算法背包问题
背包问题的算法研究及应用
背包问题的算法研究及应用背包问题是一种经典的组合优化问题,常常被用来研究在有限的空间下如何使价值最大化。
背包问题可以分为 01 背包问题、完全背包问题、多重背包问题和混合背包问题等多种类型。
这些问题的求解方法也各有特点,需要根据具体问题进行选择。
本文主要介绍 01 背包问题和完全背包问题的求解算法及应用。
一、01 背包问题01 背包问题指的是在一个容量为 V 的背包中装入物品,每件物品都有自己的体积 vi 和价值 wi,问怎样装能使背包价值最大化,且物品不能重复使用。
01 背包问题可以用贪心算法或动态规划算法进行求解。
贪心算法的思想是每次选择当前最优的物品,直到背包无法继续装下为止。
但是贪心算法不能保证一定能获得最优解。
动态规划算法则是将问题分解为子问题,并通过递推关系式来求解。
具体来说,我们定义一个 dp[i][j] 表示将前 i 件物品放入容量为 j 的背包中所能获得的最大价值,则有:dp[i][j] = max(dp[i-1][j], dp[i-1][j-vi]+wi)其中 max 表示取两者中的最大值,dp[i-1][j] 表示不选择第 i 件物品,dp[i-1][j-vi]+wi 表示选择第 i 件物品放入背包中。
根据递推关系式,我们可以得到目标值为dp[n][V],其中 n 表示物品个数。
二、完全背包问题完全背包问题指的是在一个容量为 V 的背包中装入物品,每件物品都有自己的体积 vi 和价值 wi,问怎样装能使背包价值最大化,且每件物品可以无限使用。
完全背包问题和 01 背包问题类似,也可以用贪心算法或动态规划算法进行求解。
贪心算法的思想是每次选择当前最优的物品,并一直选择直到不能再在背包中装入为止。
但是贪心算法仍然不能保证获得最优解。
动态规划算法则是将问题分解为子问题,并通过递推关系式来求解。
与 01 背包问题相比,完全背包问题的递推关系式与之略有不同,具体来说,我们定义一个 dp[i][j] 表示将前 i 件物品放入容量为 j 的背包中所能获得的最大价值,则有:dp[i][j] = max(dp[i-1][j-k*vi]+k*wi)其中 max 表示取两者中的最大值,k 表示第 i 件物品中的物品数量。
贪心算法-01背包问题
贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
背包问题解析(一)-贪心算法
背包问题解析(⼀)-贪⼼算法⼀、题⽬:有N件物品和⼀个容量为V的背包。
第i件物品的重量是w[i],价值是v[i]。
求解将哪些物品装⼊背包可使这些物品的重量总和不超过背包容量,且价值总和最⼤。
⼆、解决思路:本题刚开始的解题的时候,想采取贪⼼算法来解决,也就是将放⼊的物品的性价⽐按照从⾼到低进⾏排序,然后优先放优先级⾼的,其次优先级低的。
三、代码实现(python)1# 重量w=[5,4,3,2]2# 价值v=[6,5,4,3]3 b=[]4 m=int(input("请输⼊背包的最⼤重量:"))5 n=int(input("请输⼊商品的数量:"))6for i in range(n):7 a=input("请分别输⼊重量和价值,以空格隔开:")8 a=a.split("")9for i in range(len(a)):10 a[i]=int(a[i])11 b.append(a)12print("加载初始化:",b)13for i in range(len(b)):14for j in range(i+1,len(b)):15if b[i][1]/b[i][0]<b[j][1]/b[j][0]:16 b[i],b[j]=b[j],b[i]17print("性价⽐排序:",b)18 v=019 c=[]20for i in range(len(b)):21if m-b[i][0]>0:22 m=m-b[i][0]23 c.append(b[i])24 v+=b[i][1]25print("放⼊背包:",c)26print("最⼤价值为:",v)打印结果:四、算法分析:贪⼼选择是指所求问题的整体最优解可以通过⼀系列局部最优的选择,即贪⼼选择来达到。
遗传算法求解背包问题
遗传算法的过程:初始化:将计划装入背包的每个物品看成一个二进制串的一位,为1表示放入该物品,为0表示不放入该物品。
初始种群的产生:初始化前对放入背包物品数的一个预测(背包容积/物品最大体积),接下来只要在种群每条染色体中保证有(背包容积/物品最大体积)个为1的位初始化就完成了。
选择:选择进行杂交的父代染色体,被选中的父代染色体总是若干个染色体中最优(适应度最高)的,来保证向优化的方向发展。
详细的选择方法:随机产生2个数:Chrom_Cross_From, Chrom_Cross_To,当然得采用一定的手段来保证前者比后者小。
从Chrom_Cross_From到Chrom_Cross_To这Chrom_Cross_To-Chrom_Cross_From+1条染色体中选择最优(适应度最大)的染色体作为父代之一。
需要进行两次选择得到杂交的两条父代染色体。
这样做可以保证算法不会过早收敛。
