晶闸管的结构及符号.

合集下载

《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

广东省机械技工学校文化理论课教案首页7.5.1-10-j-01 科目电子技术基础授课日期10高汽修3班:10中汽修8班:10中制冷1班:课时2课题第六章晶闸管及其应用电路§6—1 晶闸管一、晶闸管的结构符号二、晶闸管的工作特性三、晶闸管的参数四、晶闸管的型号班级10高汽修3班10中汽修8班10中制冷1班教学目的使学生懂得1.晶闸管的结构符号;2. 晶闸管的工作特性;3. 晶闸管的参数4. 晶闸管的型号识读选用教具挂图重点1. 晶闸管的结构符号;2. 晶闸管的工作特性;难点晶闸管的结构、工作特性教学回顾稳压电路说明审阅签名:年月日【组织教】1. 起立,师生互相问好,营造良好的课堂氛围2. 坐下,清点人数,指出和纠正存在问题 【导入新课】1. 教学回顾:稳压电路2. 切入新课:前面我们学习的二极管整流,现在,我们就来学习有关的知识。

【讲授新课】第六章 晶闸管及其应用电路 §6—1 晶闸管晶闸管是硅晶体闸流管的简称,原名为可控硅整流器,也叫可控硅(S ilicon C ontrolled R ectifier )其特点是:体积小、重量轻、无噪声、寿命长、 容量大(正向平均电流达千安、正向耐压达数千伏),使半导体从弱电进入强电领域。

晶闸管主要用于整流、逆变、调压、开关四个方面。

晶闸管可分下列种类:本书介绍单向晶闸管,也就是人们常说的普通晶闸管。

一、单向晶闸管的结构、符号单向晶闸管由四层半导体材料组成的,有三个PN 结,对外有三个电极:第一层P 型半导体引出的电极叫阳极A (anode ),第三层P 型半导体引出的电极叫控制极G (gate pole ),第四层N 型半导体引出的电极叫阴极K (kathode )。

晶闸管有螺旋型和平板型等几种。

单向晶闸管和二极管一样是一种单向导电的器件,关键是多了一个控制极G ,这就使它具有与二极管完全不同的工作特性。

晶闸管的文字符号为“V ”。

普通晶闸管外形、结构和符号见图6—1。

晶闸管课件.

晶闸管课件.

A2 ~
O
α
α
A1

G
uo

2
t
α
可关断晶闸管及其直流调压管相同。
不同之处在于:普通晶闸管在导通后,控制极不再
起作用,只有在阳极电压为零时,晶闸管才会关断
(截止)。而可关断晶闸管
在uA>0, uG>0时,由截止变为导通
A
,而在uA>0, uG<0时,即加负脉冲
A
形成正反馈过程
T1
R
G EG
T2
EA
+ _
K EA > 0、EG > 0
在极短时间内使两个 三极管均饱和导通,此 过程称触发导通。
晶闸管导电实验
(1)晶闸管截止时,
若uA>0, uG≤0,晶闸管 仍然 截止;
(2)晶闸管截止时,
若uA>0, uG>0,晶闸管由 截止变为导通;

EA

S
EG
-+
(3)晶闸管导通时,若uA>0, uG≤0,晶闸管仍然 导通;
(2) 有源逆变。有源逆变是指把直流电变换成与 电网同频率的交流电,并将电能返送给交流电源。例 如, 目前采用的高压输电工程,将三相交流电先变换 成高压直流电,再进行远距离的输送,到目的地后, 再利用有源逆变技术把直流电变成与当地电网同频率 的交流电供给用户。
(3) 交流调压。 交流调压是指把不变的交流电压 变换成大小可调的交流电压。例如,用于灯光控制、 温度控制及交流电动机的调压调速。

D2 –
3.工作波形
t
uO为一个 2O
π+α
α
不完整的全
波脉动电压,
t
它相当于从 O

晶闸管及其整流电路(精)

晶闸管及其整流电路(精)

