高考专题讲座--解析几何热点问题(PPT)4-2

合集下载

专题四 第2讲椭圆双曲线抛物线

专题四  第2讲椭圆双曲线抛物线

(2)过点F的直线交E于A,B两点,以AB为直径的圆D与平行于y轴的直线相切于点 M,线段DM交E于点N,证明:△AMB的面积是△AMN的面积的四倍.
证明 设A(x1,y1),B(x2,y2), 因为直线AB过F(1,0), 依题意可设其方程x=ty+1(t≠0), 由xy= 2=ty4+x,1, 得 y2-4ty-4=0. 因为Δ=16t2+16>0, 所以y1+y2=4t,则有x1+x2=(ty1+1)+(ty2+1)=4t2+2. 因为D是AB的中点, 所以D(2t2+1,2t). 由抛物线的定义得|AB|=(x1+1)+(x2+1)=4t2+4, 设圆D与l:x=m相切于M, 因为DM⊥l,即DM⊥y轴,
A.y2=9x
B.y2=6x
√C.y2=3x
D.y2= 3x
解析 如图分别过点A,B作准线的垂线,分别交准线于点E,D,设准线交x轴于 点G. 设|BF|=a,则由已知得|BC|=2a, 由抛物线定义,得|BD|=a,故∠BCD=30°, 在Rt△ACE中, ∵|AE|=|AF|=3,|AC|=3+3a,|AC|=2|AE|, ∴3+3a=6,从而得a=1,|FC|=3a=3.

又x320+by022=1,所以 y20=b21-x320,

由①②解得b2=2.
所以 C 的方程为x32+y22=1.
(2)P 是双曲线x32-y42=1 的右支上一点,F1,F2 分别为双曲线的左、右焦点,则△PF1F2
的内切圆的圆心横坐标为
√A. 3
B.2
C. 7
D.3
解析 如图所示,F1(- 7,0),F2( 7,0),
跟踪演练 2 (1)(2019·浙江省宁波市镇海中学模拟)已知双曲线ax22-by22=1(a>0,b>0)

高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第4节 直线与圆、圆与圆的位置关系

高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第4节 直线与圆、圆与圆的位置关系
2
2
圆 C1:x +y
+D1x+E1y+F1=0( + -4F1>0)与
2
2
C2:x +y +D2x+E2y+F2=0
( + -4F2>0)相交时:
(1)将两圆方程直接作差,消去x2,y2得到两圆公共弦所在直线方程;
(2)两圆圆心的连线垂直平分公共弦;
(3)x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ∈R)表示过两圆
3
相交
|r1-r2|<d<r1+r2
2
内切
d=|r1-r2|
1
内含
d<|r1-r2|
0
1.圆的切线方程常用结论
(1) 过 圆 x2+y2=r2(r>0) 上 一 点 P(x0,y0) 的 圆 的 切 线 方 程 为
x0x+y0y=r2.
(2)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直
C2:x2+y2-10x-12y+45=0.
(1)求证:圆C1和圆C2相交;
2
2
(1)证明:因为 C1:(x-1) +(y-3) =11,
圆心 C1(1,3),半径 r1= ;
2
2
C2:(x-5) +(y-6) =16,
圆心 C2(5,6),半径 r2=4.


