广东2020学年高中学业水平测试数学试题
2023-2024学年北京市高二下学期第二次普通高中学业水平合格性考试数学试题+答案解析
2023-2024学年北京市高二下学期第二次普通高中学业水平合格性考试数学试题一、单选题:本题共20小题,每小题5分,共100分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.函数的定义域为()A. B. C. D.3.在复平面内,复数对应的点的坐标为()A. B. C. D.4.如图,在三棱柱中,底面是BC的中点,则直线()A.与直线AC相交B.与直线AC平行C.与直线垂直D.与直线是异面直线5.如图,四边形ABCD是正方形,则()A. B. C. D.6.已知是定义在R上的奇函数,则()A. B.0 C.1 D.27.在下列各数中,满足不等式的是()A. B. C.1 D.28.命题“”的否定是()A. B.C. D.9.()A. B. C. D.10.在下列各数中,与相等的是()A. B. C. D.11.在下列函数中,在区间上单调递减的是()A. B. C. D.12.已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.在平面直角坐标系xOy中,以O为顶点,Ox为始边,终边在y轴上的角的集合为()A. B.C. D.14.在中,,则()A. B. C. D.315.下图是甲、乙两地10月1日至7日每天最低气温走势图.记这7天甲地每天最低气温的平均数为,标准差为;记这7天乙地每天最低气温的平均数为,标准差为根据上述信息,下列结论中正确的是()A. B. C. D.16.函数的一个单调递增区间是()A. B. C. D.17.已知,则下面不等式一定成立的是()A. B. C. D.18.2023年杭州亚运会的三个吉祥物分别是“琮琮”“莲莲”“宸宸”.“琮琮”代表世界遗产良渚古城遗址;“莲莲”代表世界遗产杭州西湖;“宸宸”代表世界遗产京杭大运河.某中学学生会宣传部有4名学生,其中高一、高二年级各2名.从这4名学生中随机抽取2名负责吉祥物的宣传工作,则这2名学生来自不同年级的概率为()A. B. C. D.19.在区间上,的最大值是其最小值的4倍,则实数()A.1B.2C.3D.420.小明同学在通用技术课上,制作了一个半正多面体模型.他先将正方体交于同一顶点的三条棱的中点分别记为,如图1所示,然后截去以为底面的正三棱锥,截后几何体如图2所示,按照这种方法共截去八个正三棱锥后得到如图3所示的半正多面体模型.若原正方体的棱长为6,则此半正多面体模型的体积为()A.108B.162C.180D.189二、填空题:本题共4小题,每小题5分,共20分。
2020年广东省普通高中学业水平考试测试题二(含答案)
2020年广东省普通高中学业水平考试数学周测试题 (二)一、选择题(本题共有15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B=()A.{-1,0} B.{0,1,2} C.{-1,0,1} D.{-2,-1,0}2、.设i是虚数单位,x是实数,若复数的虚部是2,则x= ( )A. 4B. 2C. -2D. -43、某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是( )A.6和9B.9和6C.7和8D.8和74、集合A={1,2,3}的所有子集的个数为 ( )A.5个B.6个C.7个D.8个5、“sin α>0”是“α为锐角”的 ( )A. 充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件6、)函数f(x)=的定义域为 ( )A.(-∞,1]B.(-∞,0)C.(-∞,0)∪(0,1]D.(0,1]7、若f(x)=,则f[f(-2)]= ( )A.2B.3C.4D.58、下列函数中,既不是奇函数,也不是偶函数的是 ( )A.y=x+sin 2x B、y= 2x cosx1 D.y=x2+sin xC.y=x2 +x29、 一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②直角三角形;③圆;④椭圆.其中正确的是 ( )A.①B.②C.③D.④10、设x ,y 满足约束条件 则z=x-2y 的最小值为 ( )A.-10B.-6C.-1D.011、化简:)3()(31212132b a b a -∙÷)31(6561b a =( )A.6aB.-aC.-9aD.92a12.已知圆C 与y 轴相切于点(0,5),半径为5,则圆C 的标准方程是 ( )A.(x-5)2+(y-5)2=25B.(x+5)2+(y-5)2=25C.(x-5)2+(y-5)2=5或(x+5)2+(y-5)2=5D.(x-5)2+(y-5)2=25或(x+5)2+(y-5)2=25 13、若log 7[log 3(log 2x )]=0,则21x 的值为 ( ) A .3B .2C .2D .314、函数f (x )=4sin x cos x ,则f (x )的最大值和最小正周期分别为 ( ) A.2和π B.4和π C.2和2π D.4和2π15、已知ABC ∆三个内角A 、B 、C 的对边分别是a b c 、、,若120,3,8,A b c =︒==则ABC ∆的面积等于( )A .6B .C .12D .二、填空题(本题共4小题,每小题4分,满分16分)16、函数y=ax+1(a>0)在区间[1,3]上的最大值为4,则a= 。
2020学年广东省佛山市新高考高一数学下学期期末学业水平测试试题
2019-2020学年高一下学期期末数学模拟试卷一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列函数中,在区间()0,∞+上单调递增的是( ) A .12y x =B .12xy ⎛⎫= ⎪⎝⎭C .12log xy =D .1y x=2.某船从A 处向东偏北30方向航行23千米后到达B 处,然后朝西偏南60的方向航行6千米到达C 处,则A 处与C 处之间的距离为( ) A .3千米B .23千米C .3千米D .6千米3.已知向量()1,1m λ=+,()2,2n λ=+,若()()m n m n +⊥-,则λ=( ) A .4-B .3-C .2-D .1-4.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为A .35B .20C .18D .95.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2 B .s 1=s 2 C .s 1<s 2 D .不确定6.设等比数列{}n a 的前n 项和为n S ,若4813S S =,则816S S =( ) A .19B .14 C .15D .2157.若两个正实数x ,y 满足2142x x y +=,且不等式224yx m m x+<-有解,则实数m 的取值范围是( ) A .()1,2- B .()(),21,-∞-⋃+∞ C .()2,1- D .()(),12-∞-+∞8.某几何体的三视图如图所示,它的体积为( )A .12πB .45πC .57πD .81π9.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,2()1(1)f x x =--,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(]0,9上,函数()()()h x f x g x =-有8个不同的零点,则k 的取值范围是( )A .123⎛ ⎝⎭B .123⎡⎢⎣⎭C .10,3⎛⎤⎥⎝⎦D .10,3⎛⎫ ⎪⎝⎭10.集合{}2|230M x x x =--≤,{}|0N x x =≥,则MN =( )A .{}|10x x -≤≤B .{}|03x x ≤≤C .{}|13x x -≤≤D .{}|01x x ≤≤11.若直线过点()()1,2,4,23+,则此直线的倾斜角是( ) A .30B .45C .60D .90。
2024-2025学年广东省中山市名校九年级数学第一学期开学学业水平测试模拟试题【含答案】
2024-2025学年广东省中山市名校九年级数学第一学期开学学业水平测试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在正方形ABCD 中,E 为AB 中点,连结DE ,过点D 作交BC 的延长线于点F ,连结若,则EF 的值为A .3B .C .D .42、(4分)四边形ABCD 中,3AB =,5CD =,M 、N 分别是边AD ,BC 的中点,则线段MN 的长的取值范围是()A .28MN < B .28MN < C .14MN < D .14MN < 3、(4分)下列交通标志中、既是轴对称图形又是中心对称图形的是()A .B .C .D .4、(4分)下列函数中,y 随x 的增大而减小的有()①y =﹣2x+1;②y =6﹣x ;③y =-13x +;④y =(1)x .A .1个B .2个C .3个D .4个5、(4分)若a 为有理数,且满足|a |+a=0,则()A .a >0B .a ≥0C .a <0D .a ≤06、(4分)0(1)k +-有意义,则一次函数(1)1y k x k =-+-的图象可能是()A .B .C .D .7、(4分)已知三条线段长a 、b 、c 满足a 2=c 2﹣b 2,则这三条线段首尾顺次相接组成的三角形的形状是()A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形8、(4分)如图为一△ABC,其中D .E 两点分别在AB 、AC 上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A .∠1>∠3B .∠2=∠4C .∠1>∠4D .∠2=∠3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E ,F ,AB =3,BC =4,则图中阴影部分的面积为_____.10、(4分)如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =2,ON =6,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_____.11、(4分)如图,ACB ∆和ECD ∆都是等腰直角三角形,,CA CB CE CD ==,ACB∆的顶点A 在ECD ∆的斜边DE 上,若4AB AE ==,则AD =____.12、(4分)=__.13、(4分)如图,在平面直角坐标系中,一次函数和函数的图象交于A 、B 两点.利用函数图象直接写出不等式的解集是____________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在ABC ∆中,90BAC ∠=,AD 是中线,E 是AD 的中点,过点A 作AF BC 交BE 的延长线于F ,连接CF .求证:四边形ADCF 是菱形.15、(8分)选择合适的点,在如图所示的坐标系中描点画出函数4y x =-+的图象,并指出当x 为何值时,y 的值大于1.16、(8分)将函数y =x +b (b 为常数)的图象位于x 轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y =|x +b|(b 为常数)的图象(1)当b =0时,在同一直角坐标系中分别画出函数112y x =+与y =|x +b|的图象,并利用这两个图象回答:x 取什么值时,112x +比|x|大?(2)若函数y =|x +b|(b 为常数)的图象在直线y =1下方的点的横坐标x 满足0<x <3,直接写出b 的取值范围17、(10分)如图,在ABC ∆中,点O 是AC 边的一个动点,过点O 作MN BC ,交ACB ∠的平分线于点E ,交ACB ∠的外角平分线于点F ,(1)求证:12OC EF =;(2)当点O 位于AC 边的什么位置时四边形AECF 是矩形?并说明理由.18、(10分)如图,矩形ABCD 的面积为20cm 2,对角线交于点O ,以AB 、AO 为邻边作平行四边形1AOC B ,对角线交于点O ;以AB AO 、为邻边作平行四边形2AOC B ;…;依此类推,则平行四边形45AO C B 的面积为______,平行四边形1n n AO C B +的面积为______.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知关于x 的不等式3x -m+1>0的最小整数解为2,则实数m 的取值范围是___________.20、(4分)对分式12x ,14y ,218xy 进行通分时,最简公分母是_____21、(4分)化简:2223()()612x y x y x x ++÷=__________.22、(4分)如图,以正方形ABCD 的BC 边向外作正六边形BEFGHC ,则∠ABE =___________度.23、(4分)如图,在正方形ABCD 中,延长BC 至E ,使CE =CA ,则∠E 的度数是_____.二、解答题(本大题共3个小题,共30分)24、(8分)数学活动课上,老师提出问题:如图,有一张长4dm ,宽1dm 的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为x dm ,体积为y dm 1,根据长方体的体积公式得到y 和x 的关系式:;(2)确定自变量x 的取值范围是;(1)列出y 与x 的几组对应值.x /dm …1814381258347819854…y /dm 1… 1.1 2.2 2.7m 1.0 2.8 2.5n 1.50.9…(4)在下面的平面直角坐标系xOy 中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;结合画出的函数图象,解决问题:当小正方形的边长约为dm 时,(保留1位小数),盒子的体积最大,最大值约为dm 1.(保留1位小数)25、(10分)解不等式组:3(2)42113x x x x -->⎧⎪+⎨>-⎪⎩.并把它的解集在数轴上表示出来26、(12分)如图,在菱形ABCD 中,AD ∥x 轴,点A的坐标为(0,4),点B 的坐标为(3,0).CD 边所在直线y 1=mx +n 与x 轴交于点C ,与双曲线y 2=k x (x<0)交于点D .(1)求直线CD 对应的函数表达式及k 的值.(2)把菱形ABCD 沿y 轴的正方向平移多少个单位后,点C 落在双曲线y 2=k x (x<0)上?(3)直接写出使y 1>y 2的自变量x 的取值范围.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据题意可得AB=2,∠ADE=∠CDF,可证△ADE≌△DCF,可得CF=1,根据勾股定理可得EF的长.