直接拉伸试验仪

直接拉伸试验仪
直接拉伸试验仪

沥青断裂性能试验-----直接拉伸试验仪(DTT)

直接拉伸试验仪依据JT G E20-2011《公路工程沥青及沥青混合料试验规程》实验要求研制生产。

全套完整的软件包;

16位实时数据采集;

自动或手动操作;

规范和研究模式;

闭环驱动控制;

高精度线性伺服马达;

计算机控制的液体浴;

标准PC和Windows;

冷却机选项的选择。

原理用途:确定沥青胶结料的破坏应变和应力,用来评价沥青胶结料的低温断裂性能。

技术规格:最大加载:500N(112LB);

最大速度:300mm/min;

传送装置:20mm(0.78英寸);

LVDT:±2mm;

速度精度:±0.1%;

加载精确度:±0.5%~2%;

温度范围:+6℃~36℃;

温度稳定性:±0.1℃;

测试架和液体池外部尺寸:440mm×600mm×370mm

测试槽内部尺寸:(L形)240mm×420mm/130mm×114mm;

冷却器尺寸:700mm×325mmx480mm;

电力供应:240V 60Hz/8A。

价格85000元

ASTMC297夹层结构平面拉伸强度标准试验方法中文版.doc

ASTM 标准:C 297/C 297M–04 夹层结构平面拉伸强度标准试验方法1 Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions 本标准以固定标准号C 297/C 297M发布;标准号后面的数字表示最初采用的或最近版本的年号。带括号的数据表明最近批准的年号。上标( )表明自最近版本或批准以后进行了版本修改。 本标准已经被美国国防部批准使用。 1 范围 1.1 本试验方法适用于测量组合夹层壁板的夹芯、夹芯-面板胶接或者面板的平面拉伸强度。允许的夹芯材料形式包括连续的胶接表面(如轻质木材或泡沫)和不连续的胶接表面(如蜂窝)。 1.2 以国际单位(SI)或英制单位(inch–pound)给出的数值可以单独作为标准。正文中,英制单位在括号内给出。每一种单位制之间的数值并不严格等值,因此,每一种单位制都必须单独使用。由两种单位制组合的数据可能导致与本标准的不相符。 1.3 本标准并未打算提及,如果存在的话,与使用有关的所有安全性问题。在使用本标准之前,本标准的用户有责任建立合适的安全与健康的操作方法,以及确定规章制度的适用性。 2 引用标准 2.1 ASTM标准2 C 274 夹层结构术语 Terminology of Structural Sandwich Constructions D 792 置换法测量塑料的密度和比重(相对密度)的试验方法; Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D 883 与塑料有关的术语; Terminology Relating to Plastics D 2584 固化增强树脂的灼烧损失试验方法; Test Method for Ignition Loss of Cured Reinforced Resins D 2734 增强塑料孔隙含量试验方法; Test Method for Void Content of Reinforced Plastics D 3039/D 3039M 聚合物基复合材料拉伸性能试验方法 Test Method for Tensile Properties of Polymer Matrix Composite Materials D 3171 复合材料的组分含量试验方法; Test Methods for Constituent Content of Composites Materials D 3878 复合材料术语; Terminology for Composite Materials D 5229/D 5229M 聚合物基复合材料的吸湿性能及平衡状态调节试验方法; 1本试验方法由ASTM的复合材料委员会D30审定,并由单层和层压板试验方法专业委员会D30.09直接负责。当前版本于2004年5月1日批准,2004年5月出版。最初出版于1952年批准,上一版本为:C 297–94(1999),于1999年批准。 2有关的ASTM标准请访问ASTM网站https://www.360docs.net/doc/363001253.html,,或者与ASTM客户服务@https://www.360docs.net/doc/363001253.html,联系。ASTM标准年鉴的卷标信息,参看ASTM 网站标准文件摘要页。

拉伸试验步骤细则 gbt 228.1-2010

拉伸试验试验方法概述 - Jerry?转载引用请注明出处部分步骤图片已删除,学习和交流可联系xujianpub@https://www.360docs.net/doc/363001253.html, 依据:GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》 工具:钢尺、剪刀、小刀、橡皮筋、设备配套引伸计、内六角扳手等,依据试验项目部分选用。 5.1 样品基本要求 样品整体要求无影响其性能的明显缺陷,如凹陷、毛刺、非圆滑过渡、形状公差过大等,否则将导致试验结果偏差。同时样品试验过程中应保持清洁,不允许表面附有任何影响试验的附着物,如油污、标签纸等,应将其去除。 具体尺寸及形状公差参照GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》附录B、附录C、附录D、附录E。 5.2 板材类尺寸参数示意

备注:尺寸参数对于不同截面形状会有变化,详细参考GB/T 228.1-2010第22页至第25页。 6.检测步骤 6.2试验准备 6.2.1 样品准备 观察样品类型与形状,是否符合步骤5中所需要求。若样品不符合要求,则需要对样品进行加工,使其尺寸要求满足步骤5。加工方式一般有车削、线切割等,对于薄铝板等可用剪刀裁剪至规定尺寸,加工需注意避免缺陷、弯折。对于同一样品,切割方向可能会影响材料的拉伸性能,需要参考具体标准规定,若无相应规定,一般切割方向为纵向。 6.2.2 尺寸测量 对满足步骤5的样品,测量每个样本尺寸参数,一般在不同位置测量3次,精确到小数点后两位,并在原始记录中记录平均值。对于板材,测量其平行长度的厚度和宽度;对于棒材,测量其平行长度的直径;对于管材,测量其外径和壁厚;对于管材的纵向切割弧形试样,测量其宽度、外径和壁厚;对于异形试样,测量并计算其横截面积。 6.2.3 原始标距刻画