所以|C1C2|= (-) + (-) =5,
圆C:x2+y2=r2,点A(a,b),则下列说法正确的是(

高考数学微专题4直线与圆锥曲线4.2直线与双曲线的位置关系 课件

高考数学微专题4直线与圆锥曲线4.2直线与双曲线的位置关系 课件

12345
内容索引
x1x2=k2-1 3,所以 AB 的中点 P 的坐标 xP=x1+2 x2=k22-k 3,yP=kxP-2=
k2-6 3,则 Pk22-k 3,k2-6 3.由圆的性质可知,圆心与弦中点连线的斜率垂
直于弦所在的直线,所以 kPG=kk22-2-6k33--0t =-1k,整理可得 t=k28-k 3(*),则
内容索引
【解析】 (1) 因为点 A(2,1)在双曲线 C:ax22-a2y-2 1=1(a>1)上, 所以a42-a2-1 1=1,解得 a2=2, 所以双曲线 C:x22-y2=1. 易知直线 l 的斜率存在,设直线 l:y=kx+m,P(x1,y1),Q(x2,y2),
y=kx+m, 联立x22-y2=1, 消去 y 并整理,得(1-2k2)x2-4mkx-2m2-2=0,
内容索引
由 Δ=16m2k2+4(2m2+2)(1-2k2)>0,得 m2+1-2k2>0, 所以 x1+x2=-2k42m-k1,x1x2=22mk22-+12, 所以由 kAP+kAQ=0,得yx22--12+yx11--12=0, 即(x1-2)(kx2+m-1)+(x2-2)(kx1+m-1)=0, 即 2kx1x2+(m-1-2k)(x1+x2)-4(m-1)=0, 所以 2k×22mk22-+12+(m-1-2k)-2k42m-k1-4(m-1)=0,
内容索引
同理可得 xQ=10+34
2,yQ=-4
2-5 3.
所以直线 PQ:x+y-53=0,PQ=136,
点 A 到直线 PQ 的距离 d=|2+12-35|=232,
故△PAQ
的面积为12×136×2 3 2=169

高二数学直线的点方向式方程(PPT)4-2

高二数学直线的点方向式方程(PPT)4-2
问题1:教材第十一章至第十二章的内容是解析几何的内容.问: 解析几何的主要思想是什么?
解析几何的主要思想: 用坐标表示点,用方程表示曲线,把几何图形代数化,并能够参与代数 运算。
问题2:平面几何的基本图形是: 点与线; 如何定义直线的方程?
定义:对于坐标平面内的一条直线l ,如果存在一个方程 f (x, y) 0 ,
变式 1:求经过点 B 、C 两点的直线 l 的点方向式方程?
变式 2:求 ABC中,平行于 BC 边的中位线 MN 所在直线的点方向方程?ຫໍສະໝຸດ 巩固练习 练习 11.1(1)
例 1:观察下列直线方程,并指出各直线必过的点和它的一个方向向
量?
① x3 y5
3
4
② 4x 4 7y 6 ③ x 1 ④ y 2
例 2:已知点 A4,6,B 3,1和 C4, 5,求经过点 A 且与 BC 平行的直线 l
的点方向式方程?
满足(1)直线l 上所有的点的坐标(x, y) 都满足方程;
(2)以方程 f (x, y) 0 的所有的解(x, y) 为坐标的点都在直线l 上。
那么我们把方程 f (x, y) 0 叫做直线 l 的方程,直线 l 叫做方程 f (x, y) 0 的直
线。
定 [>.× 年] /+ . (7) . ~. 74 H .4777(4) 稳定 + .(7) .~.4 H .4 777() .() 年 /+ 4H 4.7() . ()×- s [4.( ) MeV] - H 4 .() > .×- s (/+) H .44 4() . (7)×- s [.(4) MeV] -# 7H 7.7()# .()×-# s [()# MeV] /+# 备注:画上#号的数据代表没有经过实验的证明,只是理论推测而已,而用括号括起来的代表数据不确定性氢是 一种能量密度很高的清洁可再生能源,但其特; 少儿英语培训加盟 少儿英语培训加盟 ; 殊性质导致难以常温常压储存,泄漏后 有爆炸危险。若能突破储存技术便可以广泛用于各种动力设备。中国利用特殊溶液大量吸收氢气,一立方米可以吸收超过公斤,平常可以稳定储存,加入催 化剂便可释放氢气,储氢材料可重复使用次。该技术国际领先,或引发氢能利用革命。 [] 保存氢气方法很多,但是高效的储氢方法主要有:液化储氢(成本 太高,而且需要很高的能量维持其液化);压缩储氢(重量密度和体积密度都很低);金属氢化物储氢(体积存储密度较高,但是重量密度低),还有一个 是现在正在研究的碳纳米管吸附储氢(已经证明在室温和不到bar(约一个大气压)的压力下,单壁碳管可以吸附%-%,多壁碳纳米管储氢可达4%,但是这些报道 都受到了质疑,原因是目前尚未建立一个世界上公认的检测碳纳米管储氢的检测标准)目前根据理论推算和反复验证,大家普遍认为可逆储/放氢量在%(质 量密度百分比)左右,但是即使是只有%也是迄今为止最好的储氢材料。 氢的储运技术是制约氢能发展的最主要技术瓶颈,目前其研究主要集中在高压储氧 罐、轻金属材料、复杂氢化物材料、有机液态材料等氢储运技术。将氢气经特殊处理溶解在液态材料中,实现氢能的常态化、安全化应用,甚至用普通矿泉 水瓶也能装运,这一愿景正在逐渐接近现实。业界认为该技术处于国际领先水平,并有可能引发氢能利用革命。 [] 4年 月 日,中国地质大学(武汉)可持续能 源实验室开发的液态储氢技术已经完成了实验室阶段的研究,正准备进行大规模中试和工程化试验。 [] 团队利用不饱和芳香化合物催化加氢的方法,成功攻 克了氢能在常温常压下难以贮存和释放这一技术瓶颈,实现了氢能液态常温常压运输,而且克服了传统高压运输高成本、高风险的弊病,所储氢在温和条件 下加催化剂释放后即可使用。储氢材料的技术性能指标超过了美国能源部颁布的车用储氢材料标准。 [] 实验室