【详解】∵ABCD是正方形∴AB=BC=CD,∠A=∠B=∠DCB=∠ADC=90°∵DF⊥DE∴∠EDC+∠CDF=90°且∠ADE+∠EDC=90°∴∠ADE=∠CDF且AD=CD,∠A=∠DCF=90°∴△ADE≌△CDF∴AE=CF=1∵E是AB中点∴AB=BC=2∴BF=3在Rt△BEF中,EF=.故选B.本题考查了正方形的性质,全等三角形的判定,勾股定理,关键熟练运用这些性质解决问题.2、C【解析】如图,连接BD,过M作MG∥AB交BD于G,连接NG,∵M是边AD中点,AB=3,MG∥AB,∴MG是边AD的中位线;∴BG=GD,MG=12AB=32;∵N是BC中点,BG=GD,CD=5,∴NG 是△BCD 的中位线,∴NG=12CD=52,在三角形MNG 中,由三角形三边关系得NG-MG <MN <MG+NG 即52-32<MN <52+32∴1<MN <4,当MN=MG+NG ,即当MN=4,四边形ABCD 是梯形,故线段MN 的长取值为14MN .故选C.此题主要考查中位线的应用,解题的关键是根据题意作出图形求解.3、A 【解析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【详解】A 、既是轴对称图形又是中心对称图形,故本选项正确;B 、不是轴对称图形,也不是中心对称图形,故本选项错误;C 、不是轴对称图形,也不是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选:A .本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.4、D 【解析】①中,k=-2<0;②中,k=-1<0;③中,k=-13<0<0.根据一次函数y=kx+b (k≠0)的性质,k<0时,y 随x 的增大而减小.故①②③④都符合.故选D.点睛:本题考查一次函数y=kx+b (k≠0)的性质:当k>0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.5、D 【解析】试题解析:0a a +=,a a ,∴=-0a ∴≤,即a 为负数或1.故选D .6、A 【解析】试题分析:当10{10k k -≥-≠时,式子0(1)k +-有意义,所以k >1,所以1-k <0,所以一次函数(1)1y k x k =-+-的图象过第一三四象限,故选A .考点:1.代数式有意义的条件;2.一次函数图像的性质.7、C 【解析】根据勾股定理的逆定理判断即可.【详解】∵三条线段长a 、b 、c 满足a 2=c 2﹣b 2,∴a 2+b 2=c 2,即三角形是直角三角形,故选C .本题考查了勾股定理的逆定理、等腰三角形的判定、等边三角形的判定、等腰直角三角形等知识点,能熟记勾股定理的逆定理的内容是解此题的关键.8、D 【解析】本题需先根据已知条件得出AD 与AC 的比值,AE 与AB 的比值,从而得出△ADE ∽△ACB ,最后即可求出结果.【详解】∵AD=31,BD=29,AE=30,EC=32,∴AB=31+29=60,AC=30+32=62,∴3161==22AD AC ,3061==02AE AB ,∴=AD AE AC AB ,∵∠A=∠A ,∴△ADE ∽△ACB ,∴∠2=∠3,∠1=∠4,故选:D.此题考查相似三角形的判定与性质,解题关键在于得出AD 与AC 的比值二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】首先结合矩形的性质证明△AOE ≌△COF ,得△AOE 、△COF 的面积相等,从而将阴影部分的面积转化为△BCD 的面积.【详解】∵四边形ABCD 是矩形,∴OA =OC ,∠AEO =∠CFO ;又∵∠AOE =∠COF ,在△AOE 和△COF 中,∵AEO CFO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,∴S 阴影=S △AOE +S △BOF +S △COD =S △AOE +S △BOF +S △COD =S △BCD ;∵S △BCD =12BC •CD =1,∴S 阴影=1.故答案为1.本题主要考查矩形的性质,三角形全等的判定和性质定理,掌握三角形的判定和性质定理,是解题的关键.10、【解析】作M 关于OB 的对称点M′,作N 关于OA 的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【详解】作M 关于OB 的对称点M′,作N 关于OA 的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN 的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt △M′ON′中,故答案为:.本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.11、6【解析】连接BD ,证明△ECA ≌△DCB ,继而得到∠ADB=90°,然后利用勾股定理进行求解即可.【详解】连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴CE=CD ,CA=CB ,∠ECD=∠ACB=90°,∴∠EDC=∠E=45°,∠ECA=∠DCB ,在△ACE 和△BCD 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ECA≌△BDC ,∴DB=AE=4,∠BDC=∠E=45°,∴∠ADB=∠EDC+∠BDC=90°,∴AD=6==,故答案为6.本题考查了等腰直角三角形的性质,全等三角形的判定与性质,勾股定理等,正确添加辅助线,熟练运用相关知识是解题的关键.【解析】分析:先将二次根式化为最简,然后合并同类二次根式即可.详解:原式点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.13、【解析】不等式的解集实际上是反比例函数值小于一次函数值的自变量x 的取值范围,根据图象可以直接得出答案.【详解】解:不等式的解集实际上是反比例函数值小于一次函数值的自变量x 的取值范围,根据图象得:1<x <1.故答案为:1<x <1.本题考查一次函数、反比例函数的图象和性质,理清不等式的解集与两个函数的交点坐标之间的关系是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、见解析.【解析】根据AAS 证△AFE ≌△DBE ,推出AF=BD .结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是平行四边形,再通过直角三角形斜边上的中线等于斜边的一半,证明AD=DC ,从而证明ADCF 是菱形..【详解】证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE(AAS);∴AF=DB.∵AD 是BC 边上的中线∴DB=DC ,∴AF=CD.∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90∘,AD 是BC 边上的中线,∴AD=DC=12BC ,∴ADCF 是菱形.本题考查菱形的判定,直角三角形斜边上的中线.读题根据已知题意分析图中线段、角之间的关系,从而选择合适的定理去证明四边形ADCE 为菱形.15、图象见详解;4x <时,0y >.【解析】任意选取两个x 的值,代入后求得对应y 值,在网格上对应标出,连接,可得所需直线,根据已画图象可得0y >时,x 的取值范围.【详解】在函数4y x =-+中,当0x =时,4y =,当2x =时,2y =,描点,画图如下:由图可知,0y >时,4x <.本题考查了一次函数图象的画法,及根据图象求符合条件的x 的取值范围的问题,熟练掌握相关技巧是解题的关键.16、(1)见解析,223x -<<;(2)21b -- 【解析】(1)画出函数图象,求出两个函数图象的交点坐标,利用图象法即可解决问题;(2)利用图象法即可解决问题.【详解】解:(1)当b =0时,y =|x +b|=|x|列表如下:x -101112y x =+12112y =|x|101描点并连线;∴如图所示:该函数图像为所求∵1y x 12||y x ⎧=+⎪⎨⎪⎩=∴2x=-32=-y 3⎧⎪⎪⎨⎪⎪⎩或y=x=22⎧⎨⎩∴两个函数的交点坐标为A 2233⎛⎫- ⎪⎝⎭,,B(2,2),∴观察图象可知:223x -<<时,112x +比||x 大;(2)如图,观察图象可知满足条件的b 的值为21b -- ,本题主要考查了一次函数的图象,一次函数的性质,一次函数图象与几何变换,掌握一次函数的图象,一次函数的性质,一次函数图象与几何变换是解题的关键.17、(1)见解析;(2)当点O 位于AC 的中点时,四边形AECF 是矩形,见解析.【解析】(1)由于CE 平分∠ACB ,MN ∥BC ,故∠BCE=∠OEC=∠OCE ,OE=OC ,同理可得OC=OF ,故0C=12EF ;(2)根据平行四边形的判定定理可知,当OA=OC 时,四边形AECF 是平行四边形.由于CE 、CF 分别是∠ECO 与∠OCF 的平分线,故∠ECF 是直角,则四边形AECF 是矩形.【详解】证明:(1)∵CE 平分ABC ∠,CF 平分ACD ∠∴ACE BCE ∠=∠,ACF DCF ∠=∠∵MN BC ∴OEC BCE ∠=∠,OFC FCD ∠=∠∴OEC OCE ∠=∠,OFC OCF ∠=∠∴OE OC OF ==∴12OC EF =(2)当点O 位于AC 的中点时,四边形AECF 是矩形理由如下:∵O 是AC 的中点∴OA OC =由(1)得:OE OF =∴四边形AECF 是平行四边形∵ACE BCE ∠=∠,ACF DCF∠=∠∴22180ACE ACF ∠+∠=︒∴90ACE ACF ∠+∠=︒即90ECF ∠=︒∴四边形AECF 是矩形.本题考查的是平行线,角平分线,平行四边形及矩形的判定与性质,是一道有一定的综合性的好题.18、58152n -【解析】根据矩形的性质求出△AOB 的面积等于矩形ABCD 的面积的14,求出△AOB 的面积,再分别求出△ABO 1、△ABO 2、△ABO 3、△ABO 4的面积,求出平行四边形45AO C B 的面积,然后再观察发现规律进行解答.【详解】解:∵四边形ABCD 是矩形,∴AO =CO ,BO =DO ,DC ∥AB ,DC =AB ,∴S △ADC =S △ABC =12S 矩形ABCD =12×20=10,∴S △AOB =S △BCO =12S △ABC =12×10=5,∴S △ABO1=12S △AOB =12×5=52,∴S △ABO2=12S △ABO1=54,S △ABO3=12S △ABO2=58,S △ABO4=12S △ABO3=516,∴S 平行四边形AO4C5B =2S △ABO4=2×516=58,∴平行四边形1n n AO C B +的面积为:152n -,故答案为:58,152n -.本题考查了三角形的面积,矩形的性质,平行四边形的性质的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.一、填空题(本大题共5个小题,每小题4分,共20分)19、4<7m ≤【解析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x -m+1>0,∴3x>m -1,∴x>-13m ,∵不等式3x -m+1>0的最小整数解为2,∴1≤-13m <3,解之得4<7m ≤.故答案为:4<7m ≤.本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.20、8xy 1【解析】由于几个分式的分母分别是1x 、4y 、8xy 1,首先确定1、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【详解】根据最简公分母的求法得:分式12x ,14y ,218xy 的最简公分母是8xy 1,故答案为8xy 1.此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.21、2x【解析】根据分式的除法法则进行计算即可.【详解】2223()()612x y x y x x ++÷2322()12=6()x y x x x y +⨯+=2x 故答案为:2x .本题考查了分式除法运算,掌握分式的除法法则是解题的关键.22、1【解析】分别求出正方形ABCD 的内角∠ABC 和正六边形BEFGHC 的内角∠CBE 的度数,进一步即可求出答案.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∵六边形BEFGHC 是正六边形,∴∠CBE =()621801206-⋅︒=︒,∴∠ABE =360°-(∠ABC +∠CBE )=360°-(90°+120°)=1°.故答案为:1.本题主要考查了正多边形的内角问题,属于基础题型,熟练掌握多边形的内角和公式是解题的关键.23、22.5°【解析】根据正方形的性质就有∠ACD =∠ACB =45°=∠CAE+∠AEC ,根据CE =AC 就可以求出∠CAE =∠E =22.5°.【详解】解:∵四边形ABCD 是正方形,∴∠ACD =∠ACB =45°.∵∠ACB =∠CAE+∠AEC ,∴∠CAE+∠AEC =45°.∵CE =AC ,∴∠CAE =∠E =22.5°.故答案为22.5°本题考查了正方形的性质的运用,等腰三角形的性质的运用,三角形的外角与内角的关系的运用及三角形内角和定理的运用.二、解答题(本大题共3个小题,共30分)24、(1)(42)(32)y x x x =--(或3241412x x x -+);(2)302x <<;(1)m =1,n =2;(4)12~58都行,1~1.1都行.【解析】根据题意,列出y 与x 的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.【详解】(1)y=x(4−2x)(1−2x)=4x 3−14x 2+12x 故答案为:y=4x 3−14x 2+12x (2)由已知0420320x x x >->->⎧⎪⎨⎪⎩解得:0<x<32(1)根据函数关系式,当x=12时,y=1;当x=1时,y=2(4)根据图象,当x=0.55dm 时,盒子的体积最大,最大值约为1.01dm1故答案为:12~58都行,1~1.1都行此题考查函数的表示方法,函数自变量的取值范围,函数图像,解题关键在于看懂图中数据.25、1<x <4,数轴表示见解析.【解析】分别求出各不等式的解集,再求出其公共解集即可.【详解】3(2)42113x x x x ①②-->⎧⎪⎨+>-⎪⎩,解不等式①得:x >1;解不等式②得:x <4,所以不等式组的解集为:1<x <4,解集在数轴上表示为:此题主要考查了解一元一次不等式组,以及在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.26、(1)148y =x 33-;k=-1.(2)把菱形ABCD 沿y 轴的正方向平移10个单位后,点C 落在双曲线上;(3)x<-5.【解析】试题分析:(1)根据勾股定理求得AB 的长,进而求得D 、C 的坐标,然后根据待定系数法即可求得直线CD 的函数表达式及k 的值;(2)把x=-2代入y 2=-20x (x <0)得,y=-202-=10,即可求得平移的距离;(3)根据函数的图象即可求得使y 1>y 2的自变量x 的取值范围.试题解析:(1)∵点A 的坐标为(0,4),点B 的坐标为(3,0),∴=5,∵四边形ABCD 是菱形,∴AD=BC=AB=5,∴D (-5,4),C (-2,0).∴4502m n m n -+⎧⎨-+⎩==,解得4383m n ==⎧-⎪⎪⎨⎪-⎪⎩∴直线CD 的函数表达式为y 1=-43x-83,∵D 点在反比例函数的图象上,∴4=5k -,∴k=-1.(2)∵C (-2,0),把x=-2代入y 2=-20x (x <0)得,y=-202-=10,∴把菱形ABCD 沿y 轴的正方向平移10个单位后,点C 落在双曲线y 2=k x (x <0)上.(3)由图象可知:当x <-5时,y 1>y 2.。