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm , )、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方左右位置上;

4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0‘,' 7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 )()()()(37261504n n n n n n n n n -+-+-+-=? 3. 注:上式中的n ?为增重400g 的金属丝的伸长量。 【实验数据记录处理】 【结果及误差分析】 1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可 在移动,否则,所测的数据将不标准,实验又要重新开始; 2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任 意纸片擦拭镜面;

1高分子材料拉伸强度测定

实验1 高分子材料拉伸强度测定 一、实验目的 1、测定聚丙烯材料的屈服强度、断裂强度和断裂伸长,并画应力—应变曲线; 2、观察结晶性高聚物的拉伸特征; 3、掌握高聚物的静载拉伸实验方法。 二、实验原理 1、应力—应变曲线 本实验是在规定的实验温度、湿度及不同的拉伸速度下,在试样上沿轴向方向施加静态拉伸负荷,以测定塑料的力学性能。 拉伸实验是最常见的一种力学实验,由实验测定的应力—应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物,不同的测定条件,测得的应力—应变曲线是不同的。 结晶性高聚物的应力—应变曲线分三个区域,如图1所示。 (1)OA段曲线的起始部分,近似直线,属普弹性变形,是由于分子的键长、键角以及原子间的距离改变所引起的,其形变是可逆的,应力与应变之间服从胡克定律。即: σ=?ε 式中σ——应力,MPa; ε——应变,%; Ε——弹性模量,MP 。 A为屈服点,所对应力屈服应力或屈服强度。 (2)BC段到达屈服点后,试样突然在某处出现一个或几个“细颈”现象,出现细颈现象的本质是分子在该自发生取向的结晶,该处强度增大,拉伸时细颈不会变细拉断,而是向两端扩展,直至整个试样完全变细为止,此阶段应力几乎一变,而变形增加很大。 (3)CD段被均匀拉细后的试样,再长变细即分子进一步取向,应力随应变的增大而

增大,直到断裂点D,试样被拉断,D点的应力称为强度极限,即抗拉强度或断裂强度σ,是材料重要的质量指标,其计算公式为: σ=P/(b×d) (MPa) 式中P——最大破坏载荷,N; b——试样宽度,mm; d——试样厚度,mm; 断裂伸长率ε是试样断裂时的相对伸长率,ε按下式计算: ε=(F-G)/G×100% 式中 G——试样标线间的距离,mm; F——试样断裂时标线间的距离,mm。 三、实验设备、用具及试样 1、电子式万能材料试验机WDT-20KN。 2、游标卡尺一把 3、聚丙烯(PP)标准试样6条,拉伸样条的形状(双铲型)如图2所示。 L——总长度(最小),150mm; b——试样中间平行部分宽度,10±0.2mm; C——夹具间距离,115mm; d——试样厚度,2~10mm; G——试样标线间的距离,50±0.5mm; h——试样端部宽度,20±0.2mm; R——半径,60mm。 四、实验步骤 准备两组试样,每组三个样条,且用一种速度,A组25mm/min,B组5mm/min。 1、熟悉万能试验机的结构,操作规程和注意事项。 2、用游标卡尺量样条中部左、中、右三点的宽度和厚度,精确到0.02mm,取平均值。 3、实验参数设定 接通电源,启动试验机按钮,启动计算机; 双击桌面上“MCGS环境”进入系统主界面;分别点击“试验编号”、“试样设定”、“试样参数”、“测试项目”等按扭,设定参数。 设定试验编号;注意试验编号不能重复使用;

2拉伸试验

第一节 拉伸试验的目的和意义 拉伸试验是材料力学性能试验中最常见、最重要的试验方法之一。 拉伸试验是在三个外界条件:温度、加载速度、应力状态都恒定的条件下进行的。温度条件指常温、低温、和高温。加载速度是在静载荷下进行的,应变速率一般为0.0001~0.01/s 。应力状态为单向沿轴拉伸,即简单应力状态。它具有简单易行、试样便于制备等特点。通过拉伸试验可以得到材料的基本力学性能指标,如弹性模量、屈服强度、规定非比例延伸强度、抗拉强度、断后伸长率、断面收缩率、应变硬化指数和塑性应变比等。缺口拉伸试验可以衡量材料的脆性破坏倾向。高温拉伸试验可以了解材料在高温下的失效情况;而低温拉伸试验则不但可以测定材料在低温下的强度和塑性指标,而且还可以用于评定材料在低温下的脆性。 拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制、设备的安全和评估,都有很重要的应用价值和参考价值,有些则直接以拉伸试验的结果为依据。例如:进行强度计算时,材料所受的应力应小于屈服强度,否则会因塑性变形而导致破坏。材料的强度越高,能承受的外力就越大,所用的材料也越少。又如:断后伸长率和断面收缩率大的材料,轧制和锻造的可塑性也越大,反之,可塑必就越小。此外,拉伸试验指标还和其他的力学性能指标建立了经验关系。如:热轧软钢的抗拉强度与布氏硬度之间有Rm =1/3HB 等。 我国2002年颁布了国家标准GB/T228——2002《金属材料室温拉伸试验方法》。按照金属力学性能试验方法标准体系逐步与国际接轨的方针,该标准等效采用了ISO6892:1998《金属材料室温拉伸试验》。将原GB/T228——1987《金属拉抻试验方法》、GB/T6397——1986《金属拉伸试验试样》和GB/T3076——1982《金属薄板(带)拉伸试验方法》合并,不但技术内容、要求和规定采用国际标准,而且相第二章 金属材料的拉伸试验 F e H F e L F m 自 动 绘 出 的 试 验 力 延 伸 曲 线