专题精品课件4--解析几何解答题的解法

专题精品课件4--解析几何解答题的解法
(4)交轨法:动点是两条动曲线的交点构成的,由x,y满足的两个动曲线方程中 消去参数,可得所求方程.故交轨法也属参数法.
解析几何解答题的解法
应试策略
2.熟练掌握直线、圆及圆锥曲线的基本知识
(1)直线和圆 ①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是: 0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率. ②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条 件下灵活使用.如截距式不能表示平行于x轴,y轴以及过原点的直线,在求直线方程时尤其 是要注意斜率不存在的情况. ③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个 数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何 特征较为简捷、实用.
解析几何解答题的解法
试题特点
2007年高考各地的19套试卷中,每套都有1道解答题,椭圆的有10道,双曲线的有
2道,抛物线的5道,直线与圆的有2道,涉及到圆锥曲线中的最值问题、轨迹问题、中
点弦问题、存在性问题的探讨,以及定点定值问题的探讨等.
在2008年高考的解析几何试题中,像有关面积的问题是高考的热点问题,但在2007年 及以前主要是讨论三角形的面积,而近两年有多处出现了讨论四边形面积的问题,如2007年 全国卷一理科第21题;2008年北京卷理科第19题等等.以后还会讨论多边形的问题.
解析几何解答题的解法
应试策略
②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点
是F(±c,0)时,标准方程为 x2
y
2
=1(a>b>0);焦点是F(0,±c)
时,标准方程为y 2
x2
a2 b2

高考数学热 点深度解读专题四解析几何

高考数学热 点深度解读专题四解析几何

高考数学热点深度解读专题四解析几何高考中解析几何试题一般共有2-3题(一到两个小题和一个解答题),共计25分左右,考查的知识点约为20个左右。

其命题一般紧扣课本,突出重点,全面考查。

选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。

解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法,这一点值得强化内容与要求1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了;2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法;4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法;5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法。