广东省东莞市2020年高二第二学期数学期末学业水平测试试题含解析
广东省东莞市2020年高二第二学期数学期末学业水平测试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若024n x dx ππ⎛⎫=+ ⎪⎝⎭,则2ny y ⎛⎫+ ⎪⎝⎭的展开式中常数项为 A .8 B .16C .24D .60【答案】C 【解析】因为πππ22200π)d 2(sin cos )d 2(sin cos )|44n x x x x x x x =+=+=-=⎰所以42()y y+的通项公式为42142k k k k T C y -+=⋅⋅ 令420r -=,即2r∴二项式42y y ⎛⎫+ ⎪⎝⎭展开式中常数项是224224C ⋅=,故选C.2.为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度【答案】B 【解析】 【分析】由三角函数的诱导公式可得sin 2cos(2)cos 2()6623y x x x ππππ⎛⎫=-=--=- ⎪⎝⎭,再结合三角函数图像的平移变换即可得解. 【详解】解:由sin 2cos(2)cos 2()6623y x x x ππππ⎛⎫=-=--=- ⎪⎝⎭, 即为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数cos 2y x =的图象向右平移3π个单位长度, 故选:B. 【点睛】3.已知函数()2()ln f x a x x =+-的定义域是()1,2-,则6⎛ ⎝的展开式中2x 的系数是( )A .192-B .192C .230-D .230【答案】A 【解析】 【分析】函数()2()ln f x a x x=+-的定义域是()1,2-可知,-1和2是方程20a x x +-=的两根,代入可求得a 值,再根据二项式定理的通项公式进行求解即可 【详解】因为()2()ln f x a x x=+-的定义域()1,2x ∈-,所以-1和2是方程20a x x+-=的两根,将-1代入方程20a x x +-=可得2a =,则二项式定理为6⎛⎝根据二项式定理的通项公式61122162rrr r T C x x --+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,62,122r r r --=∴=, 2x 的系数161162(1)192C --=-答案选A 【点睛】本题考察了一元二次方程根与系数的关系,二项式定理通项公式的求法及二项式系数的求法,难度不大,但综合性强4.已知复数()()121z i i =+-,则其共轭复数z 对应的点在复平面上位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】先利用复数的乘法求出复数z ,再根据共轭复数的定义求出复数z ,即可得出复数z 在复平面内对应的点所处的象限. 【详解】()()2121123z i i i i i =+-=+-=+,3z i ∴=-,所以, 复数z 在复平面对应的点的坐标为()3,1-,位于第四象限,故选D . 【点睛】5.二项式102x x ⎛+ ⎪⎝⎭的展开式中的常数项是A .第10项B .第9项C .第8项D .第7项【答案】B 【解析】展开式的通项公式T r +1=5202102rr r C x-,令5202r -=0,得r =8.展开式中常数项是第9项.选B. 点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数. 6.曲线cos y x =在3x π=处的切线斜率是( )A .12-B .12C .3-D .3 【答案】C 【解析】 【分析】根据已知对cos y x =求导,将3x π=代入导函数即可.【详解】∵y′=(cosx)′=-sinx , ∴当3x π=时,3=32y sinπ'=--. 故选C. 【点睛】本题考查利用导数求切线斜率问题,已知切点求切线斜率问题,先求导再代入切点横坐标即可,属于基础题.7.在如图所示的“茎叶图”表示的数据中,众数和中位数分别().A .23与26B .31与26C .24与30D .26与30【分析】根据茎叶图的数据,结合众数与中位数的概念,即可求解,得到答案. 【详解】根据茎叶图中的数据,可得众数是数据中出现次数最多的数据,即众数为31, 又由中位数的定义,可得数据的中位数为26, 故选B. 【点睛】本题主要考查了茎叶图的应用,其中解答中正确读取茎叶图的数据,以及熟记众数、中位数的概念是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知{}2|230A x x x =--<,{}|B x x a =<,若A 包含于B ,则实数a 的取值范围是( )A .()1,-+∞B .[)3,+∞C .()3,+∞D .(],3-∞【答案】B 【解析】 【分析】解一元二次不等式求得集合A ,根据A 是B 的子集列不等式,由此求得a 的取值范围. 【详解】由()()223310x x x x --=-+<解得13x,所以()13A ,=-,由于{}|B x x a =<且A 包含于B ,所以3a ≥,故a 的取值范围是[)3,+∞. 故选:B 【点睛】本小题主要考查一元二次不等式的解法,考查根据包含关系求参数的取值范围,属于基础题.9.设直线l 的一个方向向量()6,2,3d =,平面α的一个法向量()1,3,0n =-,则直线l 与平面α的位置关系是( ). A .垂直B .平行C .直线l 在平面α内D .直线l 在平面α内或平行【答案】D 【解析】∵直线l 的一个方向向量()6,2,3d =,平面α的一个法向量()1,3,0n =- ∴6(1)23300d n ⋅=⨯-+⨯+⨯=10.某机构需掌握55岁人群的睡眠情况,通过随机抽查110名性别不同的55岁的人的睡眠质量情况,得到如下列联表 男 女 总计 好 40 20 60 不好 20 30 50 总计6050110由()()()()()22n ad bc K a b c d a c b d -=++++得,27.8K ≈.根据2K 表()2P K k ≥0.050 0.010 0.001 k3.8416.63510.828得到下列结论,正确的是()A .有99%以下的把握认为“睡眠质量与性别有关”B .有99%以上的把握认为“睡眠质量与性别无关”C .在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别有关”D .在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别无关” 【答案】C 【解析】 【分析】根据独立性检验的基本思想判断得解. 【详解】因为7.8 6.635> ,根据2K 表可知;选C. 【点睛】本题考查独立性检验的基本思想,属于基础题.11.水以恒速(即单位时间内注入水的体积相同)注入下面的容器中,则此容器里水的高度h 与时间t 的函数关系图象是( )A .B .C .D .【答案】C 【解析】分析:根据容器的特征,结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断.结合函数图像分析判别可得结论.详解:A 、B 选项中:函数图象是单调递增的,与与题干不符,故排除;C 、当注水开始时,函数图象往下凸,可得出下方圆台容器下粗上细,符合题意.;D 、当注水时间从0到t 时,函数图象往上凸,可得出下方圆台容器下细上粗,与题干不符,故排除. 故选C .点睛:本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h 和时间t 之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想. 12.设集合,,,则( )A .B .C .D .【答案】D 【解析】 【分析】 先求出,再求得解.【详解】 由题得,所以=. 故选:D 【点睛】本题主要考查补集和交集的运算,意在考查学生对这种知识的理解掌握水平,属于基础题. 二、填空题:本题共4小题13.在5(2)x 的展开式中,2x 的系数为_____. 【答案】80 【解析】 【分析】本题考查二项式定理.二项展开式()na b +的第r 项为rn rr r n T C ab -=.则()52x +的第r 项为552r rr r T C x -=,令2r,可得2x 的系数为352280C ⋅=14.设函数()ln()1f x x k =++,()x g x e =. 若12()()f x g x =, 且12x x -的最小值为-1,则实数k 的值为__________. 【答案】2 【解析】分析:先表示函数12x x -,再利用导数求函数最小值,最后根据12x x -的最小值为-1得实数k 的值.详解:因为()()12f x g x =,设()()12f x g x a ==,则112,ln a x e k x a -=-= 所以112ln ()a x x e k a g a --=--=因为11()a g a ea-'=-,所以当1a >时,()0g a '>;当01a <<时,()0g a '<;即当1a =时,min ()112g a k k =-=-∴=.点睛:两函数关系问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式或方程,从而求出参数的取值范围或值.15.平面直角坐标系中,若点7(3,)2P π经过伸缩变换'21'3x xy y =⎧⎪⎨=⎪⎩后的点Q ,则极坐标系中,极坐标与Q 的直角坐标相同的点到极轴所在直线的距离等于__. 【答案】3. 【解析】 【分析】由点P 的直角坐标求出伸缩变换后的点Q 的坐标,将点Q 的坐标看作极坐标,根据极坐标的性质距离为sin ρθ,将极坐标代入即可求出距离【详解】点P 经伸缩变换后,点Q 的坐标为76,6π⎛⎫⎪⎝⎭,将点Q 看作极坐标, 则距离为7sin 6sin 36πρθ=⨯=.本题考查点的伸缩变换以及极坐标的性质,注意题目中给出的点P 的坐标为直角坐标,不要看错题目,并且注意距离为正数,要有绝对值.16.已知函数()(1)()f x x ax b =-+为偶函数,且在(0,)+∞单调递减,则(3)0f x -<的解集为________. 【答案】(,2)(4,)-∞⋃+∞ 【解析】分析:先根据函数()()()1f x x ax b =-+为偶函数分析得到a=b,再根据在()0,+∞单调递减得到a <0,再解不等式()30f x -<得其解集.详解:因为函数()()()1f x x ax b =-+为偶函数,所以22()(1)()()()()f x x ax b ax a b x b f x ax b a x b -=---+=+--==+-- 所以2,()a b f x ax a =∴=-,由于函数f(x)在()0,+∞单调递减,所以a <0.因为()30f x -<,所以22(3)0,680,4 2.a x a x x x x --∴-+∴><或故答案为:()(),24,-∞⋃+∞.点睛:(1)本题主要考查函数的单调性和奇偶性,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题时要注意细心,解不等式2(3)0a x a --<,两边同时除以a 时,要注意不等式要改变方向. 三、解答题:解答应写出文字说明、证明过程或演算步骤。
2020学年广州市高二年级学生学业水平测试数学官方答案
2020学年广州市高二年级学生学业水平数学测试本试卷分选择题和非选择题两部分, 共4页. 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的451.函数fA .[2.集合A. 5 3.A. 2 4.A. x C. 2x 5. 函数A .⎣⎦⎣⎦⎣⎦⎣⎦6.做一个体积为32m 3,高为2m 的无盖长方体的纸盒,则用纸面积最小为 ( )A. 64m 2B. 48m 2C. 32m 2D. 16m 27. 已知变量x y ,满足约束条件201010x y x y y ⎧--≥⎪+-≤⎨⎪+≥⎩,,.则目标函数2z y x =-的最小值为( )A .5-B .4-C .3-D .2-8.如图1所示,程序框图(算法流程图)输出的结果是 ( )A .2B .4C .8D .16 9.关于x 的不等式2220x ax a +-> 的解集中的一个元素为1,则实数a 的取值范围是( ) A. ()(),12,-∞-+∞ B.(-1,2)C. (1,2⎛⎫⎝110.(A.1311.在△为 .12.图表示13.已知向量(1,2),(3,4),AB AC ==则BC = 14.已知表示不超过实数x 的最大整数,g(x)=[x]()21log f x x x=-的零点,则g(0x )的值等于 .三、解答题:本大题共6小题,满分80分.解答应写出文字说明、演算步骤和推证过程. 15.(本小题满分12分)某中学高一年级新生有1000名,从这些新生中随机抽取100名学生作为样本测量其身高(单位:cm ),(1(2)上的概率.16.(1(233⎝⎭17. (本小题满分14分)A 1C 1F如图3,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E,F 分别是A 1D 1,A 1A 的中点。
2020年广东省普通高中学业水平数学模拟试卷及答案解析(12月份)
参考答案与试题解析
一.选择题(共15小题,满分60分,每小题4分)
1.(4分)若集合A={1,2,3,4,5},B={2,4,6,8},则集合A∪B=( )
A.{1,2,3,4,5,6,8}B.{2,3,4,5,6}
C.{1,3,5,6,8}D.{2,4}
【分析】利用并集定义直接求解.
【解答】解:∵集合A={1,2,3,4,5},B={2,4,6,8},
∴集合A∪B={1,2,3,4,5,6,8}.
故选:A.
【点评】本题考查并集的求法,考查集合的并集运算等基础知识,考查运算求解能力,是基础题.