函数实现:Individual Select(int ChromSize,Individual Pop[]){int Num_Selected,i,j,Chrom_Selected_From,Chrom_Selected_To,temp;Individual *Chrom_Selected;do{Chrom_Selected_From=rand()%PopSize;Chrom_Selected_To=rand()%PopSize;if(Chrom_Selected_From>Chrom_Selected_To){temp=Chrom_Selected_From;Chrom_Selected_From=Chrom_Selected_To;Chrom_Selected_To=temp;}Num_Selected=Chrom_Selected_To-Chrom_Selected_From+1;}while(Num_Selected<=0);Chrom_Selected=new Individual[Num_Selected];for(i=0;i<Num_Selected;i++)Chrom_Selected[i].chrom=new int[ChromSize];for(i=0,j=Chrom_Selected_From;i<Num_Selected,j<Chrom_Selected_To+1;i++,j++){Chrom_Selected[i]=Pop[j];}Order_Best_First(ChromSize,Num_Selected,Chrom_Selected);Chrom_Selected[0].fitness=Fitness(Chrom_Selected[0].chrom,ChromSize);return Chrom_Selected[0];}杂交:将两次选择得到的父代染色体进行杂交得到一条新的染色体,作为较新种群(并非新的种群)的一条染色体,杂交直到较新种群的染色体数等于原种群的染色体数。
背包问题
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN) 的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得 出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如 何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关 的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令 f[i,v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程, 像这样:f[i,v]=max{f[i,v-vi]+wi,f[i-1,v]}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的 时间则不是常数了,求解状态f[v]的时间是O(v/c),总的复杂度是超过O(VN)的。
背包问题已经研究了一个多世纪,早期的作品可追溯到1897年 数学家托比亚斯·丹齐格(Tobias Dantzig, 1884-1956)的早期作品 ,并指的是包装你最有价值或有用的物品而不会超载你的行李的常见问题。
应用
1998年的石溪布鲁克大学算法库的研究表明,在75个算法问题中,背包问题是第18个最受欢迎,第4个最需 要解决的问题(前三为后kd树,后缀树和bin包装问题)。
基础背包
题目 基本思路
空间复杂 示例程序
递归实现 程序
测试数据 总结
有N件物品和一个容量为V的背包。第i件物品的重量是w[i],价值是v[i]。求解将哪些物品装入背包可使这些 物品的重量总和不超过背包容量,且价值总和最大。
c语言算法--贪婪算法---01背包问题
c语言算法--贪婪算法---0/1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。
从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。
对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。
约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。
在这个表达式中,需求出xt 的值。
xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。
0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。
货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。
例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。
店中有n 种不同的货物。
规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。
你的目标是使车中装载的物品价值最大。
当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。
这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。