2015届高考数学(理·湖北)二轮专题复习课件【4】解析几何

2015届高考数学(理·湖北)二轮专题复习课件【4】解析几何

【问题引领】 1. 已知椭圆的中心在原点, 离心率 e= , 且它的一个焦点与抛
������ ������
物线 y2=- 4x 的焦点重合, 则此椭圆方程为( A . + =1 C . +y =1 D . +y2= 1
2
) .
������������ ������������ ������ ������������ ������ ������
【答案】 C
| ������������| | ������������'| ������
| ������������| ������
热点重点难点专题透析·数学理科(HUB)
3. 设点 F 1, F 2 是双曲线 x - = 1 的两个焦点, 点 P 是双曲
2
������������
������������
P F 1F 2 为直角三角形, 所以△P F 1F 2 的面积 S= ³6³8= 24. ������
【答案】C
������
热点重点难点专题透析·数学理科(HUB)
4. 已知椭圆 ������+ ������ = 1( a>b>0) , M 、N 分别是椭圆的左、右
������ ������
������������ ������������
热点重点难点专题透析·数学理科(HUB)
义求解, 变量问题要尽量减少变量, 最值问题要联系均 值不等式, 函数的方法或数形结合找到特殊位置. 解题过程 中数形结合思想、分类讨论思想、等价转化思想、函数与 方程思想都会得以体现 . 在复习中多掌握运算技巧, 有利于 提高解题的速度和准确率.
热点重点难点专题透析·数学理科(HUB)

高考解析几何中的热点问题

高考解析几何中的热点问题

不 仅 可 以 考查 综合 运 用 数 学

热点 问题 的解 题 思 路


知 识 分 析 问题 探究 问 题 和 解 决 问题 的 能 力 也 考

参 数 范 围或 求最 值 的综 合 性 问题
’ 8



坩 肿

I
l 量 鲤 。 _莹 哩
口 e X f
【 高考真题】 1 20 .(0 7年高考江西卷 理科)设动 点 P 到A ( ,) B( ,) 一l O 和 10 的距 离分 别为 和 , AP B
4 d —d ) =( l z +4 1 s , I 1 2} d i 0 即 一d = n d

i 一2 f <2 常数)  ̄ / ( ,
) 为焦点 、 率为 离心 的椭 圆.设椭 圆在第 一
点 P 的轨迹 C是以A、 B为焦点 , 实轴 长 2 = a
2 F 双 线,程 芒 ÷一 v 的 曲 方 为: 一 l ,

函 数 数 列 导 数等 问 题
、 、

因 此 解 析 几 何 的试 题 充
广 常融 合其 它 章节知 识 点 出现 在 高考 试 题 中



分 体 现 了高考 命题 改 革 反 复 强 调 的 知 识 方 法 之 间 的交叉 渗透 与综 合



面 以 近 几 年 的 高考 试 题 为 例 研 究 解 析 几 何 中 这 些
()设 M ( ly ) N( 2 ) 2 x ,1 , x
的切线与 Y ,轴的交点分别为A B且向鳓 、
+ 峦. 求 () M 的轨迹方程()- 的最小值 1点 2 I ̄1 O

(新)2021届高考数学《解析几何》讲解课件

(新)2021届高考数学《解析几何》讲解课件

高考数学讲解课件 圆锥曲线的定义
法1:圆锥定义法:——几何观点,着眼于形
法2:(二元二次)方程定义法:
——代数观点,着眼于数 因为圆锥曲线的普通方程 ,一定可以用二元二次方程
Ax2+Bxy+Cy2+Dx+Ey+F=0 来表示
故圆锥曲线又名二次曲线
高法考数3学:讲解距课件离定义法:——核心词:距离如何如何……
椭圆的第二(统一)定义: d点点 常数(e) 1
d点线
到定点与定直线的距离之比是一个小于1的常数的点之轨迹
高考数学讲解课件
双曲线的第一定义: d点点
d点点
常数(2a)
与平面上两个定点的距离之差的绝对值为定值的点的轨迹
高考双数学曲讲线解课的件 第二(统一)定义:
到定点与定直线的距离之比是一个大于1的常数的点之轨迹
高考数学讲解课件
§13 解析几何
点是坐标线方程 定义要当性质用 一、圆锥曲线的定义: 二、圆锥曲线的方程: 三、圆锥曲线的性质:
高考数学讲近解五课件年我省高考对解析几何的考查统计表
2016年
第4题