2.(4分) =( )
A.﹣ + iB.﹣ ﹣ iC. + iD. ﹣
5.(4分)若直线l与两直线y=1,直线x﹣y﹣7=0分别交于M,N两点且MN的中点为P(1,﹣1),则直线l的斜率等于( )
A. B.﹣ C. D.﹣
6.(4分)不等式x﹣x2>0的解集是( )
A.(﹣1,0)B.(﹣∞,﹣1)∪(0,+∞)
C.(0,1)D.(﹣∞,0)∪(1,+∞)
7.(4分)计算: =( )
A.22019B.22018C.22017D.22016
12.(4分)圆心在x轴上,半径为1,且过点(2,1)的圆的方程是( )
A.(x﹣2)2+y2=1B.(x+2)2+y2=1
C.(x﹣1)2+(y﹣3)2=1D.x2+(y﹣2)2=1
13.(4分)如图,在平行四边形ABCD中,M、N分别为AB、AD上的点,且 = , = ,连接AC、MN交于P点,若 =λ ,则λ的值为( )
2020年广东省普通高中学业水平数学模拟仿真试卷(三)
2020年广东省普通高中学业水平数学模拟仿真试卷(三)一、选择题(本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 已知集合A ={1, 3, √m},B ={1, m},A ∪B =A ,则m =( ) A.0或 √3 B.0或3 C.1或 √3 D.1或32. 复数z 满足(z −i)(2−i)=5.则z =( ) A.−2−2i B.−2+2i C.2−2i D.2+2i3. 若函数f(x)={x 2+1,x ≤1lg x,x >1 ,则f[f(10)]=( )A.lg 101B.2C.1D.04. 公比为√23的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 16=( ) A.4 B.5C.6D.75. 在△ABC 中,AB =2,AC =3,AB →⋅BC →=1,则BC 等于( ) A.√3 B.√7 C.2√2 D.√236. 已知sin α+cos α=√2,α∈(0, π),则tan α=( ) A.−1 B.−√22C.√22D.17. 设a >0且a ≠1,则“函数f(x)=a x 在R 上是减函数”,是“函数g(x)=(2−a)x 3在R 上是增函数”的( ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8. 已知矩形ABCD ,AB =1,BC =√2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( ) A.存在某个位置,使得直线AC 与直线BD 垂直 B.存在某个位置,使得直线AB 与直线CD 垂直 C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直9. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A.众数 B.平均数C.中位数D.标准差10. 对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( ) A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心11. 在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为( )A.16B.13C.23D.4512. 已知正三角形ABC 的顶点A(1, 1),B(1, 3),顶点C 在第一象限,若点(x, y)在△ABC 内部,则z =−x +y 的取值范围是( ) A.(1−√3, 2) B.(0, 2) C.(√3−1, 2) D.(0, 1+√3)13. 设F 1,F 2是椭圆E:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30∘的等腰三角形,则E 的离心率为( ) A.12B.23C.34D.4514. 已知x =ln π,y =log 52,z =e −12,则( ) A.x <y <z B.z <x <y C.z <y <x D.y <z <x15. 若tan θ+1tan θ=4,则sin 2θ=( ) A.15B.14C.13D.12二、填空题(本大共4个小题,每个小题4分,满分16分)函数f(x)=√1−2log 6x 的定义域为________.已知△ABC的三边长成公比为√2的等比数列,则其最大角的余弦值为________.过点(3, 1)作圆(x−2)2+(y−2)2=4的弦,其中最短的弦长为________.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.三、解答题(本大题共2个小题,每个小题12分,满分24分.解答必须写出文字说明、证明过程和演算步骤)已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C+√3a sin C−b−c=0(1)求A;(2)若a=2,△ABC的面积为√3,求b,c.已知等差数列{a n}前三项的和为−3,前三项的积为8.(Ⅰ)求等差数列{a n}的通项公式;(Ⅱ)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.参考答案与试题解析2020年广东省普通高中学业水平数学模拟仿真试卷(三)一、选择题(本大题共15小题,每小题4分,满分60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.【答案】B【考点】并集及其运算集合的包含关系判断及应用【解析】由两集合的并集为A,得到B为A的子集,转化为集合间的基本关系,再利用子集的定义,转化为元素与集合,元素与元素的关系.【解答】解:A∪B=A⇔B⊆A.∴{1, m}⊆{1, 3, √m},∴m=3或m=√m,即m=3或m=0或m=1(与集合中元素的互异性矛盾,舍去).综上所述,m=0或m=3.故选B.2.【答案】D【考点】复数的运算【解析】复数的乘法转化为除法,化简复数方程,利用复数的分子分母同乘分母的共轭复数,然后整理即可.【解答】(z−i)(2−i)=5⇒z−i=52−i ⇒z=52−i+i=5(2+i)(2−i)(2+i)+i=5(2+i)5+i=2+2i.3.【答案】B【考点】求函数的值函数的求值【解析】利用函数的性质直接求解.【解答】∵函数f(x)={x2+1,x≤1lg x,x>1,∴f(10)=lg10=1,f[f(10)]=f(1)=12+1=2.故选:B.4.【答案】B【考点】对数的运算性质等比数列的通项公式【解析】由公比为√23的等比数列{an}的各项都是正数,且a3a11=16,知a72=16,故a7=4,a16=a7⋅q9=32,由此能求出log2a16.【解答】∵公比为√23的等比数列{a n}的各项都是正数,且a3a11=16,∴a72=16,∴a7=4,∴a16=a7⋅q9=32,∴log2a16=log232=5.5.【答案】A【考点】解三角形数量积表示两个向量的夹角【解析】设∠B=θ,由AB→⋅BC→=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.【解答】解:根据题意画出相应的图形,如图所示:∵AB→⋅BC→=1,设∠B=θ,AB=2,∴2⋅BC⋅cos(π−θ)=1,即cosθ=−12BC,又根据余弦定理得:cosθ=22+BC2−324BC=BC2−54BC,∴−12BC=BC2−54BC,即BC2=3,则BC=√3.故选A.6.【答案】 D【考点】同角三角函数间的基本关系 【解析】由条件利用同角三角函数的基本关系,求得tan α的值. 【解答】∵ sin α+cos α=√2,α∈(0, π),∴ 1+2sin αcos α=2, ∴ sin αcos α=12,∴ sin α=cos α=√22,则tan α=sin αcos α=1,7.【答案】 A【考点】充分条件、必要条件、充要条件 【解析】根据函数单调性的性质结合充分条件和必要条件的定义即可得到结论. 【解答】a >0且a ≠1,则“函数f(x)=a x 在R 上是减函数”,所以a ∈(0, 1), “函数g(x)=(2−a)x 3在R 上是增函数”所以a ∈(0, 2); 显然a >0且a ≠1,则“函数f(x)=a x 在R 上是减函数”,是“函数g(x)=(2−a)x 3在R 上是增函数”的充分不必要条件. 8.【答案】 B【考点】空间中直线与直线之间的位置关系 【解析】先根据翻折前后的变量和不变量,计算几何体中的相关边长,再分别筛选四个选项,若A 成立,则需BD ⊥EC ,这与已知矛盾;若B 成立,则A 在底面BCD 上的射影应位于线段BC 上,可证明位于BC 中点位置,故B 成立;若C 成立,则A 在底面BCD 上的射影应位于线段CD 上,这是不可能的;D 显然错误 【解答】如图,AE ⊥BD ,CF ⊥BD ,依题意,AB =1,BC =√2,AE =CF =√63,BE =EF =FD =√33, A ,若存在某个位置,使得直线AC 与直线BD 垂直,则∵ BD ⊥AE ,∴ BD ⊥平面AEC ,从而BD ⊥EC ,这与已知矛盾,排除A ;B ,若存在某个位置,使得直线AB 与直线CD 垂直,则CD ⊥平面ABC ,平面ABC ⊥平面BCD取BC 中点M ,连接ME ,则ME ⊥BD ,∴ ∠AEM 就是二面角A −BD −C 的平面角,此角显然存在,即当A 在底面上的射影位于BC 的中点时,直线AB 与直线CD 垂直,故B 正确;C ,若存在某个位置,使得直线AD 与直线BC 垂直,则BC ⊥平面ACD ,从而平面ACD ⊥平面BCD ,即A 在底面BCD 上的射影应位于线段CD 上,这是不可能的,排除C D ,由上所述,可排除D 9. 【答案】 D【考点】众数、中位数、平均数 【解析】利用众数、平均数、中位标准差的定义,分别求出,即可得出答案 【解答】A 样本数据:82,84,84,86,86,86,88,88,88,88.B 样本数据84,86,86,88,88,88,90,90,90,90 众数分别为88,90,不相等,A 错. 平均数86,88不相等,B 错.中位数分别为86,88,不相等,C 错. A 样本方差S 2=110[(82−86)2+2×(84−86)2+3×(86−86)2+4×(88−86)2]=4,B 样本方差S 2=110[(84−88)2+2×(86−88)2+3×(88−88)2+4×(90−88)2]=4, 故两组数据的标准差均为2,D 正确.10. 【答案】 C【考点】直线与圆的位置关系 【解析】对任意的实数k ,直线y =kx +1恒过点(0, 1),且斜率存在,(0, 1)在圆x 2+y 2=2内,故可得结论. 【解答】对任意的实数k ,直线y =kx +1恒过点(0, 1),且斜率存在 ∵ (0, 1)在圆x 2+y 2=2内∴ 对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是相交但直线不过圆心 11.【答案】 C【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】设AC =x ,则BC =12−x ,由矩形的面积S =x(12−x)>20可求x 的范围,利用几何概率的求解公式可求. 【解答】设AC =x ,则BC =12−x(0<x <12)矩形的面积S=x(12−x)>20∴x2−12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P=10−212−0=23.12.【答案】A【考点】简单线性规划【解析】由A,B及△ABC为正三角形可得,可求C的坐标,然后把三角形的各顶点代入可求z的值,进而判断最大与最小值,即可求解范围【解答】设C(a, b),(a>0, b>0)由A(1, 1),B(1, 3),及△ABC为正三角形可得,AB=AC=BC=2即(a−1)2+(b−1)2=(a−1)2+(b−3)2=4∴b=2,a=1+√3即C(1+√3, 2)则此时直线AB的方程x=1,AC的方程为y−1=√33(x−1),直线BC的方程为y−3=−√33(x−1)当直线x−y+z=0经过点A(1, 1)时,z=0,经过点B(1, 3)z=2,经过点C(1+√3, 2)时,z=1−√3∴z max=2,z min=1−√313.【答案】C【考点】椭圆的离心率【解析】利用△F2PF1是底角为30∘的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=3a2上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30∘的等腰三角形,∴|PF2|=|F2F1|,∠PF2E=60∘,∵P为直线x=3a2上一点,∴|PF2|⋅cos60∘=3a2−c,∴2(32a−c)=2c,∴e=ca=34.故选C.14.【答案】D【考点】不等式性质的应用指数式、对数式的综合比较不等式比较两数大小【解析】利用x=lnπ>1,0<y=log52<12,1>z=e−12>12,即可得到答案.【解答】解:∵x=lnπ>ln e=1,0<log52<log5√5=12,即y∈(0, 12);1=e0>e−12=e>√4=12,即z∈(12, 1),∴y<z<x.故选D.15.【答案】D【考点】二倍角的三角函数【解析】先利用正弦的二倍角公式变形,然后除以1,将1用同角三角函数关系代换,利用齐次式的方法化简,可求出所求.【解答】sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=2tanθ+1tanθ=24=12二、填空题(本大共4个小题,每个小题4分,满分16分)【答案】(0, √6]【考点】函数的定义域及其求法【解析】根据开偶次方被开方数要大于等于0,真数要大于0,得到不等式组,根据对数的单调性解出不等式的解集,得到结果.【解答】解:函数f(x)=√1−2log6x要满足1−2log6x≥0,且x>0∴2log6x≤1,x>0∴log6x≤12,x>0,∴log6x≤log6√6,x>0,∴0<x≤√6,故答案为:(0, √6]. 【答案】−√2 4【考点】等比数列的性质余弦定理【解析】根据三角形三边长成公比为√2的等比数列,根据等比数列的性质设出三角形的三边为a,√2a,2a,根据2a 为最大边,利用大边对大角可得出2a所对的角最大,设为θ,利用余弦定理表示出cosθ,将设出的三边长代入,即可求出cosθ的值.【解答】解:根据题意设三角形的三边长分别为a,√2a,2a,∵2a>√2a>a,∴2a所对的角为最大角,设为θ,则根据余弦定理得:cosθ=2√2a)222√2a2=−√24.故答案为:−√24.【答案】2√2【考点】直线与圆的位置关系【解析】由圆的方程找出圆心与半径,判断得到(3, 1)在圆内,过此点最短的弦即为与过此点直径垂直的弦,利用垂径定理及勾股定理即可求出.【解答】根据题意得:圆心(2, 2),半径r=2,∵√(3−2)2+(1−2)2=√2<2,∴(3, 1)在圆内,∵圆心到此点的距离d=√2,r=2,∴最短的弦长为2√r2−d2=2√2.【答案】√33π【考点】扇形面积公式柱体、锥体、台体的体积计算【解析】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.【解答】解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,又半圆的弧长为2π,圆锥的底面半径满足2πr=2π,所以r=1,所以圆锥的体积为:13×π×√22−1=√33π.故答案为:√33π.三、解答题(本大题共2个小题,每个小题12分,满分24分.解答必须写出文字说明、证明过程和演算步骤)【答案】由正弦定理得:a cos C+√3a sin C−b−c=0,即sin A cos C+√3sin A sin C=sin B+sin C∴sin A cos C+√3sin A sin C=sin(A+C)+sin C,即√3sin A−cos A=1∴sin(A−30∘)=12.∴A−30∘=30∘∴A=60∘;若a=2,△ABC的面积=12bc sin A=√34bc=√3,∴bc=4.①再利用余弦定理可得:a2=b2+c2−2bc⋅cos A=(b+c)2−2bc−bc=(b+c)2−3×4=4,∴b+c=4.②结合①②求得b=c=2.【考点】正弦定理【解析】(1)已知等式利用正弦定理化简,整理后得到sin(A−30∘)=12.