组合数学 第一章 排列组合4允许重复的排列与组合及不相邻的组合

合集下载

组合数学(引论)

组合数学(引论)
也就是:机智+精巧。
组合数学中有二个常用的技巧: 1. 一一对应 2. 奇偶性
1.、一一对应
第 10 页
结束
1. 一一对应
二个事件之间如计果算存:在一一对应关系,则
可用解易解的来替代第难一解轮的:。50场比赛 (一人轮空)
应用举例 第二轮: 25场比赛 (一人轮空)
决出例冠1军. 共有要10进1行个注反一多选第第第意之场少手三四五:,比场参轮轮轮每要赛比加:::场淘。赛象1比汰63?棋3场场场赛一淘比比比必 人汰赛赛赛淘也赛汰必,((一 一一须问人 人人进要轮 轮,行空 空))
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第 22 页
结束
3. 幻方
3. 幻方
2)麦哲里克方法 (与德拉鲁布方法类似)
将1置正中央上方,然后按向右上方的方向依次放后 继数; 到顶行后翻到底行,到达最右列后转最左列; 其余情况放正上方2格。
第4章 Burnside引理与Polya定理
4.1 群的概念 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 Burnside引理 4.5 Polya定理 4.6 鸽巢原理 4.7 鸽巢原理举例 4.8 鸽巢原理的推广 4.9 Ramsey数
第4页
结束
一、一组、合组数合学数简学介简介
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
总统 副总统 财务大臣 秘书
0
1
2
2
43
2
1
一种选法 一一对应 一个四位数

组合数学--组合数学第一章

组合数学--组合数学第一章

1.2排列与组合
定义:从n个不同元素中取r个不重复的元 素组成一个子集,而不考虑其元素的顺序, 称为从n个中取r个的无重组合。 组合的个数用C(n,r)表示。
1.2排列与组合
从n个中取r个的排列的典型例子是从n 个不同的球中,取出r个,放入r个不同的 盒子里,每盒1个。第1个盒子有n种选择, 第2个有n-1种选择,······,第r个有nr+1种选择。
例:长度为n的0,1符号串的数目为多少?
一一对应原理
• “一一对应”概念是一个在计数中极为 基本的概念。一一对应既是单射又是满 射。
• 如我们说A集合有n个元素 |A|=n,无非 是建立了将A中元与[1,n]元一一对应的 关系。
• 在组合计数时往往借助于一一对应实现 模型转换。
• 比如要对A集合计数,但直接计数有困难, 于是可设法构造一易于计数的B,使得A 与B一一对应。
1.2排列与组合
例 有5本不同的日文书,7本不同 的英文书,10本不同的中文书。 1)取2本不同文字的书; 2)取2本相同文字的书; 3)任取两本书
1.2排列与组合
解 1) 5×7+5×10+7×10=155; 2) C(5,2)+C(7,2)+C(10,2) =10+21+45=76; 3) 155+76=231=( 5+27+10)
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
1.7 若干等式及其组合意义
• 证2 从n个元素中取偶数个数的组合数
(包含0),等于取奇数个数的组合数。
• r为偶数的组合和r为级数的组合之间建 立一一对应即可。
• 举例说明
1.7 若干等式及其组合意义

组合数学课件-第一章:排列与组合

组合数学课件-第一章:排列与组合

积分性质
若G(x)是母函数,则它的不定积分∫G(x)dx (其中C为常数)也是母函数。
线性性质
若G1(x)和G2(x)是两个母函数,则它们的 线性组合k1*G1(x)+k2*G2(x)(k1和k2是 常数)也是母函数。
微分性质
若G(x)是母函数,则它的导数G'(x)也是母 函数。
乘积性质
若G1(x)和G2(x)是两个母函数,则它们的 乘积G1(x)*G2(x)也是母函数。
对称性
C(n,m) = C(n,n-m),即从n个元素中取出m个元 素的组合数与从n个元素中取出n-m个元素的组 合数相等。
递推关系
C(n,m) = C(n-1,m-1) + C(n-1,m),即当前组合 数等于前一个元素在组合中和不在组合中的两种 情况之和。
边界条件
C(n,0) = C(n,n) = 1,即从n个元素中取出0个或 n个元素的组合数均为1。
典型例题解析
例1
从10个数中任取4个数,求其中最大数为6的组合数。
解析
此问题等价于从6个数(1至6)中取4个数的组合数,即 C(6,4)。
例2
在所有的三位数中,各位数字之和等于10的三位数有 多少个?
解析
此问题可转化为从9个数字(1至9)中取3个数字的组合 数,即C(9,3),然后考虑三个数字的全排列,即3!,因此 总共有C(9,3) × 3!个符合条件的三位数。
组合与排列的关系
组合数可以看作是从n个元素中取出m个元素进行排 列的种数除以m的阶乘,即C(n,m)=A(n,m)/m!。 因此,在计算组合数时也可以利用排列数和容斥原 理来进行计算。
THANKS
隔板法
将n个相同的元素分成r组的方法数可以用母函数表示为 C(n+r-1,r),其中C表示组合数。