第六节晶闸管及其整流电路晶闸管又称可控硅,是目前半导体器件从弱电进入强电领域,制造技术最成熟、应用最广泛的器件之一。

晶闸管分普通晶闸管和特种晶闸管,特种晶闸管有快速晶闸管、双向晶闸管、可关断晶闸管等,人们所说的晶闸管是指普通型晶闸管。

一、晶闸管的外形、结构和符号晶闸管由三个PN结和四层半导体材料组成。

晶闸管的三个电极分别为阳极(A)、阴极(K)、控制极(G)。

三个PN结分别为J1、J2和J3。

晶闸管的符号与二极管相似,只是在其阴极处增加一个控制极,表明其导通的条件除了和二极管一样需要正向偏置的电压外,还需另外增加一个条件,那就是要有控制信号。

二、晶闸管的工作原理晶闸管可以理解为一个受控制的二极管,它也具有单向导电性,不同之处是除了应具有阳极与阴极之间的正向偏置电压外,还必须给控制极加一个足够大的控制电压,在这个控制电压作用下,晶闸管就会像二极管一样导通了,一旦晶闸管导通,控制电压即使取消,也不会影响其正向导通的工作状态。

晶闸管工作原理可用如图所示的实验电路验证。

图(a)所示为晶闸管反向偏置情况,无论是否给控制极加电压,都无法使晶闸管导通,灯泡不发光。

图(b )所示为晶闸管加正向偏置电压,阳极A 接高电位,阴极K 接低电位,但控制极G 没有接任何电压,晶闸管仍然处于关断状态,串联的灯泡不发光。

图(c )所示为晶闸管加正向偏置电压的基础上,给控制极G 加一个幅度和一个宽度都足够大的正电压,此时晶闸管导通,串联的灯泡发光。

图(d )所示为晶闸管导通后,若去掉控制极的电压,晶闸管仍然能保持导通状态,灯泡仍然发光。

综上所述,要使晶闸管由阻断状态变为导通状态,必须在晶闸管上加正向电压的同时,在控制极上加适当的正向触发电压,这样才能使晶闸管导通,一旦晶闸管导通,控制极就失去了控制作用。

要注意的是,晶闸管导通后若阳极电流小于某一个很小的电流I H (称为维持电流)时,晶闸管也会由导通变为截止,一旦晶闸管截止,必须重新触发才能再次导通。

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。

它的结构和工作原理可以分为几个方面进行介绍。

1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。

晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。

2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。

当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。

晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。

-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。

主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。

-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。

这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。

这种正反馈的作用会使晶闸管持续导通而不需要保持电流。

-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。

晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。

-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。

晶闸管的导通和关断是通过控制电极的电压来实现的。

当控制电压去除或降低,晶闸管将自动进入关断状态。

晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。

总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。

其工作原理是通过控制电压对其导通和关断进行控制。

晶闸管

晶闸管

峰值电压。
反向重复峰值电压URRM
——在门极断路而结温为额定值 时,允许重复加在器件上的反向 峰值电压。
2)额定电流 通态平均电流 IT(AV)
——在环境温度为40C和规定的冷却状态下,稳定结温 不超过额定结温时所允许流过的最大工频正弦半波电流的 平均值。标称其额定电流的参数。 ——使用时应按有效值相等的原则来选取晶闸管。
1-20
3、型号KP100-3、维持电流 IH=4mA的晶闸管,使用在下图 中是否合理?为什么?(不考虑裕 量)
(1)
(2)
1-21
(3)
1-22
1-13
4)其他参数
(1)维持电流 IH ——使晶闸管维持导通所必需的最小电流。 (2)擎住电流 IL ——晶闸管刚从断态转入通态并移除触发 信号后, 能维持导通所需的最小电流。 对同一晶闸管来说,通常IL约为IH的2~4 倍。 (3)浪涌电流ITSM ——指由于电路异常情况引起的并使结温 超过额定结温的不重复性最大正向过载电 流。 (4)门极触发电流IGT/触发电压UGT
2.2
半控器件—晶闸管· 引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。 开辟了电力电子技术迅速发展和广泛应用的崭新时代。 20世纪80年代以来,开始被全控型器件取代。 能承受的电压和电流容量最高,工作可靠,在大容量 的场合具有重要地位。
雪崩 击穿
-IA
图1-8 晶闸管的伏安特性
IG2>IG1>IG
(2)反向特性
反向特性类似二极管的反 向特性。 反向阻断状态时,只有极 小的反相漏电流流过。 当反向电压达到反向击穿