即可求出A的值;(2)若a=2,由△ABC的面积为√3,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】由正弦定理得:a cos C+√3a sin C−b−c=0,即sin A cos C+√3sin A sin C=sin B+sin C∴ sin A cos C +√3sin A sin C =sin (A +C)+sin C , 即√3sin A −cos A =1 ∴ sin (A −30∘)=12. ∴ A −30∘=30∘ ∴ A =60∘;若a =2,△ABC 的面积=12bc sin A =√34bc =√3,∴ bc =4.①再利用余弦定理可得:a 2=b 2+c 2−2bc ⋅cos A =(b +c)2−2bc −bc =(b +c)2−3×4=4, ∴ b +c =4.②结合①②求得b =c =2.【答案】(1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,∵ 等差数列{a n }前三项的和为−3,前三项的积为8, ∴ {3a 1+3d =−3a 1(a 1+d +(a 1+2d)=8 ,解得{a 1=2d =−3,或{a 1=−4d =3 ,所以由等差数列通项公式,得a n =2−3(n −1)=−3n +5,或a n =−4+3(n −1)=3n −7. 故a n =−3n +5,或a n =3n −7.(2)当a n =−3n +5时,a 2,a 3,a 1分别为−1,−4,2,不成等比数列; 当a n =3n −7时,a 2,a 3,a 1分别为−1,2,−4,成等比数列,满足条件. 故|a n |=|3n −7|={−3n +7,n =1,23n −7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+...+|a n |=5+(3×3−7)+(3×4−7)+...+(3n −7) =5+(n−2)[2+(3n−7)]2=32n 2−112n +10.当n =2时,满足此式.综上所述,S n ={4,n =132n 2−112n +10,n ≥2 .【考点】数列的求和 等差数列的性质【解析】(Ⅰ)设等差数列{a n }的公差为d ,由等差数列{a n }前三项的和为−3,前三项的积为8,利用等差数列的通项公式列出方程组,求公差和首项,由此能求出等差数列{a n }的通项公式.(Ⅱ)由(Ⅰ)和a 2,a 3,a 1分别为−1,2,−4,成等比数列,知|a n |=|3n −7|={−3n +7,n =1,23n −7,n ≥3 ,由此能求出数列{|a n |}的前n 项和为S n . 【解答】(1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d ,∵ 等差数列{a n }前三项的和为−3,前三项的积为8, ∴ {3a 1+3d =−3a 1(a 1+d +(a 1+2d)=8 ,解得{a 1=2d =−3,或{a 1=−4d =3 ,所以由等差数列通项公式,得a n =2−3(n −1)=−3n +5,或a n =−4+3(n −1)=3n −7. 故a n =−3n +5,或a n =3n −7.(2)当a n =−3n +5时,a 2,a 3,a 1分别为−1,−4,2,不成等比数列; 当a n =3n −7时,a 2,a 3,a 1分别为−1,2,−4,成等比数列,满足条件. 故|a n |=|3n −7|={−3n +7,n =1,23n −7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+...+|a n |=5+(3×3−7)+(3×4−7)+...+(3n −7) =5+(n−2)[2+(3n−7)]2=32n 2−112n +10.当n =2时,满足此式.综上所述,S n ={4,n =132n 2−112n +10,n ≥2 .。
广东省2020学年高中数学学业水平测试学考仿真卷1
广东省2020学年高中数学学业水平测试学考仿真卷1(时间:90分钟;分值:100分,本卷共4页)一、选择题(本大题共15小题,每小题4分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合A ={1,2},B ={1,m,3},如果A ∩B =A ,那么实数m 等于( ) A .-1 B .0 C .2 D .4C [∵A ∩B =A ,∴A ⊆B .∵A ={1,2},B ={1,m,3},∴m =2.] 2.下列函数中,与函数y =1x定义域相同的函数为( )A .y =1xB .y =xC .y =x -2D .y =ln xD [函数y =1x的定义域是(0,+∞),A 中的定义域是{x |x ≠0},B 中的定义域是{x |x ≥0},C 中的定义域是{x |x ≠0},D 中的定义域是(0,+∞),故选D.]3.复数z =21-i +2+i 的虚部是( )A .3B .2C .2iD .3iB [依题意z =2(1+i )(1-i )(1+i )+2+i =1+i +2+i =3+2i ,故虚部为2,所以选B.]4.“sin A =12”是“A =30°”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B [因为sin 30°=12,所以“sin A =12”是“A =30°”的必要条件.又150°,390°等角的正弦值也是12,故“sin A =12”不是“A =30°”的充分条件.故“sin A =12”是“A =30°”的必要不充分条件.]5.已知直线的点斜式方程是y -2=-3(x -1),那么此直线的倾斜角为( ) A.π6 B.π3 C.2π3 D.5π6C [因为k =tan α=-3,α∈[0,π),所以α=2π3.] 6.若点A (2,22)在抛物线C :y 2=2px 上,记抛物线C 的焦点为F ,则直线AF 的斜率为( )A.24 B.423 C .2 2 D.223C [将A 坐标代入抛物线方程得(22)2=2p ·2,p =2,故焦点坐标F (1,0),直线AF 的斜率为22-02-1=22,故选C.]7.已知a =(-2,2),b =(x ,-3),若a ⊥b ,则x 的值为( ) A .3 B .1 C .-1 D .-3D [a ·b =-2x -6=0,解得x =-3.]8.在同一直角坐标系xOy 中,函数y =cos x 与y =-cos x 的图象之间的关系是( ) A .关于x 轴对称 B .关于y 轴对称 C .关于直线y =x 对称 D .关于直线y =-x 对称A [由于当自变量相同时,它们的函数值相反,故它们的图象关于x 轴对称,故选A.] 9.三个数a =0.62,b =log 20.6,c =20.6之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <aC [易知0<a <1,b <0,c >1,故c >a >b .]10.在公差不为0的等差数列{a n }中,a 1,a 3,a 7成等比数列,前7项和为35,则数列{a n }的通项a n 等于( )A .nB .n +1C .2n -1D .2n +1B [S 7=12×7×(a 1+a 7)=7a 4=35,故a 4=5,又a 23=a 1a 7,即(5-d )2=(5-3d )(5+3d ),即d =1,故a n =a 4+(n -4)d =n +1.]11.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y +5≥0,x -y ≤0,y ≤0,则z =2x +4y +1的最小值是( )A .-14B .1C .-5D .-9A [作出不等式组⎩⎪⎨⎪⎧x +y +5≥0x -y ≤0y ≤0表示的平面区域,如图所示的阴影部分由z =2x +4y +1可得y =-12x +z 4-14,则z4-14表示直线y =-12x +z 4-14在y 轴上的截距,截距越小,z 越小,由题意可得,当y =-12x +z 4-14经过点A 时,z 最小,由⎩⎪⎨⎪⎧x +y +5=0x -y =0,可得A ⎝ ⎛⎭⎪⎫-52,-52,此时z =-2×52-4×52+1=-14,故选A.]12.圆心为(1,2)且过原点的圆的方程是( ) A .(x -1)2+(y -2)2=2 B .(x +1)2+(y +2)2=2 C .(x -1)2+(y -2)2=5D .(x +1)2+(y +2)2=5C [r 2=(1-0)2+(2-0)2=5,故圆的方程为(x -1)2+(y -2)2=5.] 13.当x >4时,不等式x +4x -4≥m 恒成立,则m 的取值范围是( ) A .m ≥8 B.m >8 C .m ≤8 D.m <8 C [x +4x -4=x -4+4x -4+4≥2(x -4)×4x -4+4=8,故m ≤8.] 14.已知函数f (x )是奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( )A .-2B .0C .1D .2A [f (1)=12+1=2,f (-1)=-f (1)=-2.]15.某学校举办校园演讲大赛,如图为七位评委为某选手打出的分数的茎叶统计图,要求去掉一个最高分和一个最低分点,求出所剩数据的平均数和方差为( )789⎪⎪⎪94 4 6 4 73A .84,4.84B .84,1.6C .85,4D .85,1.6D [平均数x -=84+84+84+86+875=85,方差为15[(84-85)2+(84-85)2+(84-85)2+(86-85)2+(87-85)2]=1.6.]二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中横线上)16.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为y =3x ,则该双曲线的离心率为________.2 [由于双曲线的一条渐近线为y =3x ,故b a = 3.所以双曲线离心率e =ca=1+⎝ ⎛⎭⎪⎫b a 2=2.]17.函数f (x )=12-cos 2π4-x 的单调递增区间是________.k π+π4,k π+3π4(k ∈Z ) [f (x )=12-cos 2π4-x =12-1+cos π2-2x2=-12sin 2x ,即求12sin 2x 的单调递减区间. ∵2k π+π2≤2x ≤2k π+3π2(k ∈Z ),∴k π+π4≤x ≤k π+3π4(k ∈Z ).]18.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为________.25[基本事件:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个,其中第一张大于第二张的有10个,所以P =1025=25.]19.直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为________.12 [不妨设椭圆的方程为x 2a 2+y2b2=1(a >b >0),右焦点的坐标为(c,0),上顶点的坐标为(0,b ),则l :x c +yb=1,即bx +cy -bc =0. 由bc b 2+c 2=14×2b ,得3c 2=b 2. 又b 2=a 2-c 2,所以a =2c ,故e =12.]三、解答题(本大题共2小题,共24分.解答应写出文字说明,证明过程或演算步骤) 20.在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且2a sin B cos A -b sin A =0, (1)求A ;(2)当sin B +3sin ⎝ ⎛⎭⎪⎫C -π6取得最大值时,试判断△ABC 的形状.[解] (1)由正弦定理a sin A =bsin B 得a sin B =b sin A ≠0, 又2a sin B cos A -b sin A =0,∴2cos A =1, 即cos A =12,∵0<A <π,∴A =π3.(2)∵A =π3,∴B =2π3-C ,∴sin ⎝⎛⎭⎪⎫2π3-C +3sin ⎝ ⎛⎭⎪⎫C -π6=32cos C +12sin C +3⎝ ⎛⎭⎪⎫32sin C -12cos C =2sin C , ∵0<C <2π3,∴当C =π2时,取得最大值,∴△ABC 是直角三角形.21.(本小题满分12分)如图,在底面是矩形的四棱锥P ABCD 中,PA ⊥平面ABCD ,PA =AB ,E 是PD 的中点.求证:(1)PB ∥平面EAC ; (2)平面PDC ⊥平面PAD .[证明] (1)连接BD 交AC 于O ,连接EO ,则EO 是△PBD 的中位线,∴EO ∥PB .又PB ⊄平面EAC ,EO ⊂平面EAC ,∴PB ∥平面EAC .(2)∵PA ⊥平面ABCD ,CD ⊂平面ABCD ,∴PA ⊥CD . ∵四边形ABCD 是矩形,∴AD ⊥CD . 而PA ∩AD =A ,∴CD ⊥平面PAD . 又CD ⊂平面PDC ,∴平面PDC ⊥平面PAD .。
2020广州市高二数学水平测试
2020学年广州市高二年级学生学业水平测试数学本试卷分选择题和非选择题两部分, 共4页. 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的答案无效.4.本次考试不允许使用计算器.5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高, 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.函数的定义域为A (],1-∞-C .[)1,+∞D .(],1-∞2.集合 C. 7 D. 83.1n n a n +=+,则3a 的值为() A. 2 B. 3 C. 4 D. 54.经过点(3,0)且与直线250x y +-=平行的直线方程为A. 230x y --=B. 230x y +-=C. 260x y --=D. 260x y +-= 5. 函数sin 2y x =的一个单调区间是A .,44ππ⎡⎤-⎢⎥⎣⎦ B .,22ππ⎡⎤-⎢⎥⎣⎦ C .3,44ππ⎡⎤⎢⎥⎣⎦D .3,22ππ⎡⎤⎢⎥⎣⎦ 6.做一个体积为32m 3,高为2m 的无盖长方体的纸盒,则用纸面积最小为A. 64m 2B. 48m 2C. 32m 2D. 16m 27. 已知变量x y ,满足约束条件201010x y x y y ⎧--≥⎪+-≤⎨⎪+≥⎩,,.则目标函数2z y x =-的最小值为( )A .5-B .4-C .3-D .2-8.如图1所示,程序框图(算法流程图)输出的结果是A .2B .4C .8D .16 9.关于x 的不等式2220x ax a +-> 的解集中的一个元素为1,则实数a 的取值范围是A. ()(),12,-∞-+∞UB.(-1,2)C. ()1,1,2⎛⎫-∞-+∞⎪⎝⎭U D. (-1,12)10.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(0,0,0),(1,1,0),(1,0,1),(0,0,a ) (a <0),画该四面体三视图中的正视图时,以xOz 平面为投影面,得到正视图的面积为2,则该四面体的体积是 A.13 B. 12 C. 1 D. 32二、填空题:本大题共4小题,每小题11.在△ABC 中,∠ABC=450,12.某赛季甲、乙两名篮球运动员每场比赛得分的原始记录用茎叶图表示(图2),则该赛季发挥更稳定的运动员是或“乙”) 13.已知向量(1,2),AB AC ==u u u r u u u r 14.已知[x]表示不超过实数x ()21log f x x x=-的零点,则g(0x )的值等于 . 三、解答题:本大题共6小题,满分80分.解答应写出文字说明、演算步骤和推证过程. 15.(本小题满分12分)某中学高一年级新生有1000名,从这些新生中随机抽取100名学生作为样本测量其身高(单位:cm ),得到频率分布表如下:(1)试估计高一年级新生中身高在[)175,180上的学生人数;(2)从样本中身高在区间[)170,180上的女生中任选2名,求恰好有一名身高在区间[)175,180上的概率.图1图216. (本小题满分12分) 已知函数()sin cos ,6f x x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求(0)f 的值;(2)若α是第四象限角,且133f πα⎛⎫+= ⎪⎝⎭,求tan α的值.17. (本小题满分14分)如图3,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E,F 分别是A 1D 1,A 1A 的中点。