0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。
在每一步过程中利用贪婪准则选择一个物品装入背包。
一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。
这种策略不能保证得到最优解。
例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。
当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。
而最优解为[ 0 , 1 , 1 ],其总价值为3 0。
另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。
背包问题的算法
背包问题是一种经典的优化问题,通常用于解决在给定一组物品和它们的重量、价值等信息的情况下,如何选择一些物品放入一个容量有限的背包中,使得背包中物品的总价值最大或总重量最小等问题。
以下是背包问题的一种经典算法——动态规划法:
1. 定义状态:设f[i][j]表示前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值或最小重量。
2. 状态转移方程:对于第i个物品,有两种情况:
- 不放入背包中,此时f[i][j]=f[i-1][j];
- 放入背包中,此时f[i][j]=max(f[i-1][j], f[i-1][j-w[i]]+v[i]),其中w[i]和v[i]分别表示第i 个物品的重量和价值。
3. 初始化:f[0][0]=0。
4. 计算最优解:根据状态转移方程,从上到下依次计算每个物品的状态值,最终得到f[n][m]即为所求的最优解。
时间复杂度:O(n*m),其中n为物品数量,m为背包容量。
空间复杂度:O(n*m)。
动态规划方案解决算法背包问题实验报告含源代码
动态规划方案解决算法背包问题实验报告含嘿,大家好!今天我来给大家分享一个相当有趣的编程问题——背包问题。
这可是算法领域里的经典难题,也是体现动态规划思想的好例子。
我会用我10年的方案写作经验,给大家带来一份详细的实验报告,附带哦!让我简单介绍一下背包问题。
假设你是一个盗贼,要盗取一个博物馆里的宝贝。
博物馆里有n个宝贝,每个宝贝都有它的价值v和重量w。
你有一个承重为W的背包,你希望放入背包的宝贝总价值最大,但总重量不能超过背包的承重。
这个问题,就是我们要解决的背包问题。
一、算法思路1.创建一个二维数组dp,dp[i][j]表示前i个宝贝放入一个承重为j的背包中,能达到的最大价值。
2.初始化dp数组,dp[0][j]=0,因为如果没有宝贝,那么无论背包承重多少,价值都是0。
3.遍历每个宝贝,对于每个宝贝,我们有两种选择:放入背包或者不放入背包。
4.如果不放入背包,那么dp[i][j]=dp[i-1][j],即前i-1个宝贝放入一个承重为j的背包中,能达到的最大价值。
5.如果放入背包,那么dp[i][j]=dp[i-1][j-w[i]]+v[i],即前i-1个宝贝放入一个承重为j-w[i]的背包中,加上当前宝贝的价值。
6.dp[i][j]取两种情况的最大值。
二、defknapsack(W,weights,values,n):dp=[[0for_inrange(W+1)]for_inrange(n+1)]foriinrange(1,n+1):forjinrange(1,W+1):ifj>=weights[i-1]:dp[i][j]=max(dp[i-1][j],dp[i-1][j-weights[i-1]]+values[i -1])else:dp[i][j]=dp[i-1][j]returndp[n][W]测试数据W=10weights=[2,3,4,5]values=[3,4,5,6]n=len(values)输出结果max_value=knapsack(W,weights,values,n)print("最大价值为:",max_value)三、实验结果分析通过上面的代码,我们可以得到最大价值为15。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
动态规划算法0-1背包问题课件PPT
回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
背包问题的贪心算法
Wi Xi
16.5 20 20 20
Vi X i
24.25 28.2 31 31.5
先检验这四个为可行解*,即满足约束条件(4.2.2),(4.2.3).再比 较目标函数值,∑vixi .知④组解效益值最大.该组解是背包问题的最 优解。(见定理4.2)
6
例4.4 n=3,c=20, (V1,V2,V3) (25, 24,15) (W1,W2,W3) (18,15,10)
7
,且物品2的24/15 = v2/w2 较物品3的15/10= v3/w3效益值高。按 此选择策略,得②即(1, 2/15, 0),∑vixi=28.2 .此解是一个次优解。 显然,按物品效益值的非增次序装包不能得最优解。
原因:背包可用容量消耗过快。
(2)以容量作为量度。即按物品重量的非降次序将物
—选取最优的量度标准实为用贪心方法求解问题的核心.
16
4.3 贪心算法的基本要素
1.贪心选择性质