电力电子技术

电力电子技术

电子电力技术考纲序言:提玄勾要,弃小留大,以飨读者第1考点晶闸管1 . 1 内容归纳与总结1 . 1 . 1 晶闸管的结构与工作原理(1 ) 晶闸管可用图1-1 的符号表示, 阳极———A, 阴极———K,门极(控制极) ———G。

图1-1 晶闸管符号其结构为三个PN 结、四层结构、三端的半控型半导体开关管。

(2) 它的工作原理可理解为一个PNP三极管与一个NPN 三极管的连接, 这种连接是以电流正反馈的原理按特殊工艺制造而成的。

一旦晶闸管导通, 其控制极就失去作用。

普通晶闸管有平板型与螺旋型两种1 . 1 .2 关断与导通条件(1 ) 导通的充分必要条件。

1) 阳极与阴极间承受正向电压。

2) 门极施加相对阴极来说为正的脉冲信号。

(2 ) 关断条件为下列之一。

1) 阳极与阴极间承受反向电压。

2) 阳极电流减小到小于维持电流1 . 1 . 3 晶闸管的主要参数(1 ) 晶闸管的通态平均电流I F 。

在规定的条件下, 为晶闸管通以工频、正弦半波电流, 且负载 为纯电阻负载, 导通角不小于170°。

此时这个电流的平均值就是 半波电流的平均值。

若正弦半波电流的峰值为I m , 则I F =1/2π⎰0πI m sin ωt d ωt = I m /π.通过的电流有效值为I =1/2π 0π⎰( I m sin ωt ) 2d ωt =I m /2.波形系数: 通过晶闸管的电流的(一般为非正弦) 有效值与平 均值之比K f , 在此I / I F = 1 . 57 , 即I = 1 . 57 I F = K f I FK f 称波形系数。

还有其他参数: 额定电压、维持电流、擎住电流以及一些动态 参数和门极特性等。

(2 ) 实际应用中晶闸管的选择。

主要按实际承受的电压、电流选择晶闸管。

电压的选择:按晶闸管实际在线路中承受的电压的峰值, 还要乘以一个安全裕量。

电流的选择:按晶闸管中实际通过电流的有效值与所选晶闸管( 通态平均电流为I F ) 允许通过的电流有效值相等的原则, 再乘以安全裕量, 这被称做有效值相等的原则。

晶闸管的结构以及工作原理

晶闸管的结构以及工作原理

一、晶闸管的基本结构晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。

它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。

其符号表示法和器件剖面图如图1所示。

图1 符号表示法和器件剖面图普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。

通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。

随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。

当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。

晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。

通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。

晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。

当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。

转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。

如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。

晶闸管的结构与工作原理

晶闸管的结构与工作原理

晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。

晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。

在本文中,我们将讨论晶闸管的结构和工作原理。

一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。

2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。

3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。

在晶片上另一端同样有一块P型区,通常称为阴极。

4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。

5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。

门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。

晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。

二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。

下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。

此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。

2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。

在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。

3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。

因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。

晶匣管

晶匣管

(1) 晶闸管加阳极负电压-UA时,晶闸管处于反向
阻断状态 。
(2) 晶闸管加阳极正电压UA,控制极不加电压时,
晶闸管处于正向阻断状态。
(3) 晶闸管加阳极正电压+UA,同时也加控制极
正电压+UG,晶闸管导通。
(4) 要使导通的晶闸管截止,必须将阳极电压降
至零或为负,使晶闸管阳极电流降至维持电流IH以下。
晶匣管
晶闸管是晶体闸流管的简称,又可称做可控硅整 流器,以前被简称为可控硅;晶闸管是PNPN四 层半导体结构,它有三个极:阳极(A),阴极 (K)和控制极(G); 晶闸管具有硅整流器件的 特性,能在高电压、大电流条件下工作,且其工 作过程可以控制、被广泛应用于可控整流、交流 调压、无触点电子开关、逆变及变频等电子电路 中。 晶闸管是一种大功率开关型半导体器件,在电路 中用文字符号为“V”、“VT”表示(旧标准中 用字母“SCR”表示)。
20
(1)反向阻断:晶闸管加反向电压(即阳极a接电源负极, 阴极b接正极),晶闸管不导通。
s + L a k g
Ug
反向阻断
21
(2)正向阻断:晶闸管加正向电压(即阳极a接电源正极, 阴极b接负极),但开关S断开时,控制极g无触发电压, 灯不亮,说明晶闸管不导通。
S + L a k g
Ug
正向阻断