2020年广东省中考数学试卷(解析版)
2020年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为90分钟。
2.答卷前,考生务必用黑色字迹的签字或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是()A.-9 B.9 C.19D.-19【答案】A【考点】相反数【解析】略2.一组数据2,4,3,5,2的中位数是()A.5 B.3.5 C.3 D.2.5【答案】C【考点】中位数【解析】本题要求考生对中位数的概念有清晰的认识。
中位数是指统计总体中各个数据按大小顺序排列起来,处于中间位置的数值;当数据个数为奇数时,处于中间位置的数据即为中位数;当数据个数为偶数个时,中位数则为处于中间位置的2个数据的平均数.此题为奇数个,3位于最中间,故此题选C.3.在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(-3,2)B.(-2,3)C.(2,-3)D.(3,-2)【答案】D【考点】平面直角坐标系【解析】本题主要要求学生认识并掌握平面直角坐标系中点关于坐标轴及原点的对称性,关于x轴对称的点横坐标不变,纵坐标互为相反数,故此题选D4.若一个多边形的内角和是540°,则该多边形的边数为( )A .4B .5C .6D .7【答案】B【考点】多边形内角和【解析】解:设所求多边形边数为n , 则(n -2)•180°=540°, 解得n =5.5x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x ≠-2【答案】B【考点】二次根式;不等式【解析】解:二次根式有意义则240x -≥,解得2x ≥,故此题选B6.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( )A .8B. C .16 D .4【答案】A【考点】中位线的性质【解析】此题由三边中点,得到中位线。
2020年广东省初中学业水平考试数学试卷及答案
机密★启用前2020年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为90分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.9的相反数是()A .9-B .9C .19D .19- 【答案】A2.一组数据2,4,3,5,2的中位数是( )A .5B .3.5C .3D .2.5 【答案】C3.在平面直角坐标系中,点()3,2关于x 轴对称的点的坐标为()A .()3,2-B .()2,3-C .()2,3-D .()3,2-【答案】D4.若一个多边形的内角和是540︒,则该多边形的边数为( )A .4B .5C .6D .7 【答案】B5在实数范围内有意义,则x 的取值范围是( )A .2x ≠B .2x ≥C .2x ≤D .2x ≠- 【答案】B6.已知ABC △的周长为16,点D ,E ,F 分别为ABC △三条边的中点, 则DEF △的 周长为()A .8B .C .16D .4 【答案】A7.把函数()212y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .()211y x =-+ C .()222y x =-+D .()213y x =-+【答案】C8.不等式组()23122x x x -≥⎧⎪⎨-≥-+⎪⎩-1的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤ 【答案】D9.如题9图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上, 则BE 的长度为( )A .1 BCD .2【答案】D10.如题10图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:0abc >①;240b ac ->②;80a c +<③;520a b c ++>④,正确的有( )A .4个B .3个C .2个D .1个 【答案】B二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy x -= . 【答案】()1x y -12.如果单项式3m x y 与35nx y -是同类项,那么m n += . 【答案】41310b +=,则()2020a b += .【答案】114.已知5x y =-,2xy =,计算334x y xy +-的值为 . 【答案】715.如题15图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为 .【答案】45︒16.如题16图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120︒的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .【答案】1317.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如题17图,90ABC ∠=︒,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,4MN =,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE 的最小值为 .【答案】2三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:()()()222x y x y x y x +++--,其中x =y =【答案】解:原式22222=22x xy y x y x +++--=2xy把x =y =原式=219.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随(1)求的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人? 【答案】解:(1)由题意得:247218120x +++=,解得6x = (2)24721800=1440120+⨯(人) ∴估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有144人。
2020届广东省普通高中学业水平考试数学试题(解析版)
2020届广东省普通高中学业水平考试数学试题一、单选题1.已知集合{}{}1,0,1,2,1,2,3,M N =-=则M N ⋃=( ) A .M B .NC .{}1,0,1,2,3-D .{}1,2【答案】C【解析】根据集合的并集运算可得答案. 【详解】因为集合{}{}1,0,1,2,1,2,3,M N =-= 所以M N ⋃={1,0,1,2,3}-. 故选:C 【点睛】本题考查了并集的运算,属于基础题. 2.设i 是虚数单位,则复数()1i i +=( ) A .1i -+ B .1i +C .1i --D .1i -【答案】A【解析】根据复数的乘法运算可得答案. 【详解】()1i i +=2(1)1i i i i +=+-=-+.故选:A 【点睛】本题考查了复数的乘法运算,属于基础题.3.某次歌唱比赛中,7位评委为某选手打出的分数分别为83,91,91,94,94,95,96,去掉一个最高分和一个最低分后,所剩数据的平均数为( ) A .94 B .93C .92D .91【答案】B【解析】去掉96和83后剩下5个数的和除以5可得答案. 【详解】去掉一个最高分96,去掉一个最低分83,剩下的数为:91,91,94,94,95,它们的平均数为:9191949495935++++=.故选:B 【点睛】本题考查了利用平均数的定义求平均数,属于基础题. 4.直线210x y --=的斜率是( ) A .12B .12-C .2D .2-【答案】A【解析】将直线方程化为斜截式,可得斜率. 【详解】由210x y --=得1122y x =-, 所以210x y --=的斜率为12.故选:A. 【点睛】本题考查了由直线方程的斜截式求斜率,属于基础题. 5.下列函数为偶函数的是( ) A .()3f x x =+ B .()22f x x =-C .()3f x x =D .()1f x x=【答案】B【解析】根据偶函数的定义逐个判断可得答案. 【详解】当()f x =22x -时,22()()22()f x x x f x -=--=-=,所以2()2f x x =-为偶函数,()3f x x =+为非奇非偶函数函数,3()f x x =与1()f x x=为奇函数. 故选:B 【点睛】本题考查了用定义判断函数的奇偶性,属于基础题.6.(2015秋•河西区期末)若sinα>0,且cosα<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【答案】B【解析】试题分析:直接由三角函数的象限符号取交集得答案. 解:由sinα>0,可得α为第一、第二及y 轴正半轴上的角;由cosα<0,可得α为第二、第三及x 轴负半轴上的角. ∴取交集可得,α是第二象限角. 故选:B .【考点】三角函数值的符号. 7.函数()f x = )A .()0,4B .[]0,4C .()(),04,-∞+∞D .(][),04,-∞+∞【答案】D【解析】利用被开方大于等于0列式,解一元二次不等式可得答案. 【详解】 由函数()f x =,可得240x x -≥, 解得4x ≥或0x ≤. 故选:D. 【点睛】本题考查了求二次根式函数的定义域,一元二次不等式的解法,本题属于基础题. 8.在等差数列{}n a 中,若51015,10,a a =-=-则20a =( ) A .20- B .5-C .0D .5【答案】C【解析】设等差数列{}n a 的公差为d ,根据已知条件列方程组,解得首项和公差,从而可得20a .【详解】设等差数列{}n a 的公差为d ,则11415910a d a d +=-⎧⎨+=-⎩ ,解得1191a d =-⎧⎨=⎩, 所以2011919190a a d =+=-+=. 故选:C 【点睛】本题考查了等差数列的通项公式的基本量的运算,属于基础题.9.已知函数()1,022,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,设()1f a =,则()f a =( ) A .2 B .12C .12-D .32-【答案】A【解析】由(1)f a =求得1a =-,再根据分段函数解析式求得(1)f -即可得到答案. 【详解】因为()1,022,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩, 所以(1)121f =-=-,所以1a =-, 所以11(1)()22f --==.故选:A 【点睛】本题考查了根据分段函数解析式求函数值,属于基础题.10.设,x y 满足约束条件201010y x y x y -≤⎧⎪+-≥⎨⎪-+≤⎩,则2z x y =-的最小值是( )A .2-B .3-C .5-D .6-【答案】C【解析】作出可行域后,根据斜率关系找到最优解,代入最优解的坐标可得z 的最小值. 【详解】作出可行域,如图所示:将目标函数2z x y =-化为斜截式得122z y x =-, 由图可知,最优解为2()1,M -,所以当1x =-,2y =时,min 1225z =--⨯=-. 故选:C 【点睛】本题考查了利用线性规划求最小值,作出可行域,根据斜率关系找到最优解是答题关键. 11.设20.33log 3,log 2,log 2a b c ===,则( )A .c b a <<B .b a c <<C .a b c <<D .b c a <<【答案】D【解析】根据对数的性质以及单调性可比较大小. 【详解】因为22log 3log 21a =>=,0.30.3log 2log 10b =<=,33log 2log 31c =<=,33log 2log 10c =>=,所以b c a <<. 故选:D 【点睛】本题考查了利用对数的性质以及单调性比较大小,属于基础题. 12.直线:20+-=l x y 被圆22:3C x y +=截得的弦长为( )A .B .2CD .1【答案】B【解析】先求出圆心到直线的距离,再根据勾股定理可求得弦长. 【详解】由22:3C x y +=可知圆心为(0,0),,所以圆心到直线:20+-=l x y 的距离为d ==由勾股定理可得弦长为2=. 故选:B 【点睛】本题考查了由圆的标准方程求圆心和半径,考查了点到直线的距离公式,考查了勾股定理,属于基础题.13.已知命题[)()000:0,,ln 1,p x x x ∃∈+∞+=则p ⌝为 ( ) A .[)()0000,,ln 1x x x ∃∉+∞+= B .[)()0,,ln 1x x x ∀∉+∞+= C .[)()0000,,ln 1x x x ∃∈+∞+≠ D .[)()0,,ln 1x x x ∀∈+∞+≠【答案】D【解析】先否定存在量词,改为全称量词,再否定结论. 【详解】因为命题[)()000:0,,ln 1,p x x x ∃∈+∞+= 所以p ⌝为: [)()0,,ln 1x x x ∀∈+∞+≠. 故选:D 【点睛】本题考查了含有一个存在量词的命题的否定,属于基础题.14.一个棱长为2的正方体,其顶点均在同一球的球面上,则该球的表面积是( )(参考公式:球的表面积公式为24S R π=,其中R 是球的半径) A .3π B .4πC .8πD .12π【答案】D【解析】根据正方体的对角线是其外接球的直径,可得球的半径,进而可得球的表面积. 【详解】因为正方体的对角线是其外接球的直径,所以正方体的外接球的直径2R ==,所以R =,所以该球的表面积244312S R πππ==⨯=. 故选:D 【点睛】本题考查了正方体与球的组合体,考查了正方体的对角线长定理,考查了球的表面积公式,属于基础题.15.ABC ∆的内角A,B,C 的对边分别为,,a b c .已知4A π=,4b =,且ABC ∆ 的面积为2,则a =( )A .BC .D【答案】B【解析】根据面积公式可求得c =再根据余弦定理可求得a =【详解】根据三角形的面积公式可得12sin 2bc A =,所以124sin 24c π=⨯⨯,所以c =由余弦定理可得2222cos 1622410a b c bc A =+-=+-⨯=,所以a =. 故选:B 【点睛】本题考查了三角形的面积公式以及余弦定理,本题属于基础题.二、填空题16.设向量(1,3),(2,),a b m ==-,若//b a ,则m =_____ 【答案】6-【解析】根据向量共线的坐标表示列方程可解得. 【详解】因为//b a ,所以13(2)0m ⨯-⨯-=, 解得6m =-. 故答案为:-6 【点睛】本题考查了向量共线的坐标表示,本题属于基础题.17.设等比数列{}n a 的前n 项和为n S ,已知11a =,23S =,则3S =_____ 【答案】7【解析】根据121,3a S ==列方程可解得公比q ,再根据等比数列的前n 项和公式可求得答案. 【详解】设等比数列{}n a 的公比为q ,则2a q =, 由2123S a a =+=,得13q +=,所以2q =,所以3313(1)127112a q S q --===--. 故答案为:7 【点睛】本题考查了等比数列的通项公式和前n 项和公式的基本量的计算,属于基础题. 18.从4张分别写有数字1,2,3,4的卡片中随机抽取2张,则所取2张卡片上的数字之积为奇数的概率是____ 【答案】16【解析】利用组合知识求得基本事件种数和所求事件包含的事件种数后,利用古典概型的概率公式可得答案. 【详解】从4张分别写有数字1,2,3,4的卡片中随机抽取2张,总共有246C =种抽法, 所取2张卡片上的数字之积为奇数的共有221C =种抽法, 根据古典概型的概率公式可得所求概率为16. 故答案为:16【点睛】本题考查了古典概型的概率公式,关键是求出积为奇数时的抽法种数,属于基础题. 19.