抗拉强度与伸长率测试方法与设备介绍

抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率测试方法与设备介绍 抗拉强度与伸长率,是指材料在拉断前承受的最大应力值与断裂时的伸长率。通过检 测能够有效解决材料抗拉强度不足等问题。Labthink 兰光研发生产的智能电子拉力试验 机系列产品,可专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、医用敷料、 保护膜、金属箔片、隔膜、背板材料、无纺布、橡胶、纸张等产品的抗拉强度与伸长率指 标测试。 抗拉强度与伸长率方法: 试样制备:宽度15mm ,取样长度不小于 150mm ,确保标距100mm ;对材料变形率较大试样,标距不得少于50mm 。 试验速度:500±30mm/min 试样夹持:试样置于试验机两夹具中,使试样纵轴与上下夹具中心连线重合,夹具松 紧适宜。 抗拉强度(单位面积上的力)计算公式: 拉伸强度计算公式σ=F/(b×d) σ:抗拉强度(MPa ) F :力值(N ) Labthink 兰光|包装检测仪器优秀供应商山东省济南市无影山路144号 b :宽度(mm ) d :厚度(mm ) 抗拉强度检测用设备——XLW(EC)智能电子拉力试验机: Labthink 兰光XLW(EC)智能电子拉力试验机专业适用于塑料薄膜、复合材料、软质包装材料、塑料软管、胶粘剂、胶粘带、不干胶、医用贴剂、保护膜、组合盖、金属箔、 隔膜、背板材料、无纺布、橡胶、纸张等产品的拉伸、剥离、变形、撕裂、热封、粘合、 穿刺力、开启力、低速解卷力、拨开力等性能测试。 XLW(EC) 是一款专业用于测试各种软包装材料拉伸性能等力学特性的电子拉力试验机;优于0.5级测试精度有效地保证了试验结果的准确性;系统支持拉压双向试验模式,试验 速度可自由设定;一台试验机集成拉伸、剥离、撕裂、热封等八种独立的测试程序,为用 户提供了多种试验项目选择;气动夹持试样,防止试样滑动,保证测试数据的准确性。 测试原理:

拉伸试验处理数据

用origin9处理拉伸试验的数据,拉伸试验用了引伸计,求材料的屈服强度和抗拉强度。 一、数据的导入和画图。 1.将拉伸数据导入origin9中。点击如图所示的按钮。然后在跳出来的Import Wizard-Source 对话框里选择拉伸试验的路径的文件,Add File(s)并OK,再点击Import Wizard-Source对话框中的Finish按钮。

数据导入后,选中不要的数据的行点击鼠标右键Delete。 2.处理试验的数据的拉力和伸长量,将数据改为应力和应变数据。 将拉力/试样的横截面积,伸长量/标距*100。 选中拉力的列,右击下图:

输入计算公式,得到正应力(2.00和12.30为试验样品的厚度和宽度)。 伸长的列操作类似,如下图:

*100是因为在坐标中需要%为横坐标。 3.将应力的列设为Y,应变的列设为X。操作如下,选中应力的列右击set as为Y。应变的列设为X。 4.选中两列并用Line做出曲线。并对曲线的横纵轴进行调整为0为起点。 二、进行直线的拟合并求出材料的弹性模型。 1.选中应力应变曲线中需要拟合的线段的范围。点击Data Selector旁边的图案,拖动红色选择适当范围,并双击红线确认范围。

3.点击Analysis,Fitting,Linear fit,Open Dialog。在Fit Options中的Fix Intercept打钩固定 截距为0,使拟合的直线过原点。点击Ok拟合选中范围的曲线。在随后跳出来的对话框里选择No。 4.将0.2%塑性应变时的应力作为屈服指标。 点击Graph, Add Function Graph,输入Y=(x-2)*slope,slope为斜率(材料的弹性模量)。 用读入这条直线与应力应变的交点就是屈服强度。 5.用Excel找出纵坐标的最大值,就是抗拉强度。