组合数学第一章答案

组合数学第一章答案

组合数学第1章答案1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足(1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或 则有种种4545 共有90种。

(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有 1=b , 61≤≤a , 则有 6种 2=b , 71≤≤a , 则有7种 3=b , 81≤≤a , 则有8种 4=b , 91≤≤a , 则有 9种 5=b , 101≤≤a , 则有10种 当455≤<b 时,有 6=b , 111≤≤a , 则有 11种 7=b , 122≤≤a , 则有 11种. . . . . . . . . 45=b , 5040≤≤a , 则有11种 当5045≤<b 时,有 46=b , 5041≤≤a , 则有 10种 47=b , 5042≤≤a , 则有 9种 48=b , 5043≤≤a , 则有 8种 49=b , 5044≤≤a , 则有 7种 50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若 (a )男生不相邻(m ≤n+1);(b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。

组合数学第四版卢开澄标准答案-第一章

组合数学第四版卢开澄标准答案-第一章

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

组合数学

组合数学

组合数学一.前言我们已经在数学课上学习了有关排列与组合的一些知识。

实际上,这些只是组合数学这一数学大家庭中的沧海一粟。

广义的组合数学等价于整个离散数学,囊括了离散计数、图论、整数规划等等繁杂且深奥的内容。

组合数学来源于实际,不少的讨论引人入胜,也有不少的讨论让人抓狂。

本文将结合部分我们做过的数学作业中的题目,对他们进行深入讨论,并给出更通用更简便的解法,并推及一般。

二.基础知识1.一一对应生活中有许多有关“一一对应”的例子:“一个萝卜一个坑”,立方烷的二氯代物同分异构体数等于立方烷的六氯代物同分异构体数。

一一对应是对于两个集合而言的。

如果两个集合构成了一一对应关系,那么这两个集合的元素数量一定相等。

这是一一对应最基本的性质。

一般的,若满足性质α的集合A 与满足性质β的集合B 构成一一对应关系,则一定有:∀a ∈A ,∃!b ∈B ,a →b∀b ∈B ,∃!a ∈A ,b →a其中∃!的含义为“存在唯一的”。

上面的两个关系式为使A 和B 一一对应的充要条件。

我们知道组合数的一个性质:C n +m m =C n +m n ,下面我们用一一对应的观点解释这一性质。

有(n+m)个人排成一队,选取m 个人向前一步,并将行从前向后编号1和2,这所有的情况构成集合A 。

同样的,选取n 个人向前一步,并将行从前向后编号1和2,这所有的情况构成集合B 。

对于A 中的任何一种情况,将行编号调换,一定可以得到一个B 中的元素;同样的,对于B 中的任何一种情况,将行编号调换,一定可以得到一个A 中的元素。

所以集合A 与集合B 构成了一一对应关系。

那么A 的元素数量一定等于B 的元素数量。

一一对应是计数问题的一个利器。

它可以将较难的计数问题转化为另一个较简单的计数问题。

使用一一对应时,一定要确定两个对象满足了上述的两个要求。

2.组合的几何意义1)组合的几何意义C n +m m 表示在一个n 行m 列的方格图中,从左下角走到右上角,期间只能向上或向右走的方案数。

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合

组合数学课件--第一章第二节 允许重复的组合与不相邻的组合
11
一、序数法
怎样建立a(3)a(2)a(1)p(1)p(2)p(3)p(4)
a(3) 确定4的位置,a(2)确定3的位置
a(1)确定2的位置,剩余的位置就是1的位置 例3:021, 3 2 1 4 例3: 201, 2 4 1 3
12
一、序数法
求n个不同的数的全排列,主要有以下两步:
1、求出0到n!-1之间各数对应的序列{an-1, an-2,…, a1} m=an-1(n-1)!+an-2(n-2)!+…a2 * 2!+a1*1! 2、由{an-1, an-2,…, a1}确定排列序列p1p2…pn an-1,确定n的位置, an-2确定n-1的位置, ……………………… a1确定2的位置, 剩下的是1的位置。
9
一、序数法
推论 从0到n!-1的n!个整数与序列{an-1, an-2,…, a1} 一一对应。这里 0a1 1,0 a2 2, …, 0 an-1 n-1 算法: int a[]={0}; int m,n;// 0=<m<=n!-1 int b=m; int index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);
14
一、序数法
2、对于0,1,2,…,n!-1共n!个数求序列a[i]
for( i = 0; i < fact; i++ ) { int b=i, index =1; do { a[index]=b%(index+1); b = b/(index+1); index++; } while(b);

