1) 计算弯矩的最大值Mmax。当工人行走到跳板中央
(2) 横截面上的弯矩在数值上等于该截面左侧(或右侧)所 有外力对该截面形心的力矩的代数和。
第6章 弯 曲
为了使所求得的剪力与弯矩符合前面的符号规定,按此 规律计算剪力时,截面左侧梁上外力向上取正值,向下取负 值,截面右侧梁上外力向下取正值,向上取负值;计算弯矩 时,截面左侧梁上外力对该截面形心的力矩顺时针转向取正 值,逆时针转向取负值,截面右侧外力对该截面形心的力矩 逆时针转向取正值,顺时针转向取负值。可以将这个规则归 纳为一个简单的口诀:左上右下,剪力为正;左顺右逆,弯 矩为正。
第6章 弯 曲 图 6.10
第6章 弯 曲 解 设截面m-m与B端之间的距离为x,取m-m截面的右段
为研究对象,画出受力图,如图6.10(b)所示。 根据平衡条件:
由Fs=qx可绘出剪力图,如图6.10(c)所示;由 描点可绘出弯矩图,如图6.10(d)
第6章 弯 曲
6.3 弯曲时的正应力与强度计算
m,材料的许用应力[σ]=150 MPa, 求此悬臂梁的许可载荷。
图 6.15
第6章 弯 曲 解 绘出悬臂梁的弯矩图,如图6.15(b)所示。 图中,Mmax=Fl=4000F 梁的横截面抗弯截面系数为
由梁的弯曲正应力强度条件得
因此, 悬臂梁的许可载荷为F=25 000 N。
第6章 弯 曲 【例6.5】 某建筑工地上, 用长l=3 m的矩形截面木板做
内力与内力图
常见载荷作用下剪力图和弯矩图的特点
若一段梁上无载荷(即q=0),则剪力图为水平直线,弯 矩图为倾斜直线。剪力为正时,弯矩图为向右上方倾斜的 直线,剪力为负时则弯矩图向右下方倾斜,剪力为零时弯 矩图成为水平直线。 若一段梁上作用着均布载荷,则剪力图为斜直线,弯矩图 为二次抛物线。若均布力方向向下,则剪力图为向右下方 倾斜的直线,弯矩图为开口向下的抛物线,抛物线的顶点 的剪力等于零的截面。 在集中力作用的截面上,剪力图有突变,变化值等于该集 中力的大小,弯矩图上由出现折角。 在集中力偶作用的截面上,剪力图无变化,弯矩图上有突 变,变化值等于该集中力偶的力偶矩的大小。
2
ql
五 弯矩、剪力与载荷集度间的关系
在例3中,将弯矩方程对x求一阶导数,得
dM qx F Q dx
将剪力方程对x求一阶导数,得
dF Q dx
q
也就是说,弯矩方程对x的一阶导数等于剪力方程;剪力方程对x的一阶导数 等于载荷集度。这一关系并非只存在于该问题中,而是普遍成立的一个规律。 根据导数的几何意义,以上关系表明:弯矩图上某点的切线的斜率,等于对 应截面上的剪力;剪力图上某点切线的斜率等于对应截面上的载荷集度。根 据这一规律,还可得到常见载荷下剪力图和弯矩图的特点。
例4
例4 外伸梁受力如图所示,试画出其剪力图和弯矩图。
解:(1)根据梁的平衡条件求出梁的支座反力。
FA
qa 4
FB
3qa 4
例1 杆件受力如图所示,求指定截面上的轴力并画出轴力图。
• • • • • • • • • • • • • • 解:(1)用截面法求内力。 沿截面1-1截开,由左侧一段的平衡,有 FN1+10=0 所以 FN1=-10(kN) 沿截面2-2截开,由左侧一段的平衡,有 FN2-40+10=0 所以 FN2=40-10=30(kN) 沿截面3-3截开,由右侧一段的平衡,有 -FN3+20=0 所以 FN3=20( kN ) (2)根据计算结果作出轴力图。 (3)讨论:由以上计算过程可以看出,将 平衡方程中的外力都移至等号右端,则有 FN=ΣFie 也就是说,横截面上的轴力,等于其左侧 (或右侧)一段杆上所有外力的代数和。掌 握这一关系,有利于快速计算轴力并画出轴 力图。
第六章 杆件的内力与内力图
截面法求内力举例:求杆AB段和BC段的内力
FP1=2.5kN A FP1=2.5kN 1 FP2=4kN C FN1 2 FP3=1.5kN
1
2
B
x
Σ X = 0 → FN1 - FP1 = 0
FP1=2.5kN FP2=4kN
FN1=2.5kN
FN2
Σ X = 0 → FN 2 + FP 2 - FP1 = 0