抗拉强度实验

抗拉强度试验 [试验目的] 测试橡胶材料的抗张强度与延伸率; [试验原理] 运用马达传动螺杆而使下夹具向下移动,从而拉伸试样;结果运用LOAD CELL 力量感应器连接显示器自动显示力量值. [参考标准] 本机符合ASTM-D412 及ISO GB JIS EN等测试方法之需求。 [设备装置]拉力试验机标准斩刀 1/100mm的厚度计尺子 [操作步骤] A. 取大底割下适当试片,两面磨平到厚度为2-3mm;目前是204X153X2MM and 145X145X 4MM B. 用正确刀模斩好试片,量好试片厚度S(mm)(三点为最小值)及平行部位的宽度S0(mm); C. 用尺子在哑铃状试片中间平行部分中心位置量出规定的长度(CNS JIS 2号取2MM,如ASTM C#取2.5MM),并画好延伸长L0距离处的平行线作为延伸率之标线; D. 打开电源,依可户要求设定好测试速度; E. 夹紧试片,按显示器归“0”,按下启动开关,开始测试; F. 测试时,用身长量测指针准确量取试片断裂时延伸长标线之间距离L(mm); G. 试片断裂时,自动停机,荧光幕显示最大的拉力值F(Kg或N); H. 记下延伸长及最大的拉力值; I. 关闭电源,取下试片,依公式计算抗拉强度及延长率: 抗拉强度=F/(S*S0)*100(Kg/cm2)--------(1)延伸率=(L-L0)/L0*100% -----------(2)[注意事项] 1. 本机需放于牢固平坦之地面,保重稳固; 2. 经常检查上下限设定钮位置是否通畅,是否栓紧,避免夹具互撞损及荷重元(100Kgf); 3. 伸长量测指针不用时应推开,使指针尖端靠于左侧,以防给下夹具撞弯; 4. 刀模规格及测试速度需符合客户要求,不可乱用; a: G.R一般采用2#哑铃形刀模:长100mm x 宽25mm x 平行部分长20mm x 宽10MM b:实伦物性采用3#哑铃形刀模: 长 115MM x 宽25MM x 平行部分长33MM x 宽6MM c:W.W物性采用6#哑铃裁刀长 76MM x 宽13MM x 平行部分长 20MM x 宽4MM 5.对于同种胶料开出的试片,试片的裁取必须按胶料流动的方向及在规定统一的位置; 6.试片的宽度原则上为哑铃状试片刀模平行部分的宽度S0,但有时也需根据具体情况量取刃口内缘的实际宽度; 7:拉力计算方法:最大值*0.5+第二大*0.3+三大*0.1+最小值*0.1=拉力值 如果四个片有一个fail 拉力值取三片的平均值.[撕裂:(F拉力/B厚度)X10 KG/CM] 8:试样标准状态:测试前将试样静置于温度23±2℃相对湿度65±5﹪空气中24小时以上方可测试

拉伸试验

钢筋试验 一、一般规定 (1)钢筋混凝土用热轧钢筋,同一公称直径和同一炉罐号组成的钢筋应分批检查和验收,每批质量不大于60t。 (2)钢筋应有出厂证明,或试验报告单。验收时应抽样作机械性能试验:拉伸试验和冷弯试验。钢筋在使用中若有脆断、焊接性能不良或机械性能显著不正常时,还应进行化学成分分析。验收时包括尺寸、表面及质量偏差等检验项目。 (3)钢筋拉伸及冷弯使用的试样不允许进行车削加工。试验应在20±10℃的温度下进行,否则应在报告中注明。 (4)验收取样时,自每批钢筋中任取两根截取拉伸试样,任取两根截取冷弯试样。在拉伸试验的试件中,若有一根试件的屈服点、抗拉强度和伸长率三个指标中有一个达不到标准中的规定值,或冷弯试验中有一根试件不符合标准要求,则在同一批钢筋中再抽取双倍数量的试件进行该不合格项目的复验,复验结果中只要有一个指标不合格,则该试验项目判定为不合格,整批不得交货。 (5)拉伸和冷弯试件的长度L,分别按下式计算后截取: 拉伸试件:;冷弯试件: 式中? L、——分别为拉伸试件和冷弯试件的长度(mm); L0——拉伸试件的标距,或(mm); h、h1——分别为夹具长度和预留长度(mm),h1=(0.5~1)a,见图试7.1; a——钢筋的公称直径(mm)。 实训一拉伸试验 一、试验目的 测定钢筋的屈服点、抗拉强度和伸长率,评定钢筋的强度等级。 二、主要仪器设备

1.万能材料试验机示值误差不大于1%。量程的选择:试验时达到最大荷载时,指针最好在第三象限(180°~270°)内,或者数显破坏荷载在量程的50%~75%之间。 2.钢筋打点机或划线机、游标卡尺(精度为0.1mm)等。 三、试样制备 拉伸试验用钢筋试件不得进行车削加工,可以用两个或一系列等分小冲点或细划线标出试件原始标距,测量标距长度L0,精确至0.1mm,见图试7.1。根据钢筋的公称直径按表6.6选取公称横截面积(mm2)。 图试7.1 钢筋拉伸试验试件 a-试样原始直径;L0-标距长度;h1-取(0.5~1)a;h-夹具长度 四、试验步骤 1.将试件上端固定在试验机上夹具内,调整试验机零点,装好描绘器、纸、笔等,再用下夹具固定试件下端。 2.开动试验机进行拉伸,拉伸速度为:屈服前应力增加速度为10MPa/s;屈服后试验机活动夹头在荷载下移动速度不大于0.5L c/min,直至试件拉断。 3.拉伸过程中,测力度盘指针停止转动时的恒定荷载,或第一次回转时的最小荷载,即为屈服荷载F s(N)。向试件继续加荷直至试件拉断,读出最大荷载F b(N)。 4.测量试件拉断后的标距长度L1。将已拉断的试件两端在断裂处对齐,尽量使其轴线位于同一条直线上。 如拉断处距离邻近标距端点大于L0/3时,可用游标卡尺直接量出L1。如拉断处距离邻近标距端点小于或等于L0/3时,可按下述移位法确定L1:在长段上自断点起,取等于短段格数得B点,再取等于长段所余格数(偶数如图试7.2a)之半得C点;或者取所余格数(奇数如图试7.2b)减1与加1之半得C与C1点。则移位后的L1分别为AB+2BC或AB+BC+BC1。