组合数学课件第一章第三节 组合意义的解释

组合数学课件第一章第三节 组合意义的解释

20
1.8:应用举例
(2)编码中的纠错功能
编码中的纠错功能是这样处理的,如果收到 a=a 1a 2…a n假设a 与a的汉明距离小于或等于r, 则认为a是由a的错误引起的,将它作为a处理。 可能存在a与a和b的汉明距离都小于或等于r, 怎么才能避免这种情况呢?对编码有什么要求呢?
码b与码a之间的汉明距离要大于或等于2r+1.
(n+1,r)
(0,0)
(n,0)
12
1.7 组合的解释
1.35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m
1 0 2 0 3 1 … … m-2 m-1 m 1 0 0
没有0,C(m,0)
只有一个0,C(m,1) 只有二个0,C(m,2) ……………….
M个全是0,C(m,m)

9999-6560=3449。
25
1.9 例题 1.15试求从1到1000的整数中,0出现的次数。 解:先将1到999的整数都看作3位数,例如2就看 作是002,这样从000到999。0出现了多少次呢? 3×102,某一位取0,其它各位任取。 0出现在最前面的次数应该从中去掉 000到999中最左1位的0出现了102次, 000到099中左数第2位的0出现了10次, 000到009左数第3位的0出现了1次, 因此不合法的0的个数为 102+101+1=111,不合法的应该去掉,再加整 数1000中的3个0,这样,从1到1000的整数中0出 现的次数为3×102-111+6=195。
13
1.7 组合的解释 1.35 C(m,0)+C(m,1)+C(m,2)+…+C(m,m)=2m (0,m) (1,m-1)