所谓贪心选择性质是指所求问题的整体最优解可以 通过一系列局部最优的选择,即贪心选择来达到。这 是贪心算法可行的第一个基本要素,也是贪心算法与 动态规划算法的主要区别。
动态规划算法通常以自底向上的方式解各子问 题,而贪心算法则通常以自顶向下的方式进行,以迭 代的方式作出相继的贪心选择,每作一次贪心选择就 将所求问题简化为规模更小的子问题。
品装包。如例4.4中的解③(让背包尽可能慢被消耗)
排序 : (w3,w2,w1)= (10,15,18)
(V3,V2,V1) (15, 24, 25)
V3=15,x3=1,w3=10,背包剩余C-10=10;物品2有次大重量(w2=15), 但包装不下。使用x2=2/3,刚好装满背包且物品2装入2/3与物品1 装入5/9的容量均为10个单位。但前者的效益值24×2/3=16 >后者
0-1背包问题的近似算法
0-1背包问题的近似算法0-1背包问题的近似算法对问题特点和算法思想做一些整理如下:这类问题其实很有意思,做数学和做计算机的人都会研究,而且我这里将要提到的论文都是做计算机的人所写的。
问题简述0-1 Knapsack Problem (0-1背包问题,下面简称KP)和Subset Sum Problem (子集合加总问题,下面简称SSP)是经典的NP完全问题。
两个问题简要描述如下:KP:有n个物品要放入背包,第i个物品的价值为ci,占据体积为vi,背包的总容积为V,要选择一部分物品放入背包,使得他们的总价值最大。
对应的优化问题是maxxi∑ci∗xis.t.∑vi∗xi≤V,xi∈{0,1}这里xi代表是否选取第i个物品进背包,等于1就代表放入背包,等于0代表不放入背包。
SSP: 给一个集合{c1,c2,…,cn},还有一个目标值V,问能否选出一个子集,使得子集中元素求和刚好等于V。
我们一般考虑的是他的另一种表述方式:选出一个子集,使得子集中元素求和不超过V,且尽量大。
对应的优化问题是maxxi∑ci∗xis.t.∑ci∗xi≤V,xi∈{0,1}这里xi代表是否选入子集,等于1就是选入子集,等于0就是不选入子集。
SSP是KP的特殊情况,也即当ci=vi的时候,KP退化为SSP,从问题式子上看,也完全一样了。
尽管如此,研究了KP不代表就不用研究SSP了,后面会说明这一点。
精确算法与近似算法这两个问题都有很简单的动态规划算法可以精确求解,但可惜算法的时间复杂度是伪多项式的,也即和V相关,但V不是问题输入数据的规模,n才是。
在ACM竞赛等算法比赛中,经常会遇到一些问题属于KP的变种,而伪多项式算法也就足够了。
由于网上资料很多,而且难度不大,这里就不详细介绍了。
如果你不知道,请你搜索“动态规划求解0-1背包问题”。
这里我们更关心多项式近似算法,也即PTAS(Polynomial Time Approximation Scheme),也即对任意给定的ϵ,算法可以在关于n的多项式时间内求得一个解,且该解和真实最优解的最多相差ϵ倍。
算法背包问题的五种方法
算法背包问题的五种方法1. 动态规划背包问题是一种经典的组合优化问题,动态规划是解决背包问题的常用方法之一。
动态规划将问题分解为子问题,并利用已解决子问题的结果来求解更大规模的问题。
对于背包问题,动态规划算法的基本思想是创建一个二维数组dp,其中dp[i][j]表示在前i个物品中选择若干个物品放入容量为j的背包中所能获得的最大价值。
通过填表格的方式,从子问题逐步求解到原问题,最终得到最优解。
2. 贪心算法贪心算法是另一种解决背包问题的方法。
它的基本思想是每一步都选择当前看起来最好的选择,而不考虑之前的选择对后续步骤的影响。
在背包问题中,贪心算法通常是按照物品的价值密度(价值与重量的比值)进行排序,然后依次选择价值密度最高的物品放入背包,直到背包容量不足为止。
贪心算法的优势在于其简单性和高效性,但它并不一定能得到最优解。
3. 分支定界法分支定界法是一种通过搜索方式求解背包问题的方法。
它的基本思想是通过搜索可能的解空间,并根据当前搜索路径的特性进行剪枝操作,从而减少搜索的时间和空间复杂度。
在背包问题中,分支定界法通常根据当前节点的上界(通过松弛问题得到)与当前最优解进行比较,如果上界小于当前最优解,则该节点不再继续拓展,从而减少搜索空间的大小,提高求解效率。
4. 回溯算法回溯算法是一种通过不断试探和回退的方式求解背包问题的方法。
它的基本思想是从问题的初始状态开始,不断地尝试不同的决策,并根据约束条件判断该决策是否可行。
如果决策可行,则继续尝试下一步决策;如果不可行,则回退到上一步并尝试其他决策。
在背包问题中,回溯算法通过递归的方式依次尝试每个物品的放入与不放入两种选择,直到找到满足约束条件的解或者穷尽所有可能。
5. 近似算法近似算法是一种通过快速求解背包问题的“近似”解来减小计算复杂度的方法。
它的基本思想是用一种简单而快速的策略求解背包问题,并且能够保证求解结果的近似程度。
在背包问题中,常见的近似算法有贪心算法和启发式算法。
背包问题 启发算法
背包问题启发算法
背包问题是一种常见的优化问题,通常用于解决资源分配、决策制定等方面的问题。
启发式算法是一种常用的求解背包问题的策略,其基本思想是通过经验或直观来构造一个可行的解决方案,然后不断迭代优化这个方案,直到满足终止条件。
以下是一个简单的0-1背包问题的启发式算法:
1. 初始化:选择一个初始解,通常是一个空解或者随机解。