拉伸强度试验作业指导书

及时、公正地出具有效检验数据,以维护国家、集体和公民的利益。、检验项目: 三、检验评定依据: GB/T8804-2003《管材拉伸性能测量》 四、仪器设备 1.微机电子万能试验机范围:400mm宽x 1200mm高精度:距离为0.01mm,力值1级。 2.量具精度0.01mm 3 .制样机 五、试验步骤 1.样品制备 1.从管材上取样条时不应加热或压平,样条的纵向平行于管材的轴线取样位置应符合下列的要求。 2.公称外径小于或等于63mm的管材取长度约150mm的管段。 以一条任意直线为参靠线,沿圆周方向取样。除特殊情况外,每个样品应取三个样条,以便获得三个试样(见表13)。 3.公称外径大于63mm的管材取长度为150mm的管段。 除另有规定为外,应按表13中的要求根据管材的公称外径把管段沿圆周边分成一系列样条,每块样条制取 样1片。 试样的选择时,根据不同材料制品标准的要求,选择采用冲裁或机械加工方法从样条中间部位制取试样。 4.标线是从中心点近似等距离划两条标线,标线间距离应精确到1%划标线时不得以任何方式刮伤、冲 击或施工压于试样。以避免试样受损伤。标线不应对被测试样产生不良影响,标注的线条应尽可能窄。 5.试样数量除相关标准另有规定外,试样应根据管材的公称外径按照表13中所列书目进行裁切。 6.状态调节 除生产检验或相关标准另有规定外,试样应在管材生产15 h之后测试。试验前根据试样厚度,应将试样置 于23C± 2C的环境中进行状态调节,时间不少于表14规定。 7.状态步骤 试验速度和管材的材质和壁厚有关。按产品标准或GB/T 8804.2或GB/T 8804.3的要求确定试验速度。

拉伸试验测定结果的数据处理和分析

拉伸试验测定结果的数据 处理和分析 The Standardization Office was revised on the afternoon of December 13, 2020

拉伸试验测定结果的数据处理和分析 一、试验结果的处理 有以下情况之一者,可判定拉伸试验结果无效: (1)试样断在机械刻划的标距上或标距外,且造成断后伸长率不符合规定的最小值者。 (2)操作不当 (3)试验期间仪器设备发生故障,影响了性能测定的准确性。 遇有试验结果无效时,应补做同样数量的试验。但若试验表明材料性能不合格,则在同一炉号材料或同一批坯料中加倍取样复检。若再不合格,该炉号材料或该批坯料就判废或降级处理。 此外,试验时出现2个或2个以上的缩颈,以及断样显示出肉眼可见的冶金缺陷(分层、气泡、夹渣)时,应在试验记录和报告中注明 二、数值修约 (一)数值进舍规则 数值的进舍规则可概括为“四舍六入五考虑,五后非零应进一,五后皆零视奇偶,五前为偶应舍去,五前为奇则进一”。具体说明如下: (1)在拟舍弃的数字中,若左边第一个数字小于5(不包括5)时,则舍去,即所拟保留的末位数字不变。 例如、将13.346修约到保留一位小数,得13.3。 (2)在拟舍弃的数字中,若左边第一个数字大于5(不包括5)时,则进1,即所拟保留的末位数字加1。

例如,将52. 463修约到保留一位小数,得52.5。 (3)在拟舍弃的数字中,若左边第一个数字等于5,其右边的数字并非全部为零时,则进1,所拟保留的末位数字加1。 例如,将2.1502修约到只保留一位小数。得2.2。 (4)在拟舍弃的数字中若左边第一个数字等于5,其右边无数字或数字皆为零碎时,所拟保留的末位数字若为奇数则进1,若为偶数(包括0)则舍弃。 例如,将下列数字修约到只保留一位小数。 修约前 0.45 0.750 2.0500 3.15 修约后 0.4 0.8 2.0 3.2 (5)所拟舍弃的数字若为两位数字以上时,不得连续进行多次修约,应根据所拟舍弃数字中左边第一个数字的大小,按上述规则一次修约出结果。 例如,将17.4548修约成整数。 正确的做法是:17.4548→17 不正确的做法是:17.455→17.46→17.5→18 (二)非整数单位的修约 试验数值有时要求以5为间隔修约。此时将拟修约的数值乘以2,按指定位数依前述进舍规则修约,然后将所得数值再除以2即可。例如:将下列数字修约到个位数的0.5单位。 拟修约数值X 乘以2 2X修约值 X修约值 30.75 61.50 62.0 30.0 30.45 60.90 61.0 30.5 三、拉伸试验的力学性能指标修约 拉伸试验测定的力学性能指标,除有特殊要求外,一般按表的要求进行修约。

拉伸试验规程

铝合金薄板拉伸试验规程(xzcfsygc-001) 江苏徐州财发铝热传输有限公司 江苏省交通用高性能铝合金工程研究中心 2010年7月30日

铝合金薄板拉伸试样加工和试验按GB/T 5027-1999,GB/T 5028-1999和GB/T 228-2002规定执行。 1 拉伸试样 1.1 取样 取样部位、方向和数量应符合相关产品标准要求或经双方协商确定。 1.2 试样形状 通常情况下采用图示带肩试样。通过协商,也可以采用平行边试样(不带肩试样)。 1.3 试样尺寸 1.3.1 平行长度应不小于L0+b0/2。仲裁试验时,平行长度应为L0+2b0。 1.3.2 宽度不大于20mm的不带肩试样,夹头间的自由长度应不小于L0+3b0。 表两种非比例试样的尺寸mm 1.4 试样制备 1.4.1试样毛坯必须单个切取。试样均须进行机加工以消除加工硬化影响。对于极薄试样,将切取的等宽毛坯用油纸逐片分隔,在两外侧夹上等宽度的较厚板一起加工,直至达到要求的试样。 1.4.2 试样原始标距内宽度两侧不平行度尽可能小,最大宽度与最小宽度之差不应大于标距内测量宽度平均值的0.1%(试样1为0.01mm,试样2为0.02mm)。 1.4.3 除非另有规定,试样厚度应是产品全厚度。在试样标距内,任意两处的