组合数学(Richard A. Brualdi)重要知识考点

组合数学(Richard A. Brualdi)重要知识考点

第一章 什么是组合§1 排列组合组合数学主要研究有限集合的计数,结构的存在性,以及性质。

几个计数原理设A 是有限多个元素的集合,用A 表示A 的元素个数a) 分类与加法原理设12=r A A A A …,i j A A =∅ ,i j ≠,则称{}1i A i r ≤≤为A 的一个分类,显然1=rii A A=∑(加法原理)b) 分步骤乘法原理设12r A A A 、、…是有限集令{}12123=(,,)|,1r r i i B A A A a a a a a A i r ⨯⨯⨯=∈≤≤…,…,(笛卡尔乘积),称B 为12r A A A ,,…,的积,显然B 的每个元素123(,,)r a a a a ,…,是有序数对,是按步骤确定的且1=rii B A=∏(乘法原理)【例1】{}{}121,2,3,4,A A ==则(){}121,3,(2,4),(1,4),(2,4)A A ⨯= 【例2】求120的因数的个数解:3120=235⨯⨯,312|120235aaan n ∴⇔=⋅⋅,其中12303,01,01a a a ≤≤≤≤≤≤ 令{}{}{}1230,1,2,3,0,1,0,1A A A ===,记120的因数的集合为B 故123||=||=422=16B A A A ⨯⨯⨯⨯.【例3】有限集{}123n a a a a , , ,…,的一个有序列123r i i i i a a a a , , ,…,称为123n a a a a , , ,…,的一个r 排列,其中i j a a ≠,i j ≠,所有r 排列的个数记为(,)(1)(1)P n r n n n r =--+……,令(,)!P n n n =,则!(,)()!n P n r n r =-,规定:0!=1.c) 双射原理设A 、B 是两个集合,对应:f A B →,对A 中的每个元素a ,有唯一的元素()b f a =,a D ∈,与之对应,则称f 为一个映射.映射:srr→→不是映射.1. 如果1212,(),a a A a a ∀∈≠有12()()f a f a ≠,则称f 是单射.显然,这时有A B ≤.2. 如果,b B ∀∈有,a A ∈使(),f a b =则称f 为满射.3. 如果f 既是单射又是满射,则称f 为双射.这时=A B .【例4】设{}123r A a a a a = , , ,…,,计算A 的所有子集的个数(组合证明) 解:设B 表示A 的所有子集所成的子集(或者用幂集2A表示) 设f :{}{}{}{}0,10,10,10,1r B →⨯⨯⨯个……令x B ∈,123={}t i i i i x a a a a , , ,…,,1t r ≤≤,=0t 时表示∅,121t i i r ≤≤≤≤≤…i 12()(0000),t i i i f x =⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅111如果=0x ,则令()(000)f x =⋅⋅⋅⋅⋅⋅ 易知f 是双射.由双射原理和乘法原理得:=2r B 补充:例如{}1,2A =,{}{1}{2}{1,2}B =∅,,,在上述映射下,有={0,1}{0,1}B ⨯,()(0,0)f ∅=,({1})(1,0)f =,({2})(0,1)f = 【例5】{}123n a a a a , , ,…,的r 个元素所成的集合成为A 的一个r 组合所有这样的r 组合的个数记为(,)!n P n r r r ⎛⎫= ⎪⎝⎭,称之为二项式系数.一般来讲0r ≥,特别的当=0r 时,10n ⎛⎫= ⎪⎝⎭,今后,令(1)(1)!x x x x r r r ⎛⎫-⋅⋅⋅-+= ⎪⎝⎭,0r ≥且x 为任意实数. 注意12!是没有意义的.【例6】 1)!(0)!()!n n n n r r r n r ⎛⎫=≥≥ ⎪-⎝⎭为正整数, 2)()n n r n r ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭对称性 3)111n n n r r r --⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 4) ++201nn n n n ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……循环排列(圆排列):从{}123n a a a a , , ,…,中取出r 个元素作圆排列的个数为(,)!=()!P n r n r r n r -,当n r =时,!(1)!n n n =-如:1,2,3三个元素作圆排列,一共有3!23=种不同的排列方法.§3 重集设123k a a a a , , ,…,是个不同的元素,我们用{}1122k k n a n a n a ⋅⋅⋅ , ,…,表示有1122k k n a n a n a 个 ,个 ,…,个的集合称为一个重集,这里0(1)i n i k ≤≤∞≤≤ 注:=0i n 表示i a 不出现,=i n ∞表示i a 取之不尽这个集合的r 元子集称为一个r 组合,r 元有序集合称为一个r 排列.【例1】{}123231a a a ⋅⋅⋅ , ,的5组合有:{}1223a a ⋅⋅ ,、{}12321a a a ⋅⋅⋅ ,2 ,、{}123131a a a ⋅⋅⋅ ,,3个;6排列共有6!60231=⋅⋅!!!个.§4 重集的排列a){}12k a a a ∞⋅∞⋅∞⋅ , ,…,的n 排列的个数等同于{}12k n a n a n a ⋅⋅⋅ , ,…,的n 排列的个数=n kb){}1122k k n a n a n a ⋅⋅⋅ , ,…,的全排列(这里1i n ≤≤∞)的个数为1212!k k n n n n n n n n ⎛⎫ ⎪⎝⎭…!!…!,其中1ki i n n ==∑ 注:12k n n n n ⎛⎫⎪⎝⎭…称为多项式系数,这里只有当12k n n n n =+++…时才有意义.证明:要得到{}1122k k n a n a n a ⋅⋅⋅ , ,…,一个n 排列,我们只需从n 个有序位置中选取1n 个位置来放1a ,共有1n n ⎛⎫⎪⎝⎭种方法,再在余下的1n n -个位置中选2n 个位置来放2a ,共有12n n n -⎛⎫⎪⎝⎭种方法,继续下去,由乘法原理,n 排列的个数等于12121131212111211212312312112)!()!()!!!()!!()!!()!()!!k k k k k k k n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n ----------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-------=⋅⋅-----------=………(…………!!…!c) 多重集合的组合。

组合数学家第一章《排列和组合》习题

组合数学家第一章《排列和组合》习题

第一章排列和组合习题1,用1,2,3,4,5这5个数字组成4位数。

(1)如果这些数字可重复使用,能组成多少个4位数?(2)如果每位上的数字互异,能组成多少个4位数?(3)如果这些数字可重复使用,能组成多少个4位偶数?(4)如果每位上的数字互异,能组成多少个4位偶数?2,6男6女围坐在一个圆桌周围。

如果男女交替围坐,有多少种方式?3,15人围坐在一个圆桌周围,如果B拒绝挨着A 坐,有多少种方式?如果B拒绝坐在A的右侧,有多少种方式?4,从拥有10名男会员和12名女会员的一个俱乐部选出一个由4人组成的委员会。