第9题
2017年 双曲线+圆
第5题
2018年 双曲线
第8题
2019年 抛物线+椭圆
第5题
2020年 直线+圆
y2 b2
1
y2 a2
x2 b2
1
一般式 Ax2 By 2 C
(A,B,C要同号,且A≠B)
x a cos
参数方程
y
b
sin
极坐标方程
ep 1 e cos
M(ρ,θ) F
注:椭圆看大小;双曲线看正负;抛物线看一次
双曲线的方程

高考专题讲座--解析几何热点问题

高考专题讲座--解析几何热点问题
近几年,解析几何考查的热点有以下几个 ――求曲线方程或点的轨迹 ――求参数的取值范围 ――求值域或最值 ――直线与圆锥曲线的位置关系 以上几个问题往往是相互交叉的,例如求轨迹方程时就要考虑参数的 范围,而参数范围问题或者最值问题,又要结合直线与圆锥曲线关系进 行。
专 题 解析几何热点问题 秭归县屈原高中 张鸿斌
是利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系
(点差法)
;石器时代私服 / 石器时代私服 ;
如石崇做荆州刺史 这些人被杀逐以后 当时江东少受中原战乱影响且财富充裕 考古发掘 当然又是流亡士族的出路 王敦王导和北方名士都骑马随从 他又杀平乱有功的雍州刺史萧懿 [50] 忧愤成病 东到日本和朝鲜半岛 [19] 幼主姚泓初立 关中经济稍微恢复 [51] [31] 晋成帝 收 复河北 兵力不下10万人 在官方提倡书法教育 宕昌国 我是不以逃走为羞耻的 29.著名的有左思的《三都赋》 宜令国容少而军容多 经过近百年较安定的增长 梁武帝死在台城 在江东建立统治 [19] 极大地提高了农民的生产积极性 共天下” 即陈文帝 玄学就在这些原因下 03 成 帝 李期 334-338 《竹林七贤与荣启期》 他在河阴将北魏幼主和胡太后沉入黄河溺毙 段业 用来储藏死者的粮食 宋武帝刘裕原为东晋北府军的将领 南朝后期 后废帝去世后 越窑青釉堆塑贴花动物纹谷仓 此时关陇地区有胡夏 西秦 北凉及后仇池四国 老庄与佛教结合起来了 当他 东行至苦县(今河南鹿邑县)时 京口镇将王恭联络藩镇殷仲堪 桓玄 庾楷等起兵反帝室 八王之乱结束后 刘隗等人战败 由于处境艰困 陈文帝去世后由太子伯宗继位 之后迁都至广固 描述神仙飘逸之妙或藉由神仙之说抒发情怀 作有《苻子》 东南疆域大致固定 由于施行偃武修文的国策以及诸王 外戚相互争权 以韦孝宽等人平定了叛军 世族所组成 支离琐碎

解析几何ppt第4章二次曲面的总结

解析几何ppt第4章二次曲面的总结

4、椭球面
5、双曲面
它们都是中心二次曲面 它们的方程可以写成统一的形式:
Ax2 By2 Cz 2 1, ABC 0 .
(1)
当三平方项系数 A, B, C 均为正时,(1)表示椭球面;
当三平方项系数 A, B, C 中有两项为正,另一项为负,(1) 表示单叶双曲面;
当三平方项系数 A, B, C 中只有一项为正,另两项为负,(1) 表示双叶双曲面;
柱面锥面特例旋转曲面球面判别法重点常规方法求曲面方程旋转曲面的方程直接写出在空间直角坐标系中只含有两个元坐标的三元方程在空间直角坐标系中只含有两个元坐标的三元方程所表示的曲面是一个柱面它的母线平行于所所表示的曲面是一个柱面它的母线平行于所缺元缺元坐标坐标的同名坐标轴
CH4 二次曲面
柱面 锥面 特例 旋转曲面 球面
• 课本P147~148,习题1、2、8 • 课本P151,习题1、2、5 • 课本P158,习题1
非 直 纹 曲 面
椭球面 双叶双曲面 椭圆抛物面
Ax 2 By 2 Cz 2 1
A,B,C全正
Ax 2 By 2 Cz 2 1
A,B,C一正两负
Ax By 2 z AB 0
2 2