厚度值之差应不大于0.01mm;当厚度小于1.0mm时,应不大于公称厚度的1%。 1.4.4 试样表面不应有划伤等缺陷。 2 常规室温拉伸性能试验 常规室温拉伸性能试验指在室温下对上述试样进行拉伸试验操作,主要测定材料的抗拉强度(破断强度)、屈服强度、延伸率和断面收缩率等。 2.1 试验要求 2.1.1 试验设备的准确度 试验机应按GB/T 16825进行检验,并应为1级或优于1级准确度。 2.1.2 试验速率 (1)测定屈服极限(R eH、R eL)的试验速率。试验速率取决于材料特性。铝的拉伸弹性模量为70GPa,所以在弹性范围直至上屈服点,应力速率应为2~20MPa/s,在试样平行长度的屈服期间应变速率应在0.00025/s~0.0025/s之间。 如试验机无能力测量或控制应变速率,直至屈服完成,应采用上述范围的等效于应力速率的试验机夹头分离速率。 (2)测定抗拉强度(R m)的试验速率。在弹性范围,如试验不包括屈服强度的测定,可以取塑性范围的最大速率;在塑性范围,平行长度的应变速率不应超过0.008/s。 2.2 试验测定 2.2.1 断后伸长率(A)和断裂总伸长率(A t)的测定 保证断后试样平行于轴向对齐,使用分辨力优于0.1mm的量具测定断后标距(L u),准确度到 0.25mm。 原则上,断裂发生在标距(b0)以内方为有效;但伸长率大于等于规定值时,不管断裂位置处于何处均为有效。 2.2.2 上屈服点(R eH)和下屈服点(R eL)的测定 (1)呈明显屈服现象的材料,应测定上屈服点(R eH)和下屈服点(R eL)。 (2)方法:可以用图解方法,直接在应力应变曲线上读取;或用指针法,即观察试验时表盘指针的回向,读取第一次回转前指示的最大力和不计初始瞬时效应时屈服阶段中指示的最小力或首次停止转动指示的恒定力。将其分别除以试样原始截面积即得上屈服点(R eH)和下屈服点(R eL)。 (3)计算机控制的试验机可以自动获取。 2.2.3 规定非比例延伸强度(R p)的测定 (1)不呈明显屈服现象的材料,应测定规定非比例极限强度,例如规定非比例延伸率0.2%对应的强度。

拉伸性能测试

拉伸性能测试(静态) 拉伸性能测试主要确定材料的拉伸强度,为研究、开发、工程设计以及质量控制和标准规范提供数据。在拉伸测试中,薄的薄膜会遇到一定困难。拉伸试样的切边必须没有划痕或裂缝,避免薄膜从这些地方开始过早破裂。 对于更薄的薄膜,夹头表面是个问题。必须避免夹头发滑、夹头处试样破裂。任何防止夹头处试样发滑和破裂,而且不干扰试样测试部分的技术如在表面上使用薄的橡胶涂层或使用纱布等都可以接受。 从拉伸性能测试中可以得到拉伸模量、断裂伸长率、屈服应力和应变、拉伸强度和拉伸断裂能等材料性能。ASTM D 638 (通用)[4]和ASTM D 882 [5](薄膜)中给出了塑料的拉伸性能(静态)。 拉伸强度 拉伸强度是用最大载荷除以试样的初始截面面积得到的,表示为单位面积上的力(通常用MPa为单位)。 屈服强度 屈服强度是屈服点处的载荷除以试样的初始截面面积得到的.用单位面积上的力(单位MPa)表示,通常有三位有效数字。 拉伸弹性模量 拉伸弹性模量(简称为弹性模量,E)是刚性指数,而拉伸断裂能(TEB,或韧性)是断裂点处试样单位体积所吸收的总能量。拉伸弹性模量计算如下:在载荷-拉伸曲线上初始线性部分画一条切线,在切线上任选一点,用拉伸力除以相应的应变即得(单位为MPa),实验报告通常有三位有效数字。正割模量(应力-应变间没有初始线性比值时)定义为指定应变处的值。将应力-应变曲线下单位体积能积分得到TEB,或者将吸收的总能量除以试样原有厚度处的体积积分。TEB表示为单位体积的能量(单位为MJ/m3),实验报告通常有两位有效数字。 拉伸断裂强度 拉伸断裂强度的计算与拉伸强度一样,但要用断裂载荷,而不是最大载荷。应该注意的是,在大多数情况中,拉伸强度和拉伸断裂强度值相等。 断裂伸长率 断裂伸长率是断裂点的拉伸除以初始长度值。实验报告通常有两位有效数字。 屈服伸长率 屈服伸长率是屈服点处的拉伸除以试样的初始长度值,实验报告通常有两位有效数字。 塑料薄膜的包装产率 有一种专门的ASTM测试方法(ASTMD 4321[6])测定塑料薄膜的“包装产率”,以试样单位质量上的面积表示。在这种测试中,定义并得到标称产率(用户和供应商之间达成的目标产率值)、包装产率(按标准计算的产率)、标称厚度(用户和供应商之间达成的薄膜厚度目标值)、标称密度和测量密度等值。对于加工厂商来说包装产率值很重要,因为它决定了某种应用中一定质量的薄膜可以得到的实际包装数量。