2. 迭代优化:在每次迭代中,尝试对当前解进行改进。
具体步骤如下:
a. 对于每个物品,计算将其添加到背包中的收益,即物品的重量与价值的乘积。
b. 选取收益最大的物品,将其添加到背包中。
c. 重复步骤b,直到背包满载或者没有剩余的物品。
3. 终止条件:当达到指定的迭代次数或者背包价值达到最大值时,停止迭代。
4. 输出结果:返回最终的背包解。
需要注意的是,启发式算法只能得到近似最优解,而不是最优解。
因此,在某些情况下,启发式算法可能无法得到最优解,但对于许多实际问题,启发式算法可以提供足够好的解决方案,并且计算效率较高。
经典算法详解之背包算法
经典算法详解之背包算法背包问题(Knapsackproblem)是⼀种组合优化的。
问题可以描述为:给定⼀组物品,每种物品都有⾃⼰的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最⾼。
这个问题涉及到了两个条件:⼀是物品总的⼤⼩⼩于或等于背包的⼤⼩,⼆是物品总的价值要尽量⼤。
如果我们⽤⼦问题定义状态来描述的话可以这样解释:⽤f[i][v]表⽰前i件物品恰放⼊⼀个容量为v的背包可以获得的最⼤价值。
⽤公式表⽰:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}或 f[v]=max{f[v],f[v-c[i]]+w[i]}具体的解释可以理解为将前i件物品放⼊容量为v的背包中,现只考虑第i件物品的策略(放或不放),那么就可以转化为⼀个只涉及前i-1件物品和第i件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放⼊容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放⼊剩下的容量为v-c[i]的背包中”,此时能获得的最⼤价值就是f[i-1][v-c[i]]再加上通过放⼊第i件物品获得的价值w[i]。
(v表⽰背包的最⼤容量,c[i]表⽰第i件物品的⼤⼩,w[i]表⽰第i件物品的价值)算法如下:class Fruit{private String name;private int size;private int price;public Fruit(String name,int size,int price){=name;this.size=size;this.price=price;}public String getName(){return name;}public int getPrice(){return price;}public int getSize(){return size;}}public class Knapsack{public static void main(String[] args){final int MAX=8;final int MIN=1;int[] item=new int[MAX+1];int[] value=new int[MAX+1];Fruit fruits[]={new Fruit("李⼦",4,4500),new Fruit("苹果",5,5700),new Fruit("橘⼦",2,2250),new Fruit("草莓",1,1100),new Fruit("甜⽠",6,6700)};for(int i=0;i<fruits.length;i++){for(int s=fruits[i].getSize();s<=MAX;s++){//s表⽰现在背包的⼤⼩int p=s-fruits[i].getSize();//表⽰每次增加单位背包空间,背包所剩的空间int newvalue=value[p]+fruits[i].getPrice();//value[p]表⽰增加的背包空间可以增加的价值,fruits[i].getprice()表⽰原有的背包的价值if(newvalue>value[s]){//现有的价值是否⼤于背包为s时的价值value[s]=newvalue;item[s]=i;//将当前的⽔果项添加到背包的物品中}}}System.out.println("物品\t价格");for(int i=MAX;i>MIN;i=i-fruits[item[i]].getSize()){System.out.println(fruits[item[i]].getName()+"\t"+fruits[item[i]].getPrice());}System.out.println("合计\t"+value[MAX]);}}程序运⾏的过程如下:i=0时,放⼊李⼦背包负重12345678s---45678p---01234value00045004500450045009000item---00000item---00000i=1时,放⼊苹果背包负重12345678s----5678p----0123value00045005700570057009000item---01110i=2时,放⼊橘⼦背包负重12345678s-2345678p-0123456value02250225045005700675079509000item-2201220i=3时,放⼊草莓背包负重12345678s1*******p0*******value11002250335045005700680079509050item32301323i=4时,放⼊甜⽠背包负重12345678s-----678p-----012value11002250335045005700680079509050item32301323由最后⼀个表格可以知道,在背包负重8的时候,最多得到价值9050的⽔果,这个时候可以得到装⼊的⽔果是3号⽔果草莓,那么剩下的(8-1=7)个⼤⼩空间,可以知到为2号⽔果也就是橘⼦,同理下⼀步可以知道放⼊的⽔果是1号⽔果苹果。