如果至少要包含2名女委员,有多少种选取方法?此外,如果俱乐部还有一名特定男士和一名特定女士拒绝进入该委员会,形成委员会的方式又有几种?如果该男士和该女士只拒绝两人一起进入委员会,又如何?5,从15个球员的集合中选11人组成足球队,其中有5个人只能踢后卫,8个人只能踢边卫,2个人既能踢后卫又能踢边卫。

假设要组成的足球队需有7个人踢边卫,4个人踢后卫,试确定足球队可能的组队方法数。

6,学校有100名学生和A、B、C三座宿舍,它们分别能容纳25、35、40人。

(1)为学生安排宿舍有多少种方法?(2)设100个学生有50名男生和50名女生,而宿舍A是全男生宿舍,宿舍B是全女生宿舍,宿舍C男女兼收,则有多少种方法为学生安排宿舍?7,教室有两排座位,每排8个。

现有学生14人,其中5人总坐前排,4人总坐后排。

有多少种方法将学生分派到座位上?8,在一个聚会上有15位男士和20位女士。

(1) 有多少种方式形成15对男女?(2)有多少种方式形成10对男女?9,用围绕一个圆桌的循环排到方式给5位男士、5位女士和1条狗安排座位。

如果男士不坐在男士旁边,女士也不坐在女士旁边,那么能有多少种安排方法?10,有4杖纪念章,6本纪念册,赠送给10位同学,每人得一件,共有多少种送法?11,(1)从1,2,…,100中选出两个数,使它们的差正好是7,有多少种方法?(2) 如果要求选出的两个数之差小于等于7,又有多少种方法?12,确定多重集{3,4,5}S a b c = 的11-排列的个数、10-排列的个数。

1.2 排列与组合

1.2 排列与组合
C(12,3)*9!=12!/3! 注意 本解法用到了组合的概念,它也可以作为基本的组 合模型
Yiqiang Wei <weiyiqiang@>
1.2 排列与组合
1.2.2 组合
定义 从n个不同元素中取r个不重复的元素组成一个子集, 而不考虑其元素的顺序,称为从n个中取r个的无重组合。 组合的全体组成的集合用 C(n,r) 表示,
Yiqiang Wei <weiyiqiang@>
1.2 排列与组合
例1.2.2 A单位有7名代表,B单位有3位代表,排成一列合影, 如果要求B单位的3人排在一起,问有多少种不同的排列方 案。若A单位的2人排在队伍两端,B单位的3人不能相邻, 问有多少种不同的排列方案?
B单位3人按一个元素参加排列,则有
例1.2.3 求由{1,3,5,7}组成的不重复出现的整数的总和 解:这样的整数可以是1位数,2位数,3位数,4位数, 若设 Si,i=1,2,3,4,是i位数的总和,则
S=S1+S2+S3+S4,
于是我们只需要计算Si即可。 显然,一位数之和 S1=1+3+5+7=16; 两位数有:13,15,17,31,35,37,51,53,57,71,73,75, 所以 S2=3(1+3+5+7)10+3(1+3+5+7)= 480+48=528
Yiqiang Wei <weiyiqiang@>
1.2 排列与组合
从n个中取r个的排列的典型例子是(取球模型): 从n个有区别的球中,取出r个,放入r个有标志的盒子里,且无 一空盒。 第1个盒子有n种不同选择; 第2个有n-1种选择; · · · · · · , 第r个有n-r+1种选择。故由乘法原理有 P(n,r)=n(n-1)· · · · · · (n-r+1) =n!/(n-r)!

组合数学课件--第一章:排列与组合

组合数学课件--第一章:排列与组合

1.3:排列与组合
1、排列的定义:设A={a1,a2,…,an}是n个不 同的元素的集合,任取A中r个元素按顺序排成一 列,称为从A中取r个的一个排列,r满足0≤r≤n。
(1) (2) (3) (…) (r)
从n个不同的球中取一个球放在第一个盒子中, 从余下的n-1个球中取一个球放在第二个盒子中, ………………………………… 从余下的n-(r-1)个球中取一个放在第r个盒子中。 根据乘法法则: 19 P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!
p2
2 a2
... pm
2 am
C (2a1 1,1) C (2a2 1,1) ... C (2am 1,1)
34
练习题
1.13、有n个不同的整数,从中取出两组来, 要求第1组的最小数大于另一组的最大数。 设取的第一组数有a个,第二组有b个,
要求第一组数中最小数大于第二组中最大的, 即只要取出一组m个数(设m=a+b),从大到小 取a个作为第一组,剩余的为第二组。 此时方案数为C(n,m)。 从m个数中取第一组数共有m-1中取法。 (m-1)C(n,m)
17
1.2 一一对应 1 2 5 任给一个序列B{b1,b2,b3,…,bn-2} 1、从A找到最小的不属于B的元素,设为a1,与b1连 接,从A中去掉a1,从B中去掉b1. 2、重复以上过程只到B为空,A中剩余两个 3、连接剩余的两个顶点。
*
18
树的顶点集合为12345
3 4
这棵树对应序列(2,3,2)
****
2
(4)哪些最优?
选用教材
组合数学
(第四版) 卢开澄 卢华明 著
清华大学出版社