一、晶匣管的结构

晶闸管是具有三个PN结 的四层结构, 其外形、结构 及符号如图。 四 层 半 导 体
A 阳极
P1
A
三 个
PN
N1
P2 N2
K 阴极

G 控制极
G
K
(a) 外形 (b) 符号

晶闸管课件PPT中学小学

晶闸管课件PPT中学小学
以连续通过的工频正弦半波电流在一个周期内的平均值。它也
叫通态平均电流,简称正向电流。在选择晶闸管时,其通态平 均电流IF应为安装处实际通过的最大平均电流的1.5~2倍。 (2)维持电流IH。在规定环境温度下,控制极断开后,维持晶 闸管继续导通的最小电流称为维持电流IH,当正向电流小于IH 时,晶闸管自行关断。
15
例 10.1 有一纯电阻负载,需要电压 Uo 0 ~ 180 V、电流 I o 0 ~ 6 A 的可调
直流 电 源。 现采 用 单相 半 控桥 式整 流 电路 , 设晶 闸管 导 通角 180 ( 控制角
0)时, Uo 180 V, I o 6 A。试求:
(1)交流电压 u2 的有效值;
1
arccos
2 120 0.9 220
1 77.75
晶闸管的导通角为:
180 上1课8可0用 77.75 102.25
17
10.2.2 单结晶体管触发电路
对触发电路的要求:
(1)触发时能提供足够的触发脉冲电压和电流。一般要在触
发电路接到晶闸管控制极时,输出脉冲的幅度为4~10V。
IA /mA
向阻断,对应特性曲线的0A
C
段。此时晶闸管阳极和阴极
正向特性
之间呈现很大的正向电阻,
IG 增大 IG =0
只有很小的正向漏电流。当 UBR UBRM UAK增加到正向转折电压UBO
IH B 0
A UFRM UBO UAK/V
时,PN结J2被击穿,漏电流
反向特性
突然增大,从A点迅速经B点
跳到C点,晶闸管转入导通
近或大于150°。
(6)触发电路必须与主电路同步,否则输出电压的波形为非
周期性,造成输出电压平均值不稳定。

二极管,晶体管,晶闸管的符号

二极管,晶体管,晶闸管的符号

一、引言二极管、晶体管、晶闸管作为电子元件,在现代电子科技中具有重要的作用。

它们的符号不仅仅是标识其外形,更是代表着其内部结构和工作原理。

本文将深入探讨二极管、晶体管、晶闸管的符号,帮助读者更全面地理解这些电子元件的特点和应用。

二、二极管的符号二极管是一种只能导通一个方向的半导体器件,常用于电子电路中的整流、变频和限幅等功能。

在电子元件的图纸或电路图中,二极管的符号通常由一个三角形和一条水平线组成。

其中,三角形一端的角表示二极管的P端,即阳极;另一端的水平线表示二极管的N端,即阴极。

这个符号简单直观,清晰地表示了二极管的工作原理。

三、晶体管的符号晶体管是一种放大信号的半导体器件,其符号通常由一组相互连接的箭头组成。

箭头的方向表示了晶体管中电流的流向,以及控制端与电流流向之间的关系。

晶体管分为NPN型和PNP型两种,对应的符号也有所不同。

NPN型晶体管的符号中,两个朝向晶体管内部的箭头表示了从基极到发射极的电流流向;而PNP型晶体管的符号中,两个背向晶体管内部的箭头表示了从发射极到基极的电流流向。