递归法求01背包问题
递归法求01背包问题一、问题描述0/1背包问题:现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、算法分析递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。
每次的递归调用都会判断两种情况:(1)背包可以放下第n个物品,则x[n]=1,并继续递归调用物品重量为W-w[n],物品数目为n-1的递归函数,并返回此递归函数值与v[n]的和作为背包问题的最优解;(2)背包放不下第n个物品,则x[n]=0,并继续递归调用背包容量为W,物品数目为n-1的递归函数,并返回此递归函数值最为背包问题的最优解。
递归调用的终结条件是背包的容量为0或物品的数量为0.此时就得到了0-1背包问题的最优解。
用递归法解0-1背包问题可以归结为下函数:⎩⎨⎧+---=][])[,1(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack nn 选择了物品没有选择物品 第一个式子表示选择物品n 后得到价值][])[,1(n v n w m n KnapSack +--比不选择物品n 情况下得到的价值),1(m n KnapSack -小,所以最终还是不选择物品n;第二个式子刚好相反,选择物品n 后的价值][])[,1(n v n w m n KnapSack +--不小于不选择物品n 情况下得到了价值),1(m n KnapSack -,所以最终选择物品n 。
在递归调用的过程中可以顺便求出所选择的物品。
下面是标记物品被选情况的数组x[n]求解的具体函数表示:⎩⎨⎧=10][n x ][])[,1(),(),1(),(n v n w m n KnapSack m n KnapSack m n KnapSack m n KnapSack +--=-= 在函数中,递归调用的主体函数为KnapSack ,m 表示背包的容量,n 表示物品的数量,x[n]表示是否选择了第n 个物品(1—选,0—不选)。
基于朴素贪心算法的背包问题解决方案
基于朴素贪心算法的背包问题解决方案背包问题是一类经典的组合优化问题,它的一般形式描述为:有一个固定大小的背包,和一些物品,每个物品都有自己的价值和大小,需要选出一些物品装入背包中,使得装进去的物品价值最大化,同时又不能超出背包容量的限制。
这个问题在实际生活中有很多应用,比如在货物的装载和运输、在零售商的库存管理、在网页推荐系统等等。
解决背包问题的方法有很多,其中比较经典的是基于动态规划的解法,但是这种解法需要使用大量的存储空间,如果物品数量很大的话,计算复杂度也会很高。
因此本文将介绍一种基于朴素贪心算法的背包问题解决方案。
一、背包问题的数学模型在介绍具体的解决方案之前,我们需要先来看一下背包问题的数学模型。
假设我们有n个物品,第i个物品的重量为wi,价值为vi,背包的容量为W。
那么背包问题可以用下面的数学模型来描述:$$\begin{aligned}&\max\sum_{i=1}^{n}v_ix_i\\&s.t.\sum_{i=1}^ {n}w_ix_i\leq W\\&x_i\in \{0,1\}\end{aligned}$$其中,$x_i$表示第$i$个物品是否被选中,$v_i$和$w_i$分别表示第$i$个物品的价值和重量。
第一个约束条件表示所有选中的物品的总重量不能超过背包的容量$W$,第二个约束条件表示每个物品最多只能选一次。
二、基于朴素贪心算法的解法朴素贪心算法的思路很简单:每次选择可行的物品中价值最大的那一个,直到不能再选为止。
对于背包问题来说,我们可以按照物品的单位价值(即价值与重量比值)从大到小排序,然后依次选择可行的物品加入背包中。
具体步骤如下:1. 计算每个物品的单位价值,按照单位价值从大到小排序。
2. 依次加入可行的物品,直到不能再加入为止。
3. 最后得到的物品组合就是背包问题的最优解。
该算法的时间复杂度为$O(nlogn)$,其中$n$为物品的数量。
背包问题的解决算法
背包问题的解决算法在日常生活中,我们常常会遇到背包问题。
比如说,你需要出门远足,但是又不想背太多的东西,怎么办?这时候,你就需要一种背包算法,用以帮助你选出最好的装备。
当然,背包算法不仅仅局限于这种场景,还可以应用于计算机科学等领域。
背包问题可以定义为:在限定容量下,找到能够装下最大价值物品的选择方案。
在计算机科学中,背包问题又分为0/1背包和无限背包两种类型。
0/1背包指的是在数量有限的情况下,每种物品只能选择一次;无限背包则意味着每种物品可以重复选择。
现在,我们来讨论一下几种常见的背包算法。
1. 贪心算法贪心算法是一种常见的解决背包问题的方法。
首先,根据每个物品的价值大小来求解。
然后,将每个物品按照其价值排序。