设椭圆的两个焦点分别为12,F F ,过2F 作椭圆长轴的垂线交椭圆于A,B 两点,若1AF B ∆为等边三角形,则该椭圆的离心率为____【解析】利用三角形1AF B ∆为等边三角形可得2||3AF =,1||AF =,再根据椭圆的定义列式可得离心率. 【详解】因为1AF B ∆为等边三角形,所以126AF F π∠=,所以212||||33AF F F c ==,12||2||3AF AF c ==, 又由椭圆的定义可知12||||2AF AF a +=,所以233c a +=,a =,所以离心率3c e a ==.故答案为【点睛】本题考查了椭圆的几何性质:离心率,利用正三角形的性质求出1||AF 和2||AF 后,再用椭圆定义列等式是答题关键,属于基础题.三、解答题20.已知函数()sin 2f x x =.(1)求函数()f x 的最小正周期和最大值; (2)若θ满足325f θ⎛⎫=⎪⎝⎭,求4f πθ⎛⎫+ ⎪⎝⎭的值【答案】(1)()f x 的最小正周期是π,最大值是1 (2)725【解析】(1)利用正弦型函数的周期公式2||T πω=直接求出周期,根据正弦函数的最大值可求得函数的最大值;(2)利用诱导公式和二倍角的余弦公式可求得答案. 【详解】解:(1)函数()sin 2f x x =,则()f x 的最小正周期是22T ππ== ()f x 的最大值是1(2)由325f θ⎛⎫=⎪⎝⎭,得3sin 5θ=所以27sin(2)cos 212sin 4225f ππθθθθ⎛⎫+=+==-= ⎪⎝⎭ 【点睛】本题考查了正弦型函数的周期公式,正弦函数的最大值,诱导公式,二倍角的余弦公式,属于基础题.21.如图,直三棱柱111ABC A B C -中,底面是边长为2的等边三角形,点D ,E 分别是1,BC AB 的中点.(1)证明://DE 平面11ACC A ; (2)若11BB =,证明:1C D ⊥平面ADE 【答案】(1)证明见解析 (2)证明见解析【解析】(1) 连接11,A B A C ,根据中位线可得1//DE A C ,根据线面平行的判定定理可得//DE 平面11ACC A ;(2)根据直棱柱可得1BB AD ⊥,根据等边三角形可得BC AD ⊥,根据线面垂直的判定定理可得AD ⊥平面11B BCC ,再根据性质定理可得1AD C D ⊥,根据勾股定理22211111DB C D B C +=可得11C D DB ⊥,最后根据线面垂直的判定定理可得1C D ⊥平面ADE .【详解】证明:(1)连接11,A B A C ,如图所示:第 11 页 共 11 页 在直三棱柱111ABC A B C -中,侧面11ABB A 是矩形,因为点E 是1AB 的中点,所以点E 是1A B 的中点又因为点D 是BC 的中点,所以1//DE A C ,因为1AC ⊂平面11ACC A ,DE ⊄平面11ACC A , 所以//DE 平面11ACC A(2)连接1B D ,如图所示:在直三棱柱111ABC A B C -中,因为1BB ⊥平面ABC ,AD ⊂平面ABC ,所以 1BB AD ⊥又因为底面ABC 是等边三角形,D 为BC 的中点,所以BC AD ⊥,又1BC BB B =,所以AD ⊥平面11B BCC ,又1C D ⊂平面11B BCC所以1AD C D ⊥由2BC =,得1BD =,又111BB CC ==所以11DB C D ==所以22211111DB C D B C +=,所以11C D DB ⊥1DB AD D ⋂=,即1C D ⊥平面ADE【点睛】本题考查了直线与平面平行的判定定理,直线与平面垂直的判定定理以及性质定理,利用勾股定理22211111DB C D B C +=证明11C D DB ⊥是答题关键.。
2020学年高二学业水平测试数学
2020学年广州市高二年级学生学业水平数学测试本试卷分选择题和非选择题两部分, 共4页. 满分150分. 考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上. 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液. 不按以上要求作答的451.函数fA .[2.集合A. 5 3.A. 2 4.A. x C. 2x 5. 函数A .⎣⎦⎣⎦⎣⎦⎣⎦6.做一个体积为32m 3,高为2m 的无盖长方体的纸盒,则用纸面积最小为 ( )A. 64m 2B. 48m 2C. 32m 2D. 16m 27. 已知变量x y ,满足约束条件201010x y x y y ⎧--≥⎪+-≤⎨⎪+≥⎩,,.则目标函数2z y x =-的最小值为( )A .5-B .4-C .3-D .2-8.如图1所示,程序框图(算法流程图)输出的结果是 ( )A .2B .4C .8D .16 9.关于x 的不等式2220x ax a +-> 的解集中的一个元素为1,则实数a 的取值范围是( )A. ()(),12,-∞-+∞UB.(-1,2)C. (1⎛⎫110.(A.1311.在△为 .12.图表示13.14.已知()2log f x x x=-的零点,则g(0x )的值等于 .三、解答题:本大题共6小题,满分80分.解答应写出文字说明、演算步骤和推证过程. 15.(本小题满分12分)某中学高一年级新生有1000名,从这些新生中随机抽取100名学生作为样本测量其身高(单位:cm ),(1(2)上的概率.16.(1(233⎝⎭17. (本小题满分14分)A 1C 1F如图3,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E,F 分别是A 1D 1,A 1A 的中点。
广东省广州市番禺区禺山中学2023届高一数学第一学期期末学业水平测试试题含解析
19.已知函数
y
2
log4
x
2
log4
x
1 2
.
(1)当 x [1,16] 时,求该函数的值域;
(2)若
log4 x
2
log4
x
1
2
m log4 x ,对于 x [4,16] 恒成立,求实数 m 的取值范围.
20.设有一条光线从 P 2,4 3 射出,并且经 x 轴上一点 Q2,0 反射.
2
的图象向右平移 2 个单位,并且将每个点的纵坐标缩短为原来的一半得到,依次得出 y 轴右侧的图象,根据对称轴可 得 y 左侧的结论,
5 / 17
x 6 时, f (x) 1 , y f x 的图象与直线 y 1 和 y 1 的交点个数,分别有 3 个和 5 个,
8
2
4
∴函数 g(x)的零点个数为 2 (3 5) 16 ,
黄金三角形被认为是最美的三角形,它是一个顶角为 36 的等腰三角形(另一种是顶角为 108°的等腰三角形).例如,五
角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金 ABC 中, BC 5 1 .根据这些信息, AC 2
可得 sin 234 ( )
A. 1 2 5 4
B. 3 5 8
的单位数为 Q
.科学研究发现
v
与
log3
Q 100
成正比.当
v
1m
/
s
时,鲑鱼的耗氧量的单位数为
900 .当
v=
2m /
s
时,其
耗氧量的单位数为()
A.1800
B. 2700
C. 7290
D. 8100
1 / 17
广东省广州市2014-2015学年高二学业水平测试数学试题 Word版含答案
2014-2015学年广州市高中二年级学生学业水平测试•数学一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1、已知集合{1,2,4,8}M =,{2,4,6,8}N =,则M N =( )..A {2,4}.B {2,48},.C {1,6} .D {12,4,68},, 2、下列函数中,与函数y =定义域相同的函数为( )..A 1y x= .B y =.C 2y x -=.D ln y x = 3、设n S 是等差数列{}n a 的前n 项和,已知59a =,24S =,则2a =( ). .A 1 .B 2 .C 3.D 5 4、某几何体的三视图及其尺寸如图所示,则这个几何体的体积是( )..A 6 .B 9.C 18.D 36 5、将函数cos y x =的图像向左平移2π个单位,得到函数()y f x = 的图像,则下列说法正确的是( ). .A ()y f x =的最小正周期为π .B ()y f x =是偶函数.C ()y f x =的图像关于点(,0)2π对称.D ()y f x =在区间[0,]2π上是减函数 6、已知221a b>>,则下列不等关系式中正确的是( )..A sin sin a b > .B 22log log a b < .C 11()()33a b >.D 11()()33a b < 7、在ABC △中,已知5AB AC ==,6BC =,则AB BC =( )..A 18 .B 36 .C 18-.D 36- 8、设y x ,满足约束条件⎪⎩⎪⎨⎧≥--≤+-≤-+,023,023,06y x y x y x 则y x z 2-=的最小值为( ).A 10- .B 6- .C 1- .D 09、设)(x f 为定义在R 上的奇函数,当0≥x 时,3)(1-=+x a x f (a 为常数),则)1(-f 的值为( ) .A 6- .B 3- .C 2- .D 610、小李从甲地到乙地的平均速度为a ,从乙地到甲地的平均速度为b )0(>>b a ,他往返甲乙两地的平均速度为v ,则( ).A 2b a v += .B ab v = .C 2b a v ab +<< .D ab v b <<二、填空题:本大题共4小题,每小题5分,满分20分.11、过点)0,3(-且与直线024=-+y x 平行的直线方程是______ 12、如图,在半径为1的圆内随机撒100粒豆子,有14粒落在阴影部分,43俯视图侧视图正视图据此估计阴影部分的面积为______13、执行如图所示的程序框图,则输出的z 的值是______14、在ABC ∆中,已知6=AB ,33cos =C ,C A 2=,则BC 的长为______ 三、解答题:本大题共6小题,满分80分.解答应写出文字说明、演算步骤和推证过程. 15、(本小题满分12分)实验室某一天的温度(单位:C o)随时间t (单位:h )的变化近似满足函数关系:()[]24,0,312sin 4∈⎪⎭⎫ ⎝⎛-=t t t f ππ.(1)求实验室这一天上午10点的温度;(2)当t 为何值时,这一天中实验室的温度最低.16、(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别设置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(2)试估计生活垃圾投放错误..的概率.17、(本小题满分14分)如图所示,四棱锥ABCD P -中,底面ABCD 为矩形, ABCD PA 平面⊥,AB PA =,点E 为PB 的中点.(1)求证:ACE PD 平面//; (2)求证:PBC ACE 平面平面⊥.18、(本小题满分14分)已知直线05=+-y ax 与圆922=+y x C :相交于不同两点A ,B . (1)求实数a 的取值范围(2)是否存在实数a ,使得过点()12,-P 的直线l 垂直平分弦AB ?若存在,求出a 的值;若不存在,请说明理由.19、(本小题满分14分)已知等差数列{}n a 的公差为2,且1a ,21a a +,()412a a +成等比数列. (1)求数列{}n a 的通项公式; (2)设数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和为n S ,求证:6<n S .20、(本小题满分14分)已知R a ∈,函数()a x x x f -=.(1)当2=a 时,求函数()x f y =的单调递增区间; (2)求函数()()1-=x f x g 的零点个数.数学参考答案一、选择题二、填空题11、430x y ++= 12、0.14π 13、21 14、三、解答题15、解:(1)依题意()4sin(),[0,24]123f t t t ππ=-∈实验室这一天上午10点,即10t =时,(10)4sin(10)4sin 41232f πππ=⨯-==,所以上午10点时,温度为4C . (2)因为024t ≤≤,所以531233t ππππ-≤-≤, 令123t ππθ=-,即533ππθ-≤≤,所以54sin ,[,]33y ππθθ=∈- 故当32πθ=时,即22t =时,y 取得最小值,min 34sin42y π==- 故当22t =时,这一天中实验室的温度最低。
《试卷3份集锦》广东省佛山市2020高考数学学业水平测试试题
2019-2020学年高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个四面体所有棱长都是4,四个顶点在同一个球上,则球的表面积为( ) A .24πB .86πC .433πD .12π2.已知f (x )=ax 2+bx 是定义在[a –1,2a]上的偶函数,那么a+b 的值是A .13-B .13 C .12-D .123.已知函数()()cos 0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的最小正周期为π,且满足()()f x f x ϕϕ+=-,则要得到函数()f x 的图像,可将函数()sin g x x ω=的图像( ) A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移512π个单位长度 D .向右平移512π个单位长度 4.如图是二次函数2()f x x bx a =-+的部分图象,则函数()ln ()g x a x f x '=+的零点所在的区间是( )A .11,42⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)5.数列{}n a 满足:3111,25n n n n a a a a a ++=-=,则数列1{}n n a a +前10项的和为 A .1021B .2021C .919D .18196.双曲线()221x y m c m-=>的一条渐近线方程为20x y +=,那么它的离心率为( )A 3B 5C 6D 5 7.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( )A .9π B .29π C .18π D .24π8.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④9.过抛物线()220y px p =>的焦点F 作直线与抛物线在第一象限交于点A ,与准线在第三象限交于点B ,过点A 作准线的垂线,垂足为H .若tan 2AFH ∠=,则AF BF=( )A .54B .43C .32D .210.已知全集,,则( )A .B .C .D .11.20201i i=-( ) A .2B . 2C .1D .1412.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( ) A .国防大学,研究生 B .国防大学,博士 C .军事科学院,学士D .国防科技大学,研究生二、填空题:本题共4小题,每小题5分,共20分。
广东省2020年高中数学6月学业水平考试试卷
广东省 2020 年高中数学 6 月学业水平考试试卷姓名:________班级:________成绩:________一、 选择题(本大题共 18 小題,每小题 3 分,共 54 分。
) (共 18 题;共 54 分)1. (3 分) (2020 高三上·湖北期中) 若集合,集合,则()A . {2}B.C.D.2. (3 分) (2020 高一上·聊城期末) 已知,则下列不等式一定成立的是( )A. B. C. D. 3. (3 分) (2016 高二上·河北开学考) 过两点 P(2,2),Q(4,2),且圆心在直线 x﹣y=0 上的圆的标准方 程是( ) A . (x﹣3)2+(y﹣3)2=2 B . (x+3)2+(y+3)2=2C . (x﹣3)2+(y﹣3)2=D . (x+3)2+(y+3)2=4. (3 分) (2018 高一下·瓦房店期末) 平行四边形中,,,第 1 页 共 21 页,点在边 上,则 A.2 B. C.5 D.的最大值为( )5. (3 分) (2017·淮北模拟) 已知三个数 1,a,9 成等比数列,则圆锥曲线A. B.的离心率为( )C. 或D. 或6. (3 分) 在下列命题中:①若向量 共线,则向量 所在直线平行 ②若三个向量两两共面,则共面;③已知空间的三个向量, 则对空间的任意一个向量 总存在实数 x,y,z 使得。