组合数学第一章课后习题答案

组合数学第一章课后习题答案

1.1 题(宗传玉)从{1,2,……50}中找两个数{a ,b},使其满足 (1)|a-b|=5; (2)|a-b|≤5; 解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时 有90对序列。

当|a-b|=1时,两数的序列有(1,2),(3,4),(2,1)(1,2)……(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=520 1.2题(王星) 解:(a )可将5个女生看作一个单位,共八个单位进行全排列得到排列数为: 8!×5!,(b )用x 表示男生,y 表示空缺,先将男生放置好,共有8个空缺, Y X Y X Y X Y X Y X Y X Y X Y 在其中任取5个得到女生两两不相邻的排列数: C (8,5)×7!×5!(c )先取两个男生和3个女生做排列,情况如下:6. 若A ,B 之间存在0个男生, A ,B 之间共有3个人,所有的排列应为 P6=C(5,3)*3!*8!*21.若A ,B 之间存在1个男生, A ,B 之间共有4个人,所有的排列应为 P1= C(5,1)*C(5,3)*4!*7!*22.若A ,B 之间存在2个男生,A ,B 之间共有5个人,所有的排列应为 P2=C(5,2)*C(5,3)*5!*6!*23.2.若A ,B 之间存在3个男生,A ,B 之间共有6个人,所有的排列应为 P3=C(5,3)*C(5,3)*6!*5!*24.若A ,B 之间存在4个男生,A ,B 之间共有7个人,所有的排列应为 P4=C(5,4)*C(5,3)*7!*4!*25.若A ,B 之间存在5个男生,A ,B 之间共有8个人,所有的排列应为 P5=C(5,5)*C(5,3)*8!*3!*2 所以总的排列数为上述6种情况之和。

第一章排列与组合

第一章排列与组合

在气象学方面。他曾亲自组织人力进行过大气压和天气状况 的观察
1691年,莱布尼茨致信巴本,提出了蒸汽机的基本思想。 1677年,莱布尼茨发表《通向一种普通文字》,以后他长时
期致力于普遍文字思想的研究,对逻辑学、语言学做出了一 定贡献。今天,人们公认他是世界语的先驱
……………………
2020/4/23
一种常见的思路是按轮计场,费事。
另一种思路是淘汰的选手与比赛(按场计)集一一对 应。99场比赛。
2020/4/23
组合数学-上海理工大学
20
例10 设凸n边形的任意三条对角线不共点,求对 角线在多边形内交点的个数。
可以先计算对角线的个数,然后计算交点,但是 存在在多边形内无交点的情形,比较复杂。
可以考虑对应关系:多边形内交点to多边形四个顶 点。
2020/4/23
组合数学-上海理工大学
15
例6 (1) n=73*112*134,求除尽n的数的个数; (2) n=73*142,求除尽n的数的个数;
(1)4×3×5=60;7 i 1 j 1 1 k 0 3 i 3 ,0 j 2 ;0 k 4 (2) 6×3=18
例7 在1000和9999之间有多少每位上的数字均不同 的奇数?
2020/4/23
组合数学-上海理工大学
11
乘法法则:设具有性质A的事件有m个,具有性质B 的事件有n个,则具有性质A和B的事件有mn个。
集合论语言: 若 |A| = m , |B| = n , AB = {(a,b) | aA,bB} , 则
| AB | = mn 。
例3 从A到B有三条道路,从B到C有两条道路,则 从A经B到C有 32 = 6 条道路。
1646.7.1.—1716.11.14.)德国最重要的自然科学家、数学家、 物理学家、历史学家和哲学家,一个举世罕见的科学天才,和 牛顿同为微积分的创建人。

组合数学 教学大纲

组合数学 教学大纲

《组合数学》课程教学大纲课程名称:组合数学英文名称:Combinatorial Mathematics 课程代码: ZS1051001课程类别: 专业选修学分: 3 学时: 48开课单位: 理学院适用专业: 数学与应用数学(师范教育方向)制订人:审核人:审定人:一、课程性质与目的(一)课程的性质组合数学是高等师范院校数学与应用数学专业的专业选修课。