按照顺序,从价值最高的开始选择,在能够装下的情况下,尽量选择多的物品。
这种方法容易理解,但是它并不一定能够获得最优解。
2. 动态规划算法动态规划是解决背包问题最常用的算法。
它将问题分解成多个子问题,并且利用已经求解过的子问题来递推求解更大的问题。
具体来说,动态规划算法需要在每个状态中维护当前已经选择的物品,以及它们的价值和总重量。
然后,根据每个物品的价值,计算出在当前重量下选择这个物品的最大价值,同时比较这个价值和不选择这个物品的价值大小,最终得出最优解。
3. 回溯算法回溯算法也是一种解决背包问题的方法。
它的基本思想是,从初始状态开始,考虑每种可能的选择,最终找到最优解。
相比其他算法,回溯算法需要考虑所有可能的解,因此在问题较大的时候,它的时间复杂度可能较高。
但是,回溯算法通常能够得到最优解。
4. 分支定界算法分支定界算法也是一种解决背包问题的方法。
它通过确定每种物品能否被选择,来缩小解空间并加速搜索。
具体来说,它会根据价值和重量来对物品进行排序,并尝试从价值最高的物品开始选择。
然后,将剩余的物品按选择顺序进行排序,并对每个物品进行深度优先搜索,直到搜索到了可行解或者不可行解为止。
在实际应用中,以上几种算法都有其优缺点。
背包问题的各种求解方法
背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。
背包算法详解
背包算法1)登上算法用登山算法求解背包问题function []=DengShan(n,G,P,W) %n是背包的个数,G是背包的总容量,P是价值向量,W是物体的重量向量%n=3;G=20;P=[25,24,15];W2=[18,15,10];%输入量W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩余容量j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('装包的方法是');disp(X);disp(X.*W2);disp('总的价值是:');disp(P*X');时间复杂度是非指数的2)递归法先看完全背包问题一个旅行者有一个最多能用m公斤的背包,现在有n种物品,每件的重量分别是W1,W2,...,Wn,每件的价值分别为C1,C2,...,Cn.若的每种物品的件数足够多.求旅行者能获得的最大总价值。
本问题的数学模型如下:设f(x)表示重量不超过x公斤的最大价值,则f(x)=max{f(x-i)+c[i]} 当x>=w[i] 1<=i<=n可使用递归法解决问题程序如下:program knapsack04;const maxm=200;maxn=30;type ar=array[0..maxn] of integer;var m,n,j,i,t:integer;c,w:ar;function f(x:integer):integer;var i,t,m:integer;beginif x=0 then f:=0 elsebegint:=-1;for i:=1 to n dobeginif x>=w[i] then m:=f(x-i)+c[i];if m>t then t:=m;end;f:=t;end;end;beginreadln(m,n);for i:= 1 to n doreadln(w[i],c[i]);writeln(f(m));end.说明:当m不大时,编程很简单,但当m较大时,容易超时.4.2 改进的递归法改进的的递归法的思想还是以空间换时间,这只要将递归函数计算过程中的各个子函数的值保存起来,开辟一个一维数组即可程序如下:program knapsack04;const maxm=2000;maxn=30;type ar=array[0..maxn] of integer;var m,n,j,i,t:integer;c,w:ar;p:array[0..maxm] of integer;function f(x:integer):integer;var i,t,m:integer;beginif p[x]<>-1 then f:=p[x]elsebeginif x=0 then p[x]:=0 elsebegint:=-1;for i:=1 to n dobeginif x>=w[i] then m:=f(i-w[i])+c[i];if m>t then t:=m;end;p[x]:=t;end;f:=p[x];end;end;beginreadln(m,n);for i:= 1 to n doreadln(w[i],c[i]);fillchar(p,sizeof(p),-1);writeln(f(m));end.3)贪婪算法改进的背包问题:给定一个超递增序列和一个背包的容量,然后在超递增序列中选(只能选一次)或不选每一个数值,使得选中的数值的和正好等于背包的容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验题目:背包问题
实验目的:掌握动态规划、贪心算法的原理,并能够按其原理编程实现解决背包问题,以加深对上述方法的理解。
实验内容:一个旅行者准备随身携带一个背包. 可以放入背包的物品有n 种, 每种物品的重量和价值分别为 wj , vj . 如果背包的最大重量限制是 b, 怎样选择放入背包的物品以使得背包
的价值最大?