这种符号设计能够直观地反映晶体管的输电性质和工作原理。

四、晶闸管的符号晶闸管是一种可控硅器件,具有开关功能和放大功能,被广泛应用于电力电子等领域。

其符号通常由一个由两个箭头组成的三角形和一个控制极组成。

三角形的两个箭头表示了晶闸管中的PN结,控制极则表示了晶闸管的触发电路。

晶闸管的符号设计简单明了,能够清晰地表示其内部结构和工作原理。

五、总结通过深入探讨二极管、晶体管、晶闸管的符号,我们可以更全面地理解这些电子元件的特点和应用。

二极管的符号由三角形和水平线组成,简洁直观;晶体管的符号由一组箭头表示,能够清晰地反映其输电性质和工作原理;晶闸管的符号由三角形和控制极组成,简单明了。

这些符号设计不仅帮助工程师们更方便地理解电路图,也为电子元件的应用提供了便利。

六、个人观点和理解在我看来,电子元件的符号设计是非常重要的,它直接影响着工程师们对电路图的理解和设计。

晶闸管调光电路完美版PPT

晶闸管调光电路完美版PPT
晶闸管调光电路
晶闸管 〔Silicon Controlled Rectifier〕
它的全称是晶体闸流管,又称可控硅,简 称SCR!
晶闸管是在晶体管根底上开展起来的一种大 功 率半导体器件。它的出现使半导体器件由弱电 领域 扩展到强电领域。
晶闸管也像半导体二极管那样具有单向导电
黑龙江农业工程职业学院
黑龙江农业工程职业学院
由图可求得
+ _
RP
E +
U_E
B2 + U_BB
B1
+
UB1UBB RB1 RB1RB2
_
RB1 UB BUB B
RB B
– 分压比(0.5~ 0.9)
等效电路
UE < UBB+UD = UP 时
B2
PN结反偏,IE很小;
+ _
RP
E +
RB2 UBB + UE UP时
A
_ PN结正向导通, IE迅速
U_E
RB1 B1
增加。 UP – 峰点电压
测量单结晶体管的实验电路 UD – PN结正向导通压降
黑龙江农业工程职业学院
单结晶体管的特点
1. UE < UP时单结管截止;
UE > UP时单结管导通, UE < UV时恢复截止。 UV为谷底电压。
2.单结晶体管的峰点电压UP与 外加固定电压UBB及分压比 有关,外加电压UBB或分压比 压UP不同。
也可以测任两脚之间正反向电阻,假设正反向电阻均接近无穷大,那么两极即为阳极和阴极,而另一脚为门极。
黑龙江农业工程职业学院
发射极E P 如KP5-7表示额定正向平均电流为5A,额定电压为700V。

晶闸管及其应用电路

晶闸管及其应用电路

U RM = 2 3U 2 = 2.45U 2

(3)电路特点 )
优点:较单相整流输出电压大小增大,脉动性减小, 优点:较单相整流输出电压大小增大,脉动性减小,电源平衡性较好 缺点:如直接接电网,会造成电网损耗;如由变压器供电, 缺点:如直接接电网,会造成电网损耗;如由变压器供电,铁芯易发 生直流磁化,使变压器效率降低。 生直流磁化,使变压器效率降低。
G
K阴极 阴极
K
晶闸管的结构
晶闸管的符号
二、晶闸管的工作特性
晶闸管的导电特点: 晶闸管的导电特点:
(1)晶闸管具有单向导电特性 ) (2)晶闸管的导通是通过门极控制的 )
晶闸管导通的条件: 晶闸管导通的条件:
(1)阳极与阴极间加正向电压 ) (2)门极与阴极间加正向电压,这个电压称为触发电压。 )门极与阴极间加正向电压,这个电压称为触发电压。
(2)晶阐管具有“可控”的单向导电特性,所以晶闸管又称单 )晶阐管具有“可控”的单向导电特性, 向可控硅。 向可控硅。 由于门极所需的电压、电流比较低(电路只有几十至几百毫安), 由于门极所需的电压、电流比较低(电路只有几十至几百毫安), 而阳极A与阴极 可承受很大的电压,通过很大的电流( 与阴极K可承受很大的电压 而阳极 与阴极 可承受很大的电压,通过很大的电流(电流可大 到几百安培以上),因此,晶阐管可实现弱电对强电的控制 ),因此 弱电对强电的控制。 到几百安培以上),因此,晶阐管可实现弱电对强电的控制。
t1 t2
α+θ=π
改变α的大小,即可改变输出电压uL的 改变 的大小,即可改变输出电压 的大小 波形。 越大, 越小 越小。 波形。 α 越大,θ越小。
ug 0 t1 t2
θ
α

