集合知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0 可编辑可修改
1 高中数学高考总复习 高三数学总复习一—集合 — 1 —
高中数学第一章-集合
考试内容:
集合、子集、补集、交集、并集.
考试要求:
(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系
的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.
集合知识要点
一、知识结构:
本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:
二、知识回顾:
(一) 集合
1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.
2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:
①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.
2 高中数学高考总复习 高三数学总复习一—集合 — 2 —
[注]:①Z = {整数}(√) Z ={全体整数} (×)
②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.
④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R
}二、四象限的点集.
③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨
⎧=-=+1
323
y x y x 解的集合{(2,1)}.
②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2
+1} 则A ∩B =∅)
4. ①n 个元素的子集有2n
个. ②n 个元素的真子集有2n
-1个. ③n 个元素的非空真子集有2n
-2个. 5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.
解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②
且21≠≠y x 3≠+y . 解:逆否:x + y =3
x = 1或y = 2.
2
1≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补. 【并集】
在集合论和数学的其他分支中,一组集合的并集是这些集合的所有元素构成的集合,而不包含其他元素。 基本定义 :
若 A 和 B 是集合,则 A 和 B 并集是有所有 A 的元素和所有 B 的元素,而没有其他元素的集合。 A 和
B 的并集通常写作 "A ∪B"。
形式上:x 是 A ∪B 的元素,当且仅当 x 是 A 的元素,或 x 是 B 的元素。
举例:集合 {1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不属于素数集合 {2, 3, 5, 7, 11, …} 和偶数集合 {2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。
更通常的,多个集合的并集可以这样定义:例如,A, B 和 C 的并集含有所有 A 的元素,所有 B 的元素和所有 C 的元素,而没有其他元素。
形式上:x 是 A ∪B ∪C 的元素,当且仅当 x 属于 A 或 x 属于 B 或 x 属于 C。
代数性质:
二元并集(两个集合的并集)是一种结合运算,即 A ∪(B ∪C) = (A ∪B) ∪C。事实上,A ∪B ∪C 也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。
相似的,并集运算满足交换率,即集合的顺序任意。
空集是并集运算的单位元。即 {} ∪A = A,对任意集合 A。可以将空集当作零个集合的并集。
结合交集和补集运算,并集运算使任意幂集成为布尔代数。例如,并集和交集相互满足分配律,而且这三种运算满足德·摩根律。若将并集运算换成对称差运算,可以获得相应的布尔环。
【交集】
数学上,两个集合 A 和 B 的交集是含有所有既属于 A 又属于 B 的元素,而没有其他元素的集合。
A 和
B 的交集写作 "A ∩B"。形式上: x 属于 A ∩B 当且仅当 x 属于 A且 x 属于 B。
例如:集合 {1, 2, 3} 和 {2, 3, 4} 的交集为 {2, 3}。数字 9 不属于素数集合 {2, 3, 5, 7, 11} 和奇数集合 {1, 3, 5, 7, 9, 11}的交集。
若两个集合 A 和 B 的交集为空,就是说他们没有公共元素,则他们不相交。
更一般的,交集运算可以对多个集合同时进行。例如,集合 A,B,C 和 D 的交集为 A ∩B ∩C∩D =A ∩(B ∩(C ∩D))。交集运算满足结合律,即 A ∩(B∩C)=(A∩B) ∩C。
最抽象的概念是任意非空集合的集合的交集。若 M 是一个非空集合,其元素本身也是集合,则 x 属于 M 的交集,当且仅当对任意 M 的元素 A,x 属于 A。
一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CsA.
3 高中数学高考总复习高三数学总复习一—集合— 3 —