适用于求桁架中某些指定杆件的内力
求 解 要 点
例6-4 试求图中桁架中杆1和杆2的轴力。
Ⅰ Ⅱ
4m 2 1 A Ⅰ 8kN 16kN Ⅱ 16kN 4x3m 16kN FN1 A 8kN 8kN 16kN
B
Σ Fy = 0 FN 1 = -8kN
FN2 B 8kN 16kN
Σ Fy = 0 FN 2 5 = ´ 8kN = 10kN 4
FN2=-1.5kN
6-1-2 轴力图
表示轴力沿杆件轴线方向变化的图形,称为 轴力图(diagram of normal force)。
A
1 B 1Fp2
2 C 2 Fp3
Fp1
Fp1
FN1 FN2 Fp2 FN3
已知Fp1=6kN;Fp2=18kN; Fp3=8kN;Fp4=4kN;试画出 Fp4 图示杆件的轴力图。 3 解:1、计算各段的轴力。 Σ Fx = 0 AB段 FN1 = Fp1 = 6kN
例传动轴如图所示,主动轮A输入功率PA= 36KW,从动轮B、 C、D输出功率分别为 PB= PC =11KW , PD= 14KW,转速 n = 300r/min。试作该轴的扭矩图。
MeC MeA MeD
先计算外力偶矩
PA 1146 N m n P M eB M eC 9549 B 350 N m n P M eD 9549 D 446 N m n M eA 9549
6 内力及内力图——刚架
2024年普通高等学校招生全国统一考试理科综合能力测试注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并将自己的姓名、准考证号、座位号填写在本试卷上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
涂写在本试卷上无效。
3.作答非选择题时,将答案书写在答题卡上,书写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1 C 12 N 14 O 16 S 32 Zn 65 Pb 207一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.人类对能源的利用经历了柴薪、煤炭和石油时期,现正向新能源方向高质量发展。
下列有关能源的叙述错误的是A.木材与煤均含有碳元素B.石油裂化可生产汽油C.燃料电池将热能转化为电能D.太阳能光解水可制氢2.下列过程对应的离子方程式正确的是A.用氢氟酸刻蚀玻璃:2--+342SiO +4F +6H =SiF +3H OB.用三氯化铁溶液刻制覆铜电路板:3+2+2Fe +3Cu=3Cu +2FeC.用硫代硫酸钠溶液脱氯:2-2--+23223S O +2Cl +3H O=2SO +4Cl +6HD.用碳酸钠溶液浸泡锅炉水垢中的硫酸钙:2-2-4334CaSO +CO =CaCO +SO 3.我国化学工作者开发了一种回收利用聚乳酸(PLA)高分子材料的方法,其转化路线如下所示。
下列叙述错误的是A.PLA 在碱性条件下可发生降解反应B.MP 的化学名称是丙酸甲酯C.MP 的同分异构体中含羧基的有3种D.MMA 可加聚生成高分子4.四瓶无色溶液432323NH NO Na CO Ba(OH)AlCl 、、、,它们之间的反应关系如图所示。
其中a 、b 、c 、d 代表四种溶液,e 和g 为无色气体,f 为白色沉淀。
建筑力学,第六章内力及内力图,武汉理工
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
6.1 轴心拉压杆件的内力及内力图
轴力:杆横截面上分布内力的合力沿杆轴线方向的分量 称为轴力,用符号N表示。 轴力N的正负号规定:拉为正、压为负。 轴力方程:轴力N与杆横截面位置坐标x之间 P 的函数关系表达式。 轴力图:用来表示轴力随截面位置不同 而变化的情况的图形。
3. 绘制扭矩图
Tmax 2.87kN m
T3 2.87
AC段为危险截面。
– 0.95
1.59
T (kN m)
讨论题
6.3 平面弯曲梁的内力及内力图