组合数学起源于古代的数学游戏和美学消遣,它以无穷的魅力激发人们的聪明才智和数学兴趣。

组合数学的离散性及其算法与计算机的结合已在现代科学技术中发挥出极为重要的作用。

它的一个重要组成部分——试验设计有着重大的应用价值,它的数学原理就是组合设计。

用组合设计的方法解决实际应用中的试验设计问题在西方发达国家已经得到了广泛的重视,并投入了大量的人力物力进行相关的研究与产品的开发。

所以说,组合数学是一门提高思维分析能力和自我构造算法本领的课程。

(二)课程的目的通过本课程的学习要求学生理解组合数学的基本概念与基本原理,掌握组合理论的基本方法和技巧,提高学生综合应用排列与组合、代数与编码、优化与规划的能力,为深入研究组合数学打好基础。

二、与相关课程的联系与分工本课程是数学与应用数学专业的专业选修课,它以数学分析、高等代数、概率论为基础,培养学生逻辑推理能力,科学计算能力,解决实际问题的能力,对离散问题的分析能力,为编程与编码作准备。

组合数学不仅在计算机软件科学技术中有着重要的应用价值,在企业管理,交通规划,战争指挥,金融分析,电子工程、数字通讯等诸多领域中也具有广泛而重要的应用。

三、教学内容及要求第一章排列与组合【教学要求】掌握加法法则与乘法法则,会利用排列与组合解决具体的实际问题。

【教学重点】加法法则与乘法法则;一一对应;排列与组合;组合意义的灵活运用;【教学难点】排列的生成算法;允许重复的组合与不相邻的组合;【教学内容】第一节加法法则与乘法法则第二节一一对应第三节排列与组合一、排列与组合的模型二、排列与组合问题的举例第四节圆周排列第五节排列的生成算法一、序数法二、字典序法三、换位法第六节允许重复的组合与不相邻的组合一、允许重复的组合二、不相邻的组合三、线性方程的整数解的个数问题四、组合的生成第七节组合意义的解释第八节应用举例第九节Stirling公式*一、Wallis公式*二、Stirling公式的证明第二章递推关系与母函数【教学要求】会利用递推关系与母函数解决实际问题。

不相邻组合定理

不相邻组合定理

不相邻组合定理不相邻组合定理是一种用于计算排列组合的数学定理,它在组合数学、概率论、统计学等领域中具有广泛的应用。

在数学的学习过程中,掌握不相邻组合定理对于解决一些复杂问题非常有帮助。

本文将详细介绍不相邻组合定理的概念、公式以及实际应用。

不相邻组合定理主要用于计算排列组合中不相邻元素的可能性。

在一个排列中,如果两个元素之间有其他元素存在,那么我们称这两个元素是相邻的。

相反,如果两个元素之间没有其他元素,那么我们称这两个元素是不相邻的。

不相邻组合定理就是用于计算排列中不相邻元素的可能性。

不相邻组合定理可以表示为:对于n个元素的排列,其中包含了k个不相邻元素的排列数为C(n-k+1,k)。

其中,C表示组合数,表示从n个元素中选择k个的组合数。

组合数可以通过排列数计算而得,C(n,k) = P(n,k) / k!,其中P(n,k)表示从n个元素中选择k个的排列数,k!表示k的阶乘。

不相邻组合定理的公式可以通过数学推导来得到。

假设有n个元素,我们将这n个元素排成一排。

其中,排列的第一个元素可以从n个元素中选择,第二个元素可以从剩下的n-2个元素中选择,第三个元素可以从剩下的n-4个元素中选择,以此类推。

因此,总的排列数为n(n-2)(n-4)...,直到剩下一个元素时停止。

另一方面,我们可以选择k个元素作为不相邻元素,这k个元素之间没有其他元素。

对于这k个元素的排列数,可以用C(k,k)表示,即从k个元素中选择k个元素的组合数。

综上所述,根据乘法原理,不相邻元素的排列数为n(n-2)(n-4).../k(k-2)(k-4)...,也可以表示为n·(n-2)···(n-2k+2)。

实际应用中,不相邻组合定理可以用于解决一些排列组合的问题。

例如,假设有7个元素,我们需要将其中3个元素选为不相邻元素,那么根据不相邻组合定理,排列数为C(7-3+1,3)=C(5,3)=5·4·3/3·2·1=10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设所求方案数为p(m+n;m,n)
则P(m+n;m,n)·m!·n!=(m+n)!
故P(m+n;m,n)=
—(mm—+!nn—!)!
=
(
m+n m
)
=(m+nn
)
=C(m+n,m)