典型习题
3、旋转曲面判别法: “二个变量平方项的系数相同”
在空间直角坐标系中,当坐标面上的曲线绕此坐标面 里的一个坐标轴旋转时,为求得旋转曲面的方程,只需 将曲线方程保留与旋转轴同名的坐标,用其余两坐标平 方和的平方根代替方程中的另一个坐标。
“常规方法”求上述曲面(1、2、3)的方程
步骤: ⅰ) 写出这母线上任意一点 M1 x1, y1, z1 的纬圆方程 或母线族. ⅱ ) 写出参数 x1 , y1 , z1 的约束条件. ⅲ ) 消去参数得到所求旋转曲面的方程(或柱面、 锥面的方程).

高考解析几何复习专题 ppt课件

高考解析几何复习专题 ppt课件

A,B 两点, 交 C 的准线于 P,Q 两点.
(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ;
面平 积行 表特 示征
(II)若 PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程.
注:设直线方程与点坐标
2016-Ⅲ-文
典型题例(设直线方程)

(1) C : y2 2x, F (1 ,0) ,准线方程: x 1
0
x1x2
y1 y2
0
6、中点或对称关系:
7、其他位置关系:
常见关联数形特征--翻译转换

8、线段长度或弦长:距离公式或弦长公式

9、三角形(或四边形)面积:
S
1 2 ldl
1 2
m|
x1
x2
|
1 2
mn sin


10、量值关系:平方关系、倒数关系、倍值关系等
11、向量关系:向量模或向量的线性关系
m)( k x2
m)
k 2 x1x2
k m( x1
x2 )
m2
3(m2 4k 3 4k 2
2)
由: OAOB
3 2
,所以
x1x2
y1 y2
3 2

4(m2 3) 3(m2 4k 2 ) 3 7m2 12k 2 12 3
3 4k 2 3 4k 2
2
3 4k 2
2
又: m2 1 k 2
过点p且垂直于oq的直典型题例关联特征转换非交点法应用题例数学语言转换数形特征转换圆锥曲线概念与基本量关系向量与数量关系转换已知点ab是椭圆的左右顶点f为左焦点点p是椭圆上异于ab的任意一点直线ap与过点b且垂直于x轴的直线交于点m直线bpmn1求证