其中正确的命题个数是( )A.0B.1C.2D.37. (3 分) (2016 高二上·襄阳开学考) 已知函数 f(x)=sin(π﹣2x),g(x)=2cos2x,则下列结论正确 的是( )A . 函数 f(x)在区间[]上为增函数第 2 页 共 21 页B . 函数 y=f(x)+g(x)的最小正周期为 2π C . 函数 y=f(x)+g(x)的图象关于直线 x= 对称 D . 将函数 f(x)的图象向右平移 个单位,再向上平移 1 个单位,得到函数 g(x)的图象8. (3 分) (2020 高三上·四川月考) 已知点 最小值为( )A.在表示的平面区域内,则的B. C.D. 9.(3 分)(2020 高二上·杭州期中) 设 为两条直线, 为两个平面,下列四个命题中真命题是( ) A . 若 与 所成角相等,则B.若,则C.若 D.若,则 ,则10.(3 分)(2018 高三下·鄂伦春模拟) 已知函数 ,则( )A. B. C.,设,,第 3 页 共 21 页D. 11. (3 分) 已知 a,b 是异面直线,直线 c∥直线 a,那么 c 与 b( ) A . 一定是异面直线 B . 一定是相交直线 C . 不可能是平行直线 D . 不可能是相交直线 12. (3 分) (2017·新课标Ⅰ卷理) 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直 角三角形组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的 面积之和为( )A . 10B . 12C . 14D . 1613. (3 分) 设 a,, 则“a-b>1”是“”的( )A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件第 4 页 共 21 页14. (3 分) 设 是等差数列,若则数列 前 8 项和为( )A . 128B . 80C . 64D . 5615. (3 分) (2019 高二上·扶余期中) 在空间直角坐标系中,,,,,则 与平面所成角的正弦值为( )A.B.C. D. 16. (3 分) 已知双曲线的离心率, 则它的渐近线方程为( )A. B.C. D. 17. (3 分) 数列 1,3,6,10,x,21,…中,x 的值是 ( ) A . 12 B . 13 C . 15第 5 页 共 21 页D . 1618. (3 分) (2020 高三上·湖北月考) 蹴鞠,又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义, 鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006 年 5 月 20 日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录. 打印属于快速成形技 术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构 造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的 直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知某鞠的表面上有四个点 、 、、 ,满足任意两点间的直线距离为,现在利用 打印技术制作模型,该模型是由鞠的内部挖去由组成的几何体后剩余的部分,打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量约为( )(参考数据:取,,,精确到 0.1)A.B.C.D.二、 填空题(本大题共 4 小题,每空 3 分,共 15 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年度广东高中学生学业水平测试数学试题(2015-2016学年广州学业水平考试测试题)2015年12月24日一、 选择题:本大题共10小题,每小题5分.1.已知集合M =-1,0,1{},{}x x x N ==2|,则M ÇN =()A.1{}B.0,1{}C.-1,0{}D.-1,0,1{}2.已知等比数列a n {}的公比为2,则a 4a 2值为() A. 14 B.12C. 2D.4 3.直线l 过点1,-2(),且与直线2x +3y -1=0垂直,则l 的方程是()A. 2x +3y +4=0B.2x +3y -8=0C.3x -2y -7=0D.3x -2y -1=04.函数f x ()=12æèçöø÷x-x +2的零点所在的一个区间是() A.-1,0() B.0,1() C.1,2() D.2,3()5.已知非零向量与的方向相同,下列等式成立的是()6.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习负担情况,应采取的抽样方法是()A.(1)用系统抽样法,(2)用简单随机抽样法B.(1)用分层抽样法,(2)用系统抽样法C.(1)用分层抽样法,(2)用简单随机抽样法D.(1)(2)都用分层抽样法7.设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≥-≥+,03,02,01y x x y x ,则z =x -y 的最大值为()A. 3B.1C.1-D.5-8.某几何体的三视图及其尺寸图,则该几何体的体积为()A. 6B. 9C. 12D. 189.函数f x ()=12-cos 2p 4-x æèçöø÷的单调增区间是() A. 2k p -p 2,2k p +p 2éëêùûú,k ÎZ B. 2k p +p 2,2k p +3p 2éëêùûú,k ÎZ C. k p +p 4,k p +3p 4éëêùûú,k ÎZ D. k p -p 4,k p +p 4éëêùûú,k ÎZ 10.设a >1,b >2且ab =2a +b 则a +b 的最小值为()A.22B.22+1C.22+2D.22+3二、填空题:本大题共4小题,每小题5分,满分20分。
11.不等式x 2-3x +2<0的解集是__________.12.已知角q 的顶点与原点重合,始边与x 轴的正半轴重合,终边为射线l :y =-2x x £0(),则cos q 的值是__________.13.执行如图所示的程序框图,若输入1=x ,则输出y 的值是__________。
14.若函数f x ()=log a x +m ()+1(a >0且a ¹1)恒过定点2,n (),则m +n 的值为__________.15、在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且︒===60,8,10A b a .(1)求B sin 的值;(2)求C cos 的值.16、甲,乙两组各4名同学参加学校组织的“抗日战争历史知识知多少”抢答比赛,他们答对的题目个数用茎叶图表示,如图,中间一列的数字表示答对题目个数的十位数,两边的数字表示答对题目个数的个位数.(1)求甲组同学答对题目个数的平均数和方差;(2)分别从甲,乙两组中各抽取一名同学,求这两名同学答对题目个数之和为20的概率.17、设n S 为数列{}n a 的前n 项和,且*21N n n n S n ∈++=,.(1)求数列{}n a 的通项公式;(2)求数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和n T . 18、如图,在三棱锥ABC P -中,︒=∠=====30,3245ACB BC AB PB PC PA ,,. (1)求证:PB AC ⊥;(2)求三棱锥ABC P -的体积.19、已知圆C 的圆心为点()30,C ,点()2,3R 在圆C 上,直线l 过点()01,-A 且与圆C 相交于Q P ,两点,点M 是线段PQ 的中点.(1)求圆C 的方程;(2)若9=⋅AC AM ,求直线l 的方程.20、已知点B A ,是函数[]()1,12-∈=x x y 图像上的两个动点,x AB //轴,点B 在y 轴的右侧,点()()2,1>m m M 是线段BC 的中点.(1)设点B 的横坐标为a ,ABC ∆的面积为S ,求S 关于a 的函数解析式()a f S =; (2)若(1)中的()a f 满足()1262--≤mk m a f 对所有(]1,0∈a ,()+∞∈,4m 恒成立,求实数k 的取值范围.2015学年度广州市高中二年级学生学业水平测试答案二、 选择题:本大题共10小题,每小题5分。
1. 【答案】B【解析】(){}2:0100,1N x x x x N -=⇒-=⇒=,\M ÇN =0,1{}.3+4+c =0 2. 【答案】D【解析】a 4a 2=q 2=4 3. 【答案】C【解析】设直线:320l x y c -+=因为1,-2()在直线上,代点到直线方程得:4. 【答案】D【解析】()()2311112332102248f f ⎡⎤⎛⎫⎛⎫⎛⎫⋅=⋅-+=⋅-<⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 5. 【答案】A6. 【答案】C7. 【答案】B 【解析】y =x -z ,作l 0:y =x ,当l 0移至12,l l 两直线交点H 时截距z -最小,即z 最大,(1,2)H --,z max =-1+2=18.【答案】A 【解析】()11233633S ABCD ABCD V S SB -=⋅=⨯⨯⨯= 9.【答案】C 【解析】()21cos 21112cos sin 224222x f x x x ππ⎛⎫+- ⎪⎛⎫⎝⎭=--=-=- ⎪⎝⎭, 即求12sin 2x 的单调递减区间: 10.【答案】D 【解析】()32232,2220,023********+≥++∴≥+∴>>++=⎪⎭⎫ ⎝⎛++=++=+=∴+=a b b a a b b a ab b a ab b a a b b a b a ab ab b a ba ab 当且仅当b a =2,b =2a时符号成立,即1122a b ⎧=>⎪⎨=>⎪⎩满足, 则最小值为22+3。
二、填空题:本大题共4小题,每小题5分,满分20分。
11.【答案】1,2()【解析】()(){}2320,210,12x x x x x x -+<∴--<∴<< 12.【答案】-33【解析】终边在:()0,cos 0y x θ=≤∴<13.【答案】7【解析】x =1,y =5-2´1=3,3-1>5,否x =3,y =5-2´3=-1,-1-3>5,否x =-1,y =5-2´-1()=7,7--1()>5,是,7y =14.【答案】0【解析】f x ()=log a x +m ()+1过定点2,n (),则()log 21a m n ++=,恒成立,15.【答案】解:(1)由正弦定理得,sin sin a b A B= (2)由(1)得,sin B =,且a b > 又60A =︒16.【答案】解:(1)由图可得,甲组答对题目的个数:8,9,11,12(2)由图可得,乙组答对题目的个数:8,8,9,11设事件“两名同学答对题目个数之和为20”为事件A ,以(),x y 记录甲,乙两组同学答对题目的个数,满足“从甲,乙两组中各抽取一名同学”的事件有:()()()()11,8,11,8,11,9,11,11,()()()()12,8,12,8,12,9,12,11,共16种满足事件A 的基本事件为:()()()()9,11,11,9,12,8,12,8,共4种答:两名同学答对题目个数之和为20的概率为14. 17.【答案】解:(1)当1n =时,111113a S ==++=;当2n ≥时,21n S n n =++①-①②得:221(1)(1)n n S S n n n n --=+----但13a =不符合上式,因此:3,(1)2,(2)n n a n n =⎧=⎨≥⎩ (2)当1n =时,1121113412T a a ===⋅当2n ≥时,1111111()22(1)4(1)41n n a a n n n n n n +===-⋅+++ 且1112T =符合上式,因此:51244(1)n T n =-+ 18. 【答案】解:(1)证明:取AC 中点D ,连接PD 、BD在∆ABC 中:BC AB =, D 为AC 中点在PAC ∆中PC PA =, D 为AC 中点又D PD BD =⋂ ,BD 、PBD PD 面⊂(2)方法一:BCD P ABD P ABC P V V V ---+=在ABC ∆中,AB BC =, 030=∠ACB , D 是AC 中点 3=∴BD , 3==DC AD在PCD ∆中,PD DC ⊥, 5=PC , 3=DC又4C PBD A PBD V V --== (2)方法二:取BD 中点M ,连接PM由(1)可知PBD AC 面⊥又PBD PM 面⊂在ABC ∆中,BC AB = , 030=∠ACB , D 是AC 中点 3=∴BD , 3==DC AD在PCD ∆中,DC PD ⊥ , 5=PC , 3=DCPBD ∴为等腰三角形又D BD AC =⋂ , ABC BD AC 面、⊂ABC PM 面⊥∴, 即PM 为三棱锥ABC P -的高h 易得261=PM 19. 【答案】解:(1)2R =,圆的方程为22(y 3)4x +-=(2)方法一:①k 不存在时1x =-,则P(1,33)-,Q(1,33)-+,M(1,3)-显然有=9AC AB ⋅②k 存在时设(1)y k x =+∴l 的方程为y kx k =+11(,)P x y ,22(,)Q x y ,00(,)M x y∴(1,3)AC =,00(1,)AM x y =+∴有00139x y ++= 即121213922x x y y ++++⋅= 联立22(3)4y kx k x y =+⎧⎨+-=⎩ 则2222(1)(26)650k x k k x k k ++-+-+= ∴2122621k k x x k -+=+,231226221k k y y k k -+=++ ∴21202321x x k k x k +-==+,231202321y y k k y k k+-==++ 代入方程:00139x y ++=得: 解得:43k = 综上所述,l 的方程1x =-或4340x y -+= 方法二:MC AM AM MC AM AM MC AM AM AC AM ⋅+=⋅+=+⋅=⋅2)( M 是线段PQ 的中点,∴根据垂径定理,即PQ CM ⊥,即0AM MC ⋅=在ABC Rt ∆中,191022=-=-=AM CA CM①若k 存在时,设直线l 为)1(0+=-x k y 即0=+-k y kx圆心)3,0(C 到直线l 的距离1132=++-=k kd ,解得34=k ∴直线l 的方程为0434=+-y x②若k 不存在时,过)0,1(-A 的直线为1-=x也满足)3,0(C 到直线1-=x 的距离为1.综上所述,直线l 的方程为0434=+-y x 或01=+x .方法三:(1,0)A -,(0,3)C ,设点00(,)M x y ,则:(1,3)AC =,00(1,)AM x y =+,00(,3)CM x y =-由题意得:00139AM AC x y ⋅=++=,得0083x y =-①又因为M 是弦PQ 的中点,因此AM CM ⊥,0000(1)(3)0AM CM x x y y ⋅=++-=,将①式代入,得:0000(83)(93)(3)0y y y y --+-=,整理得: 00(3)(1024)0y y --=,解得:03y =或0125y = 得M 的坐标为(1,3)-,或412(,)55,因此直线l 的方程为0434=+-y x 或01=+x . 20. 【答案】解:(1)设)22,2(),,1(),2,(),2,(a m a C m M a a A a a B ---则ma a a a m a a f S 24)222(221)(2+-=--⨯⨯==∴. (2)12624126)(222--≤+---≤mk m ma a mk m a f 得由 ma a a f 24)(2+-=的对称轴为4m a =,4,14m m >∴>, m a 24]1,0(+-∈∴上的最大值为在,恒成立126242--≤+-∴mk m m , 32622+-≤∴m m mk 恒成立,即12312-+≤mm k 恒成立.222312≥+m m 当且仅当23=m 时成立, 更多资料请关注公众号:广东学业水平考试版权所有:砖本教育。