拉伸实验报告

abaner 拉伸试验报告 [键入文档副标题] [键入作者姓名] [选取日期] [在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。 摘要通常是对文档内容的简短总结。] 拉伸试验报告 一、试验目的 1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能 2、测定低碳钢的应变硬化指数和应变硬化系数 二、试验要求: 按照相关国标标准(gb/t228-2002:金属材料室温拉伸试验方法)要求完成试验测量工 作。 三、引言 低碳钢在不同的热处理状态下的力学性能是不同的。为了测定不同热处理状态的低碳钢 的力学性能,需要进行拉伸试验。 拉伸试验是材料力学性能测试中最常见试验方法之一。试验中的弹性变形、塑性变形、 断裂等各阶段真实反映了材料抵抗外力作用的全过程。它具有简单易行、试样制备方便等特 点。拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的 采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值 通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能, 并根据应力-应变曲线,确定应变硬化指数和系数。用这些数据来进行表征低碳钢的力学性能, 并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。 拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试 验的操作步骤等试验条件。 四、试验准备内容 具体包括以下几个方面。 1、试验材料与试样 (1)试验材料的形状和尺寸的一般要求 试样的形状和尺寸取决于被试验金属产品的形状与尺寸。通过从产品、压制坯或铸件切 取样坯经机加工制成样品。但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试 样可以不经机加工而进行试验。 试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。原始 标距与横截面积有l?ks0关系的试样称为比例试样。国际上使用的比例系数k的值为5.65。 原始标距应不小于15mm。当试样横截面积太小,以至采用比例系数k=5.65的值不能符合这 一最小标距要求时,可以采用较高的值,或者采用非比例试样。 本试验采用r4试样,标距长度50mm,直径为18mm。 尺寸公差为±0.07mm,形状公差为0.04mm。 (2)机加工的试样 如果试样的夹持端与平行长度的尺寸不同,他们之间应以过渡弧相连,此弧的过渡半径 的尺寸可能很重要。 试样夹持端的形状应适合试验机的夹头。试样轴线应与力的作用线重合。 (5)原始横截面积的测定

岩石的抗拉强度试验

岩石的抗拉强度试验 一、实验目的与要求 岩石在单轴拉伸载荷作用下达到破坏时所能承受的最大拉应力 称为岩石的单轴抗拉强度。通常所说的抗拉试验是指直接拉伸破坏实验。由于进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法来测试岩石的抗拉强度。劈裂法是最基本的方法。 通过本实验要了解标准试件的加工机械、加工过程及检测程序,实验所用夹具的具体要求,掌握岩石单向抗拉强度的测试过程及计算方法。二、实验仪器 1.钻石机或车床,锯石机,磨石机或磨床。 2.劈裂法实验夹具,或直径2.0mm钢丝数根。 3.游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。 4.材料实验机

三、试件规格、加工精度、数量 1.试件规格 标准试件采用圆盘形5+0.6直径,厚2.5±0.2cm,也可采用5cm ×5cm×2.5cm(公?0.2cm, 差±0.2cm)的长方形试件。 2.试件加工精度、数量应符合mt44-87《煤和岩石单向抗压强度及软化系数测定方 法》中的规定 四、实验原理 图1显示的是在压应力作用下,沿圆盘直径y-y的应力分布图。在圆盘边缘处,沿y-y方向(σy)和垂直y-y(σx)方向均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于平均化;垂直y-y方向变成拉应力。并在沿y-y的很长一段距离上呈均匀分布状态。虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致

试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。 χ r/r0.5σ y y σ x x 40拉伸 160压缩 1208040图1劈裂实验应力分布示意图 五、实验内容 1.了解试件的加工机具、检测机具,规程对精度的要求及检测方法; 2.学会材料实验机的操作方法及拉压夹具的使用方法; 3.学会间

胶粘剂拉伸强度试验标准

胶粘剂拉伸强度试验标准在胶接接头受拉伸应力作用时,有三种不同的接头受力方式。 (1)拉伸应力和胶接面互相垂直,并且通过胶接面中心均匀地分布在整个胶接面上,这一应力均匀拉伸应力,又称正拉伸应力。 (2)拉伸应力分布在整个胶接面上,但力呈不均匀分布,此种情况称为不均匀拉伸。 (3)和不均匀拉伸相比,它的力作用线不是捅咕试样中心,而偏于试样的一端;它的受力面不是对称的,而是不对称的,这种拉伸叫不对称拉伸,人们有时将这一试验叫撕离试验或劈裂试验,以示和剥离相区别。 一.拉伸强度试验(条型和棒状) 拉伸强度试验又叫正拉强度试验或均匀扯离强度试验。 1.原理 由两根棒状被粘物对接构成的接头,其胶接面和试样纵轴垂直,拉伸力通过试样纵轴传至胶接面直至破坏,以单位胶接面积所承受的最大载荷计算其拉伸强度。 2.仪器设备 拉力试验机应能保证恒定的拉伸速度,破坏负荷应在所选刻度盘容量的1 0%-90%范围内。拉力机的响应时间应短至不影响测量精度,应能测得试样断裂时的破坏载荷,其测量误差不大于1%。拉力试验机应具有加载时可和试样的轴线和加载方向保持一致的,自动对中的拉伸夹具。 固化夹具,能施加固定压力,保证正确胶接和定位。 3.试验步骤 (1)试棒和试样试棒为具有规定形状,尺寸的棒状被粘物。试样为将两个试棒通过一定工艺条件胶接而成的被测件。 除非另有规定,其试棒尺寸见表8-4。其试样尺寸的选择视待测胶黏剂的强度,拉力机的满量程,试棒本身材质的强度以及试验时环境因素而定。 表8-4 圆柱形和方形试棒尺寸 试棒直径和边长a/mm 直径/ L/mm 胶接面表面粗糙