受力特点:杆件受有作用线垂直于杆轴 的横向力或作用面与杆轴共面的外力偶 作用。 变形特点:杆轴线由直线变为曲线;杆 的横截面形心在垂直于杆轴的方向有位 移(挠度);杆的横截面绕某个轴发生 转动(转角)。
例11 作图示简支梁的内力图。
例12 求作图示伸臂梁的FQ、M图
例12 续
例13 比较图示斜梁和简支梁的异同
多跨静定梁的内力分析 多跨静定梁是由相互在端部铰接、水平放置的若干直杆件 与大地通过支座连接而成的结构。
多跨静定梁的组成及传力特征
多跨静定梁的组成及传力特征
对图示梁进行几何组成分 析:……根据各杆之间的依赖、 支承关系,引入以下两个概念: 基本部分:结构中不依赖于其它 部分而独立与大地形成几何不变 体的部分。 附属部分:结构中依赖基本部分 的支承才能保持几何不变的部分。
解 (1) 计算外力偶矩 PA M eA 9549 n 120 9549 Nm 300 3819.6N m 3.82kN m
工程力学6
剪力方程 FQ = FQ(x) —剪力方程 M = M(x) —弯矩方程 弯矩方程
画法:以与梁轴线平行的x坐标表示横截面位 置,纵坐标y按一定比例表示各截面上相应弯 矩的大小,正弯矩画在轴的上方,负弯矩画 在轴的下方。
如图所示的简支梁AB,在点C处受到集中力F作用, 尺寸a、b和L均为已知,试作出梁的弯矩图。 L a F
解:1)由外力偶矩的计 1)由外力偶矩的计 1) 算公式求个轮的力偶矩:
M A = 9549 PA/n =9550x36/300 =1146 N.m M B =M C = 9549 PB/n = 350 N.m M D = 9549 PD/n = 446 N.m
2)分别求1-1、2-2、3-3截面上的扭矩,即为 2)分别求1 截面上的扭矩, 分别求 BC,CA,AD段轴的扭矩 段轴的扭矩。 BC,CA,AD段轴的扭矩。
q(x)>0,抛物线,开口向 上 q(x)<0,抛物线,开口向 下 FQ =0,抛物线有极值
斜率有突变 图形成折线
有突变 突变量=M
例题6 已知外伸梁, 例题6-5 已知外伸梁,M=3kN.m,q=3kN/m, , , a=2m。画剪力图和弯矩图 。 解: 求A、B处支反力
ΣM B (F) = 0, FAy 3a M 3qa a / 2 = 0
3.M、FQ与q的关系
取x处一小段dx长度梁 由平衡方程得: ∑Fy=0: FQ-(FQ+dFQ)+q(x)dx=0 ∑MC=0: M+dM-M-FQdx-q(x)dx2/2=0 在上式中略去高阶微量后, 得
M、FQ与q的关系
dFQ (x) dx
= q(x)
dM dx
= FQ (x)
d 2M dx 2
结构力学课件-内力分量和内力图
(4)隔离体是应用平衡条件进行分析的对象。在受力图中只画隔离体本身所 受到的力,不画隔离体施给周围的力
➢说明2:一般力系平衡方程 (1) 三种形式:尽量每列一个方程求解一个未知量 (2)平衡方程:同方向同符号 (3)平衡方程的正负和内力的正负是完全不同性质的两套符号系统
截面法结论(非常重要)
q
FAx
FS图
1 ql 2
FN图
(3)轴力图、剪力图正负值分别画在杆 件异侧,要标明正负;
(4)要注明内力图名称、单位、控制内 力竖标大小值;
(5)竖标大小长度要按比例绘制;直线 要直、曲线要光滑
F
sin
2
ql
FAy FBy ql F sin 0
②取AC段作隔离体来研究
FAy
F
sin
2
ql
Fx 0 FNC FAx 0 FNC F cos a(压力)
Fy 0 FSC FAy qx 0
FSC
FAy
qx
F
sin 2
ql
qx
MC 0
MC
FAy .x
qx
正,压力为负
剪力FS:截面上应 力沿垂直于杆轴方 向的合力。 一般以
绕截面邻近小段隔
离体顺时针旋转为 正,反之为负。
M
左截面 右截面
弯矩M:截面上应力 对截面形心的力矩。 一般不规定正负号。 有时也规定使水平杆 件截面下部受拉时为 正,上侧受拉时为负
➢强调相关的几个问题
MM
FN FN
FS
FS
左截面
右截面
(1)左截面与右截面上的内力属于作用力与反作用力: 成对出现、大小相等、方向相反;