设c≥a,d≥b,则由(a,b)到(c,d)的简单格路数
为|(a,b)(c,d)|=(
(c-a)+(d-b) c-a
y y=x
(m,n)
y x-y=1
(m,n. )
(0,1) . .
0 (1,0)
x (0,0) .. ..
x
(1,-1)
容易看出从(0,1)到(m,n)接触x=y的格路与
(1,0)到(m,n)的格路(必穿过x=y)一一对应
故所求格路数为( m+mn-1)-( mm+n-1-1)
=
(—m+—n-1—)!
例A {1, 2,3, 4,5, 6, 7},取3个作不相邻的组合的组合数。
例 已知线性方程 x1 x2 ... xn b, n和b都是整数,n 1, 求此方程的非负整数解的个数

简单格路问题
|(0,0)→(m,n)|=(
m+n m
)
从 (0,0)点出发沿x轴或y轴的正方向每步
走一个单位,最终走到(m,n)点,有多少
m!(n-1)!
-(m—+n—-1)—!
(m-1)!n!
=(m—(m-1+—)!n(-n—1-)1!)—!
( m1—

1n—)
=
—n-n—m
(
m+n-1 m
)=(1- —mn )(
m+n-1 m
)
=
—n-nm—
(
m+n-1 m
)
若条件改为可接触但不可穿过,则限制 线要向下或向右移一格,得x-y=1, (0,0)关于x-y=1的对称点为(1,-1).
条路径? y
(m,n)
...
0
. ..
x
无论怎样走法,在x方向上总共走m步, 在y方向上总共走n步。若用一个x表示x 方向上的一步,一个字母y表示y方向上 的一步。
则(0,0)→(m,n)的每一条路径可表示为m 个x与n个y的一个有重排列。将每一个有 重排列的x与y分别编号,可得m!n!个m+n 元的无重全排列。
1.4 不相邻的组合
定义:不相邻的组合指的是从序列 A {1, 2, , n}
中取r个,其中不存在i,i+1两个相邻的数同时出 现于一个组合中的组合。
例 A {1, 2,3, 4,5, 6}取3个元素做不相邻的组合
定理1.4 从 A {1, 2, , n}中取r 个作不相邻的组合,
其组合数为c(n-r+1,r).
例 已知重集 S {6a,5b, 4c,3d,} 做重集S的全排 列,并要求任意两个d不相邻,问有多少中排
列方案?
1.4 允许重复的组合
定义:允许重复的组合指的是从 A {1, 2, , n}
中取r个元素 {a1, a2, ar}, ai A, i 1, 2, , r
而且允许 ai a j , i j
)
(c,d)
(a,b)
例 在上例的基础上若设m<n,求(0,1) 点到(m,n)点不接触对角线x=y的格路的数 目 (“接触”包括“穿过”)
从(0,1)点到(m,n)点的格路,有的接触x=y, 有的不接触。
对每一条接触x=y的格路,做(0,1)点到第 一个接触点部分关于x=y的对称格路,这 样得到一条从(1,0)到(m,n)的格路。
所求格路数为
(
m+n m
)-(
m+n m-1
)
=
(—mm+!—nn!)!-(—m-(1—m)+!(—nn)+!1—)!
=
—nn+—+11-m—
(
m+n m
)
格路也是一种常用模型
作业
P39 19, 22
为S中K个不同元素,ni 的重数,ni 也可为
结论1. 可重集S { a1, a2 , , ak }的r排列数 为 Kr 。
结论2. 设可重复S {n1 a1, n2 a2, , nk ak,} 且S的元素 个数为n n1 n2 nk ,则S的全排列数为 n! n1 ! n2 ! nk !
1.4 允许重复的排列与组合 及不相邻的组合
1.4 允许重复的排列与组合及不相邻的组合
前几节我们介绍了排列与组合都是指从n个互 不相同元素的集合里取r个互不相同的元素排列 和组合,然而在现实生活中并不一定是对不同 的元素进行排列与组合.
下面我们介绍允许重复的组合与排列
1.4 允许重复的排列
设可重复 S {n1 a1, n2 a2, , nk ak,} 其中,a1, a2, , ak
例 A {1, 2,3} 取2个作允许重复组合
1.4 允许重复的组合
定理1.2 在n个不同的元素中取r个进行组合,若 允许重复,则组合数为C(n+r-1,r).
定理1.3 r个无区别的球放进n个有标志的盒子里, 每个盒子中可多于一个,则共有 C(n+r-1,r)个。
例试问( x y z)4有多少项?
相关文档
最新文档