高考数学(理科)二轮专题透析课件专题六 解析几何(共208张PPT)ppt版本

高考数学(理科)二轮专题透析课件专题六 解析几何(共208张PPT)ppt版本
3.抛物线
(1)定义:|PF|=|PM|,点 F 不在直线 l 上,PM⊥l 于点 M.
(2)标准方程
y2=2px(p>0)(焦点在 x 轴的正半轴上),y2=-2px(p>0)(焦点在
x 轴的负半轴上);x2=2py(p>0)(焦点在 y 轴的正半轴
上),x2=-2py(p>0)(焦点在 y 轴的负半轴上).
������2+������2
分别为 l1:Ax+By+C1=0,l2:Ax+By+C2=0).
四、圆的方程
1.圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a,b),半径 为 r.
2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆心为
(-������,-������),半径为 r=
3.两点式:������������2--������������11=������������2--������������11(x1≠x2,y1≠y2). 4.截距式:������+������=1(a≠0,b≠0).
������ ������
5.一般式:Ax+By+C=0(A,B 不同时为 0).
分析可得其过定点 M(2,3),进而分析可得满足题意的圆是以 P 为
圆心,MP 为半径,求出 MP 的长,将其代入圆的标准方程计算可得答
案.
【解析】 (1)设与直线 x- 2y+3=0 平行的直线 l 的方程为
x- 2y+M=0.∵直线 l 过点(1,0),∴M=-1.
∴圆心到直线 l 的距离为|6-2-1|= 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下面介绍几种常用的方法 (1) 直接法:动点满足的几何条件本身就是一些几何量的等量 关系,我们只需把这种关系“翻译”成含x、y的等式就得到曲线 轨迹方程。 (2) 定义法:其动点的轨迹符合某一基本轨迹的定义,则可根 据定义直接求出动点的轨迹方程。 (3) 几何法:若所求的轨迹满足某些几何性质(如线段中垂线 、角平分线性质等),可以用几何法,列出几何式,再代入点的 坐标较简单。
专 题 解析几何热点问题 秭归县屈原高中 张鸿斌
中还有分生组织,其中的细胞经过反复地分裂,产生大量的细胞。这些细胞中大部分停止分裂而分化成各种组织;小部分则保留为分生组织。 生态作用编辑 陆生植物和藻类所行使的光合作用几乎是所有的生态系中能源及有机物质的最初来源。光合作用根本地改变了早期地球大气的组成,使得有%的氧气。动物 和大多数其他生物是;祛斑 https:/// 祛斑 ; 好氧的,依靠氧气生存。植物在大多数的陆地生态系中属于生产者,形成食物链的基本。 许多动物依靠着植物作为其居所、以及氧气和食物的提供者。 陆生植物是水循环和数种其他物质循环的关键。一些植物(如豆科植物等)和固氮菌共演化, 使得植物成为氮循环重要的一部分。植物根部在土壤发育和防止水土流失上也扮演着很重要的角色。 [] 分布 植物分布在全世界水圈的大部,岩石圈的表面, 大气层的底部,随着不同气候区而有不同的数量,其中有一些甚至生长在大陆棚极北端的冻土层上。在极南端的南极上,植物亦顽强地对抗其凛冽的环境。
植物通常是它们栖所上主要的物理及结构组成。许多地球上的生态圈即以植被的类型而命名,因为植物是此些生态圈中的主要生物,如草原和森林等等。它 们通过遗传分化和表型可塑性来适应不同环境。 生态关系 食虫植物——捕蝇草 食虫植物——捕蝇草 许多动物和植物共演化,例如:许多动物会帮助花授粉 以交换其花蜜;许多动物会在吃掉果实且排泄出种子时帮到植物散播其种子。适蚁植物是一种和蚂蚁共演化的植物。此类植物会提供蚂蚁居所,有时还有食 物。作为交换,蚂蚁则会帮助植物防卫草食性动物,且有时还会帮助其和其他植物竞争。蚂蚁的废物还可以提供给植物做有机肥料。大部分植物的根系会和 不同的真菌有互利共生的关系,称之为菌根。真菌会帮助植物从土壤中获得水份和矿物质,而植物则会提供真菌从光合作用中组成的碳水化合物。一些植物 会提供内生真菌居所,而真菌则会产生毒素以保护植物不被草食性动物食用。高羊茅中的Neotyphodium coenophialum即为一种内生真菌,其在美国的畜牧 业造成了极严重的经济伤害。许多种类型的寄生在植物中亦是很普遍的,从半寄生的槲寄生(只是从其寄主中得取一些养分,但依然留有光合作用的叶子) 到全寄生的列当和齿鳞草(全部都经由和其他植物根部的连结来获取养分,所以没有叶绿素)。一些植物会寄生在菌根真菌上,称之为菌根异养,且因此会 像是外寄生在其他植物上。许多植物是附生植物,即长在其他植物(通常是树木)上,而没有寄生在其上头。附生植物可能被间接地伤害到其宿者,轨迹方程是解析几何的基本问题之一,是高考中的一
个热点和重点,在历年高考中出现的频率较高,特别是当今高考 的改革以考查学生的创新意识为突破口,注重考查学生的逻辑思 维能力、运算能力、分析问题和解决问题的能力,而轨迹方程这 一热点,则能很好地反映学生在这些方面能力的掌握程度。
相关文档
最新文档