晶闸管内部结构

晶闸管内部结构

晶闸管内部结构晶闸管是一种半导体器件,具有双向导电性能。

它内部的结构是由P型半导体、N型半导体和P-N结构组成的。

下面将详细介绍晶闸管内部结构的各个组成部分。

1. P型半导体区域:晶闸管的内部结构中,P型半导体区域是由P 型材料构成的。

这个区域中的材料经过掺杂,使其具有正电荷载流子,也就是空穴。

P型半导体区域在晶闸管中起到贯穿整个结构的作用。

2. N型半导体区域:N型半导体区域是由N型材料构成的,通过掺杂使其带有负电荷载流子,即电子。

N型半导体区域与P型半导体区域之间形成一个P-N结构。

3. P-N结构:P-N结构是晶闸管内部结构的关键部分,它是P型半导体区域和N型半导体区域的结合。

在P-N结构中,P型半导体的空穴和N型半导体的电子发生复合,形成一个耗尽层,使得P-N 结构中没有自由载流子。

4. 控制极:晶闸管内部还有一个控制极,用来控制晶闸管的导电状态。

控制极一般是由金属材料构成的,它与P型半导体区域之间通过绝缘层相隔。

当控制极施加正向电压时,绝缘层被击穿,控制极与P型半导体区域之间建立起电流通路,晶闸管导通;而当控制极施加反向电压时,绝缘层阻止电流通过,晶闸管截止。

除了上述的基本结构,晶闸管内部还有一些辅助结构,如扩散区、栅极、阳极等。

5. 扩散区:扩散区是指P型半导体区域和N型半导体区域之间的过渡区域,其主要作用是使P-N结构的界面更加平整,减少电阻,提高晶闸管的导电性能。

6. 栅极:栅极是晶闸管内部的一个金属电极,用来控制扩散区的电子和空穴的注入。

通过控制栅极的电压,可以控制扩散区中的电荷分布,进而控制晶闸管的导通和截止。

7. 阳极:阳极是晶闸管内部的一个金属电极,用来收集流过晶闸管的电流。

阳极通常连接外部电路,将晶闸管的导通电流引出。

晶闸管内部结构由P型半导体区域、N型半导体区域、P-N结构、控制极以及辅助结构如扩散区、栅极和阳极等组成。

这些各个部分的相互作用和控制,决定了晶闸管的双向导电特性。

晶闸管的结构及性能特点

晶闸管的结构及性能特点

晶闸管的结构及性能特点(一)普通晶闸管普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。

普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。

当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。

当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。

此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。

普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。

只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。

普通晶闸管一旦阻断,即使其阳极A与阴极K 之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。

普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。

(二)双向晶闸管双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。

图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。

图8-8是其触发状态。

当门极G和主电极T2相对于主电极T1的电压为正(V T2>V T1、V G>V T1)或门极G和主电极T1相对于主电极T2的电压为负(V T1<V T2、V G<V T2)时,晶闸管的导通方向为T2→T1此时T2为阳极,T1为阴极。

晶闸管的结构和符号

晶闸管的结构和符号

晶闸管的结构和符号晶闸管是在半导体二极管、三极管之后发觉的一种新型的大功率半导体器件,它是一种可掌握的硅整流元件,亦称可控硅。

晶闸管的形状如图所示,分为螺栓形和平板形两种,螺栓形带有螺栓的那一端是阳极A,它可与散热器固定,另一端的粗引线是阴极K,细线是掌握极(又称门极)G,这种结构更换元件很便利,用于100A 以下的元件。