(2)附加内力:因物体受到外力作用而引起的分子结合力的改变量, (3)内力正负号要统一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F m
A
x
m
l
(a)
BA
m m x
l
(b)
M0 B
思考题6-8参考答案:
(a FS= - F ) M= - Fx
F m
A
x
m
l
(a)
(b FS= 0
)
M=MO
BA
m m x
l
(b)
M0 B
例题 6-7 试求图示截面上(1-1、2-2、3-3)
的剪力和弯矩。
解:本题可从右边开始求
3 A3
2 kN·m
当杆件轴向受力较复杂时,则常要作轴力图, 将轴力随横截面位置变化的情况表示出来。
例题 6-5 作轴力图。 解:要作ABCD杆的
30 kN
20 kN
20 kN 轴力图,则需分别将
A
B
C
D
AB、BC、CD杆的轴
3 30 kN 2 20 kN 1 20kN
力求出来。分别作截
A3
B2
1
C
D
FN1
20kN D
外力:物体或系统所承受的其它物体对它的作用力 (包括约束力)。
内力:物体或系统内部,因外力作用而产生的各物 体之间或各部分之间的相互作用力。
内力必然成对存在,它们是大小相等、指向 相反的力,或大小相等、转向相反的力偶。
为了求得物体内部各部分之间的相互作用 力,需将物体假想地截开,取其一部分来研究; 对于系统,也须截取某一部分来研究。
例:地面卫星接收系统
例:海洋石油钻井平台
例:埃非尔铁塔
例:濑户大桥
3. 分析桁架内力的目的:
(1) 截面形状和尺寸设计; (2) 材料选取; (3) 强度校核。
6.1.2 模型的建立 1. 屋架结构的简化
上弦杆
节点
下弦杆 斜杆 跨度
2. 钢桁架桥的简化
3. 桁架简化的几个假设:
(1) 各杆在节点处系用光滑的铰链连接; (2) 桁架中各杆的轴线都是直线,并通过铰的中心; (3) 所有外力(外力及支座约束力)都作用在节点
TA
TB
TC
TD
Aa Ba Ca D
MT (kN·m) 1.5 0.5 + x
2
思考题6-7 作杆的扭矩图。
0.1 m 4 kN
0.2m 1m
2 kN 1 kN
1m
0.1 m
思考题6-7参考答案
0.1m 4 kN
0.2m 1m
2 kN 0.1m
1 kN 1m
MT /kN·m
x
0.2 O 0.4
§6-4 剪力和弯矩·剪力图和弯矩图
D
FN3 = 30 kN
轴力与实际指向相同。
例题 6-5 作轴力图,以沿杆件轴线的x坐标表
示横截面的位置,以与杆件轴线垂直的纵坐标表示
横截面上的轴力FN。
30 kN.
20 kN
20 kN
A
B
FN /kN
30
C
D
O
x
20
例题 6-5
当然此题也可以先求A处的支座反力,再从左边开 始将杆截开,并取左段为分离体进行分析。
上,对于平面桁架,各力的作用线都在桁架的 平 面内。
根据上述假设,桁架的各个杆件都是二力杆。 我们能比较合理的地选用材料,充分发挥材料的作 用,在同样跨度和荷载情况下,桁架比梁更能节省 材料,减轻自重。
4. 平面简单桁架的构成
基本三角形
6.1.3 平面简单桁架的内力计算 1. 节点法
例题 6-3
T x
m
同样由 ∑Mx(F)= 0
T – MT = 0
即
MT = T
上述两种情况计算结果相同。
扭矩的正负号由右手螺旋法则规定:
使卷曲右手的四指其转向与扭矩MT的转向相 同,若大拇指的指向离开横截面,则扭矩为正;反 之为负。 例:
MT
MT
(a)
(b)
扭矩图:表示扭矩随横截面位置变化的图线。
例题 6-6 一传动轴的计算简图如图所示,作
2-2截面: 得
∑Mx(F)= 0 MT2 - TB + TA = 0 MT2= TB - TA = 3.5 - 2 = 1.5 kN·m
例题 6-6
同理得 MT3 = 0.5 kN·m 由此,可作扭矩图如下:
TA
TB
TC
TD
Aa Ba Ca D
MT (kN·m) 1.5 0.5 + x
2
思考题6-6 该传动轴横截面上的最大扭矩是多少?