目标函数:
约束条件:
线性规划问题 由线性条件约束的线性函数取最大或最小的问题整数规划问题 线性规划问题的变量 xj 都是非负整数
Fk(y):装前 k 种物品, 总重不超过 y, 背包的最大价值
i(k,y):装前 k 种物品, 总重不超过 y, 背包达最大价值时装入物品的最大标号 递推方程、边界条件、标记函数
实例计算:v1 = 1, v2 = 3, v3 = 5, v4 = 9,
w1 = 2, w2 = 3, w3 = 4, w4 = 7,
b = 10
Fk(y) 的计算表如下:
K/y 1 2 3 4 5 6 7 8 9 10N
,max 11
∈≤∑∑==j n j j j n
j j j x b x w x v 0
)()(0,0)0(,0,0)(}
)(),(max{)(11101<-∞=⎥⎦
⎥⎢⎣⎢=≤≤=≤≤=+-=-y y F v w y y F n k F b y y F v w y F y F y F k k k k k k k
1 0 1 1
2 2
3 3
4 4 5
2 0 1
3 3
4 6 6 7 9 9
3 0 1 3 5 5 6 8 10 10 11
4 0 1 3
5 5
6 9 10 10 12
实验步骤:1、分析题目;
2、打开NetBeans软件,新建一个名叫Knapsackdxj的项目,并对其进行保存;
3在新建的项目下对我们所分析的题目进行编写;
4、调试所编写的程序;
5、运行文件,并对其进行测试,看是否正确。
实验结果:
实验小结:
在做本次实验之前,自己对动态规划、贪心算法的原理不是非常的理解,花了很多时间看了课本上的相关内容。
当你懂得算法的基本原理后,再参考老师所提供的代码进行完善补充,必须结合算法的实际情况对代码中的相关变量进行修改,这样才能充分利用课本所提供的代码完成本次实验。
通过本次试验,自己基本上掌握上述算法解背包问题的原理,达到实验的目的。
实验代码:
Knapsack.Java
package chap4;
import java.util.Scanner;
/**
*
* @author Jinyu
*/
public class Knapsack {
//***********************常量定义*****************************
static final int MAX_NUM = 20;
static final int MAX_WEIGHT = 100;
//*********************自定义数据结构************************* //********************题目描述中的变量************************ private final int weight[] = new int[MAX_NUM];
private final int value[] = new int[MAX_NUM];
private final int x[] = new int[MAX_NUM];
private final int m[][] = new int[MAX_NUM][MAX_NUM];
private final int s[][] = new int[MAX_NUM][MAX_NUM];
private int n;
private int w;
int h;
int l;
//***********************算法实现***************************** public void solve() {
int k = 1;
int a = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= w; j++) {
a = 1;
k = 1;
if (weight[i] <= j) {
h = weight[i];
l = value[i];
while (h <= j && a == 1) {//判断是否能够装入
h = weight[i] * k;//k是放入物品的次数,每放一次,k加1再重新判断是否还能放进
l = value[i] * k;
// System.out.println(h + "d");
if (m[i - 1][j] > m[i - 1][j - h] + l || m[i][j] > (m[i - 1][j - h] + l)) {//判断是否应该装入
if (k == 1) {//第一次的时候才执行不放入的操作,k不等于1的时候保持上一次操作的结果不进行改变
m[i][j] = m[i - 1][j];//不装入
s[i][j] = 0;
}
a = 0;
} else {
m[i][j] = m[i - 1][j - h] + l;//应该装入
s[i][j] = k;//存放装入次数,用于求最优解
k++;//装入后k加1
h = weight[i] * k;
l = value[i] * k;
// System.out.println(h + "e");//测试
}
// System.out.println(h + "c");
// System.out.println(i + " " + j + " " + m[i][j]);//测试
}
} else if (m[i][j] < m[i - 1][j]) {//无法装入
m[i][j] = m[i - 1][j];
if (k == 1) {
s[i][j] = 0;
}
}
// System.out.println(i + " " + j + " " + m[i][j]);//测试
}
}
System.out.println("可装入物品的最大价值为:" + m[n][w]);
// for (int i = 1; i <= n; i++) {//测试
// for (int j = 1; j <= w; j++) {
// System.out.println(i + " " + j + " " + s[i][j]);
// }
// }
}
public void trance() {
int y = w;
int j = n;
x[j] = s[j][y];//获取最后一样物品的装入信息
for (int i = j; i > 1; i--) {//由最后一个数据向上推算
y = y - x[i] * weight[i];
x[i - 1] = s[i - 1][y];//将每个物品的装入信息存放起来}
for (int i = 1; i <= n; i++) {
System.out.println("第" + i + "个物品放入" + x[i] + "样");
}
}
public void input() {
Scanner scanner = new Scanner(System.in);
System.out.println("请输入背包能够承受的总重量:");
w = scanner.nextInt();
System.out.println("请输入可以装入背包的物品的种类:");
n = scanner.nextInt();
System.out.println("请输入" + n + "种物品中每一种物品的重量和价值:");
for (int i = 1; i <= n; i++) {
weight[i] = scanner.nextInt();
value[i] = scanner.nextInt();
}
}
}
Test.java
package chap4;
/**
*
* @author Jinyu
*/
public class Test {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// MatrixChainApp app1=new MatrixChainApp();
// app1.test();
Knapsack app=new Knapsack();
app.input();
app.solve();
app.trance();
}
}
本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。