平板形,中间的金属环是掌握极G,离掌握极远的一面是阳极A,近的一面是阴极K,这种结构散热效果比较好,用于200A 以上的元件。

晶闸管是由四层半导体构成的。

图8.2(a)、(b)、(c)所示分别为螺栓形晶闸管的内部结构、晶闸管的结构示意和表示符号。

简洁地说,晶闸管的结构是由四层半导体材料叠成三个PN结,并在对应的半导体材料上引出了三个电极。

这三个电极分别称为:A-阳极,G-掌握极,K-阴极。

从晶闸管的内部结构分析,可以将晶闸管等效为以如图所示方式相连接的NPN和PNP两个三极管VT1、VT2。

设三极管VT1和VT2的放大倍数分别为β1、β2。

当A-K间加正向电压时:VT1、VT2正向偏置。

若在G-K间施加正向电压,则会在三极管VT1的基极产生初始触发电流。

由于VT2和VT1之间各自的集电极和对方的基极相连,经VT1放大后的电流回到VT2的基极,从而形成剧烈的电流正反馈。

晶闸管能在几微秒的时间内完成导通过程。

当A-K间加反向电压时:VT1、VT2反向偏置,无论G-K端为正或反向电压。

晶闸管不能导通。

通过试验验证,可得以下结论:(1)正常状况下,若掌握极不加正向电压,则不论阳极加正向电压还是反向电压,晶闸管均不导通,这说明晶闸管具有正、反向阻断力量;(2)晶闸管的阳极和掌握极同时加正向电压时才能使晶闸管导通,这是晶闸管导通必需同时具备的两个条件;(3)在晶闸管导通之后,其掌握极就失去掌握作用,欲使晶闸管恢复阻断状态,必需把阳极正向电压降低到肯定值(或断开,或反向)。

(4)晶闸管导通后,两只三极管饱和导通,阳极与阴极间的管压降为1V左右,而电源电压几乎全部安排在负载电阻上。

晶闸管结构及其符号优秀课件

晶闸管结构及其符号优秀课件

(1) 通态平均电流IT(AV)
通态平均电流IT(AV)简称正向电流,指在标准散热条件和 规定环境温度下(不超过40oC),允许通过工频(50Hz)正 弦半波电流在一个周期内的最大平均值。
(2) 维持电流IH
维持电流IH,指在规定的环境温度和控制极断路的情况 下,维持晶闸管继续导通时需要的最小阳极电流。
晶闸管结构及其符号优秀课件
HOME
综上所述,可得如下结论:
① 晶闸管与硅整流二极管相似,都具有反向 阻断能力,但晶闸管还具有正向阻断能力,即 晶闸管正向导通必须具有一定的条件:阳极加 正向电压,控制作用。要使 晶闸管重新关断,必须做到以下两点之一:一是将阳 极电流减小到小于维持电流IH;二是将阳极电压减小 到零或使之反向。
反向阻断峰值电压UDRM ,指允许重复加在晶闸管上 的反向峰值电压。
(3) 额定电压UD
通常把UDRM 和URRM中较小的一个值称作晶闸管的额定电压。
晶闸管结构及其符号优秀课件
HOME
(4) 通态平均电压UT(AV)
习惯上称为导通时的管压降。这个电压当然越小越好, 一般为0.4V~1.2V。
2. 电流参数
晶闸管结构及其符号优秀课件
HOME
设在阳极和阴极之间接上电源UA,在控制极和 阴极之间接入电源UG,
图10.3 晶闸管工作原理
晶闸管结构及其符号优秀课件
HOME
(1) 晶闸管加阳极负电压-UA时,晶闸管处于反向阻断状态 。
(2) 晶闸管加阳极正电压UA,控制极不加电压时,晶闸管 处于正向阻断状态。
(3) 晶闸管加阳极正电压+UA,同时也加控制极正电压+UG, 晶闸管导通。 (4) 要使导通的晶闸管截止,必须将阳极电压降至零或为负, 使晶闸管阳极电流降至维持电流IH以下。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档