y
A x
FA
m FS
mM
x
l-x F
Mቤተ መጻሕፍቲ ባይዱ
FS
l-x
FB
分析梁左段任意横截面m-m上的剪力,由
∑Fy = 0 ,FA - FS = 0
得
FS = FA
而弯矩,则由 ∑MC(F) = 0,M - FA ·x =0
得
M = FA·x =Fbx / l
也可取横截面的右边一段梁作为分离体计算, 结果相同,但稍复杂。
B ∑Fy=0, FS3 - 2 =0,
FS3 = 2 kN
2 kN ∑MC3(F)=0,
B -M3 - 2 - 2·2= 0
M3 = - 6 kN·m
例题 6-7
为了验证结果的正确性,可从左边开始进行分析。
3 30 kN
2 20 kN
1
20 kN
A 3
B2
1
C
D
思考题6-4
试作图示杆的轴力图。
20 kN 40 kN
30 kN
A
B
C
D
0. 5 m 0. 5 m
1m
思考题6-4参考答案:
20kN 40kN
30kN
A
B
C
D
0. 5 m 0. 5 m
1m
FN /kN 20
O
10 x
20
思考题6-5 考虑图示杆的自重,作其轴力图。已知杆的横
用假想截面截断所求杆件,桁架一分为二取其 中之一,研究其平衡:求杆6的内力;求杆1, 2 ,4,5的内力。
3. 讨 论 零力杆件
(a)
(b)
(c)
(d)
意义:简化计算
(e) 图7
问题:能否去掉零杆?
注意:
(1) 荷载改变后,“零杆”可以变为非零杆。因此 ,为了保证结构的几何形状在任何荷载作用下 都不会改变,零杆不能从桁架中除去。
梁:在外力作用下主要发生弯曲变形的杆件。
F
A
B
l
a
Fb
m
A
B
m
FA x
FB
l
y
A x
FA
FS M x
l-x F
M
FS
l-x
FB
y
A x
FA
FS M x
l-x F
M
FS
l-x
FB
由上图可知,其横截面上的内力根据截面一边 分离体的平衡条件有:位于横截面平面内的剪力FS 和位于纵向平面内的弯矩M。
现分析如何求解剪力FS和弯矩M。
为了分析横截面上的内力,取m--m截面。
T a Oo
A
T
m
ml m
MT x
bbT b′ Oo′ B
m
由图示任意横截面m- m左边一段杆的平衡条
件可知,受扭杆件横截面上的内力是一个作用于
横截面平面内的力偶。这一力偶之矩称为扭矩,
常用符号MT表示。
T
a Oo
A
m ml
bbT b′ Oo′ B
m MT
平面简单桁架如图所示。已 知: P1,P2, 求:各杆内力。 解:(1) 整体分析,求 支座约束力:
例题 6-3
(2) 节点分析,求各杆件内力:
(a) 节点 A
S1, S3
(b) 节点 H
S2, S6
(c) 节点 B
S4, S5
2. 截面法
例题 6-4 求简单平面
桁架如左图所示。已知: P1 , P2;求:杆6的内力。 解:(1) 整体分析,反力如图
(2) 实际上,零杆的内力也不是零,只是较小而 已。在桁架计算中先已作了若干假设,在此 情况下,零杆的内力才是零。
思考题6-1
试判断下列各桁架中的零杆
F C
A D
B
CF
D
E
F
G
A
B
H
(a)
(b)
思考题6-1参考答案:
F1 C
A D
A
B
(a)
B
C
F1
D
E
F
G H
(b)
4. 小 结 (1) 节点法
G
a E
Ⅱ
a Ⅰ1
A
F1
Ⅱ D
H
F2 I I截面:
2C
∑MF (F)=0
F
FS1=-F1/2- F2
Ⅰ Ⅱ Ⅱ截面:
B
∑MD (F)=0
FS2= F2/ /2+ F1 /4
a
§6-2 轴力和轴力图
A
B
F1
(a)
F1
C
D
F2
F2
(b)
如上图中轴向受力的杆件常称为拉伸或压缩杆 件,简称拉压杆。
A
m
B
用于其上的外力偶矩之大小分别是:TA=2 kN·m , TB=3.5kN·m , TC =1 kN·m , TD = 0.5 kN·m , 转向如 图。试作该传动轴之扭矩图。
TA
TB
TC
TD
A a
B a