b/mm mm 度Ra/um 10±0.1 15±0.1 25±0.1 10 12 15 5 7 9 30 45 50 0.8 0.8 0.8 用于试棒加工的金属材料有45号钢,LY12CZ铝合金,铜,H62黄铜等。非金属材料有层压塑料等。层压制品试棒,其层压平面应和试棒一个侧面平行,试棒上的销孔应和层压平面垂直。 试棒的表面处理,涂胶及试样制备工艺,应符合产品标准规定。胶接好试样,以周围略有一圈细胶梗为宜,此时不必清除,若需清除余胶,则应在固化后进行。 (2)试验在正常状态下,金属试样从试样制备完毕到测试之间,最短停放时间为16h,最长为1个月,非金属试样至少停放40h。 试样应在试验环境下停放30min以上,将它安装在拉力试验机夹具上,测试其破坏负荷,对电子拉力机试验机应使试样在(60±20)s内破坏;有时对机械式拉力机则采用10mm/min拉伸速度。 4.结果评定 试验结果以5个试样拉伸强度算术平均值表示,取3位有效数字。 同时应记下每个试样的破坏类型,如界面破坏,胶层内聚破坏,被粘物破坏和混合破坏。 5.影响因素 (1)应力分析粘接接头在受到垂直于粘接面应力作用时,应力分布比受剪切应力要均匀得多,但根据理论推测和应力分布试验证实,在拉伸接头边缘也存在应力集中。为证实这一点,有人采用一定厚度的橡胶胶接在试样中以代替胶黏剂,发现试样在拉伸时,橡胶中部有明显收缩。说明在接头受正拉伸应力作用,剪切应力则集中在试样胶黏剂-空气-被粘体的三者边界处最大,也就是说在这一点上应力最集中。如果我们胶接后两半圆柱体错位大,则试样的轴线偏离了加载方向中心线,这是经常会发生的。那么,就存在有劈应力,而使边缘应力集中急剧增加。当边界应力大到一个临界值时,胶层边缘就发生开裂,裂缝迅速地扩展到整个胶接面上。从对拉伸试样的应力分布进行分析表明,胶接试件的尺寸和模量,胶层的厚度,胶黏剂的模量都影响接头边缘的应力分布系数大小,因此也必然会影响它的强度值。和拉伸剪切试样一样,加载速度和试样温度也影响拉伸强度。 (2)试样尺寸

拉伸试验报告

ABANER 拉伸试验报告 [键入文档副标题] [键入作者姓名] [选取日期] [在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。摘要通常是对文档内容的简短总结。]

拉伸试验报告 一、试验目的 1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能 2、测定低碳钢的应变硬化指数和应变硬化系数 二、试验要求: 按照相关国标标准(GB/T228-2002:金属材料室温拉伸试验方法)要求完成试验测量工作。 三、引言 低碳钢在不同的热处理状态下的力学性能是不同的。为了测定不同热处理状态的低碳钢的力学性能,需要进行拉伸试验。 拉伸试验是材料力学性能测试中最常见试验方法之一。试验中的弹性变形、塑性变形、断裂等各阶段真实反映了材料抵抗外力作用的全过程。它具有简单易行、试样制备方便等特点。拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值 通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能,并根据应力-应变曲线,确定应变硬化指数和系数。用这些数据来进行表征低碳钢的力学性能,并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。 拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试验的操作步骤等试验条件。 四、试验准备内容 具体包括以下几个方面。 1、试验材料与试样

(1)试验材料的形状和尺寸的一般要求 试样的形状和尺寸取决于被试验金属产品的形状与尺寸。通过从产品、压制坯或铸件切取样坯经机加工制成样品。但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试样可以不经机加工而进行试验。 试样横截面可以为圆形、矩形、多边形、环形,特殊情况下可以为某些其他形状。 原始标距与横截面积有0S k L =关系的试样称为比例试样。国际上使用的比例系数k 的值为5.65。原始标距应不小于15mm 。当试样横截面积太小,以至采用比例系数k=5.65的值不能符合这一最小标距要求时,可以采用较高的值,或者采用非比例试样。 本试验采用R4试样,标距长度50mm ,直径为18mm 。 尺寸公差为±0.07mm ,形状公差为0.04mm 。 (2)机加工的试样 如果试样的夹持端与平行长度的尺寸不同,他们之间应以过渡弧相连,此弧的过渡半径的尺寸可能很重要。 试样夹持端的形状应适合试验机的夹头。试样轴线应与力的作用线重合。 (5)原始横截面积的测定 原始横截面积的测定应准确到%5.0±。比例试样的原始标距与横截面积有0S k L =关系。国际上使用的比例系数k 的值为5.65,也可以取11.3。本试验中试样的直径为10mm 。 (6)低碳钢的热处理 1)退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 退火是钢厂最常用的热处理工艺,可以达到以下目的:(1)减小钢锭的成分偏析,使成分均匀化;(2)消除铸、锻件中存在的魏氏组织或带状组织,细化晶

相关文档
最新文档