高分子加工工艺

合集下载

高分子材料加工技术

高分子材料加工技术

高分子材料加工技术成型是将高分子材料通过热塑性或热固性工艺加工成特定形状的过程。

常见的成型方法包括挤出、注塑、吹塑、压延、镀膜等。

其中,挤出是一种通过将高分子材料加热至熔融状态,然后通过模具挤压出所需形状的工艺。

注塑是将高分子材料加热至熔融状态后注入到模具中,并通过压力使其充满模具内部形状的工艺。

吹塑是通过将高分子材料挤出成管状,并在一定压力下通过气流吹成制品的工艺。

压延是将高分子材料加热至玻态转变温度以上,然后通过压力在辊间压制成片状的工艺。

镀膜是在高分子材料的表面上涂覆一层金属或其他材料,以提高其耐磨性、导热性等性能的工艺。

改性是指通过添加填料、添加剂等方法改变高分子材料的性能。

填料可以增加高分子材料的强度、刚度和耐磨性等性能,常见的填料有玻璃纤维、碳纤维、硅胶等。

添加剂可以改变高分子材料的增塑性、耐候性、阻燃性等性能,常见的添加剂有防老化剂、增塑剂、阻燃剂等。

加工是将成型或改性后的高分子材料进行切割、钻孔、搪孔等工艺,以满足特定产品的要求。

常见的加工方法包括机械加工、热切割、激光切割等。

机械加工是通过机械设备如铣床、车床等进行切削、钻孔等操作,常用于加工较大尺寸的高分子制品。

热切割是通过将高分子材料加热至一定温度后进行切割的工艺,常用于加工薄膜、板材等较薄的制品。

激光切割是通过激光束的热作用将高分子材料切割,具有切割精度高、速度快等优点,常用于加工高精度的产品。

高分子材料加工技术的应用广泛,可以生产各种形式的产品,如管材、片材、薄膜、零件等。

然而,高分子材料加工过程中可能会产生一些问题,如热应力、挤出泡孔、缩水等。

为了解决这些问题,需要优化工艺参数,改善原材料的质量和稳定性。

总之,高分子材料加工技术是一门复杂而重要的技术,不仅可以满足各个领域的需求,还可以推动材料科学的发展。

随着科技的不断进步,高分子材料加工技术也将不断创新和发展,为社会的进步和发展做出更大的贡献。

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工是将高分子材料通过一系列的工艺操作和设备,使其转变成所需形状和尺寸的过程。

以下是高分子材料成型加工的一些常见方法:
1. 注塑成型:将高分子材料以固体或液态形式注入到模具中,在高压和高温下使其熔化并充满模具腔体,然后冷却固化,最终得到所需形状的制品。

注塑成型广泛应用于塑料制品的生产,如塑料容器、零件等。

2. 挤出成型:将高分子材料通过挤出机加热熔化,然后通过模具的挤压作用将熔融物料挤出成连续的型材,经冷却固化后得到所需形状的制品。

挤出成型常用于生产管道、板材、薄膜等产品。

3. 吹塑成型:利用吹塑机将高分子材料加热熔化,然后通过气流将其吹成空气袋状,同时在模具中形成所需形状,最后冷却固化得到制品。

吹塑成型常用于生产塑料瓶、塑料薄膜等。

4. 压延成型:将高分子材料以固体或液态形式置于两个或多个辊子之间,通过辊子的旋转和挤压,使其逐渐变薄并得到所需形状和尺寸,最后冷却固化。

压延成型常用于生产塑料薄膜、塑料板材等。

5. 注塑吹塑复合成型:将注塑成型和吹塑成型结合在一起,先通过
注塑将制品的大部分形状成型,然后通过吹塑将其膨胀、加压并使得内部空腔形成所需形状。

注塑吹塑复合成型常用于生产中空制品,如玩具、塑料容器等。

除了上述常见的成型加工方法外,还有其他方法如压缩成型、发泡成型、旋转成型等,不同的高分子材料和产品要求会选择适合的成型加工方法。

成型加工过程中需要考虑材料的熔化温度、流动性、冷却速度等因素,同时也要注意模具设计和工艺参数的优化,以获得良好的成型效果和制品质量。

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工简介高分子材料成型加工是指通过加热、挤压、拉伸等工艺将高分子材料转变成所需形状和尺寸的过程。

高分子材料广泛应用于各个领域,如塑料制品、橡胶制品、纤维材料等。

本文将介绍高分子材料成型加工的基本原理、常用的加工方法以及在实际应用中的注意事项。

基本原理高分子材料成型加工是利用高分子材料的可塑性进行加工的过程。

高分子材料的可塑性是指在一定的温度和压力下,可以被加工成各种形状的性质。

其基本原理可以归纳为以下几点:1.熔融:高分子材料在一定的温度范围内可以被熔化成流体状态,使得材料更易于流动和变形。

2.成型:将熔融的高分子材料注入到模具中,通过模具的形状和尺寸限制,使得熔融材料在冷却后得到所需的形状和尺寸。

3.冷却固化:熔融材料在模具中冷却后逐渐固化成固体,成为最终的成型品。

常用的加工方法注塑成型注塑成型是一种常用的高分子材料成型加工方法,适用于制造各种塑料制品。

其基本流程包括:1.材料准备:选择合适的塑料颗粒作为原料,将其加入注塑机的进料口中。

2.加热熔融:注塑机将原料加热、熔融,并将熔融的塑料材料注入到模具中。

3.冷却固化:模具中的熔融塑料材料在冷却后逐渐固化成固体,形成最终的成型品。

4.取出成品:将固化的成型品从模具中取出,并进行后续加工,如修整边缘、打磨表面等。

挤出成型挤出成型是另一种常用的高分子材料成型加工方法,适用于制造各种管材、板材等长型产品。

其基本流程包括:1.材料准备:将高分子材料以颗粒形式加入到挤出机的料斗中。

2.加热熔融:挤出机将颗粒状的高分子材料加热、熔融,并通过螺杆将熔融的材料挤出。

3.模具成型:挤出的熔融材料通过模具的形状和尺寸限制,被冷却成所需的形状和尺寸。

4.冷却固化:在模具中冷却后,熔融材料逐渐固化成固体,形成最终的成型品。

5.切割成品:挤出机会根据需要将成型品切割成所需的长度,以便后续使用。

除了注塑成型和挤出成型,还有许多其他的高分子材料成型加工方法,如压延成型、注射拉伸成型等,根据材料和产品的需求选择合适的加工方法。

高分子材料加工技术

高分子材料加工技术

高分子材料加工技术
高分子材料加工技术是指将高分子材料(如塑料、橡胶)通过一系列的加工工艺,使其变成所需的产品或零部件的过程。

它包括以下几种常见的加工技术:
1. 注塑成型:将高分子材料加热熔融后,通过注塑机将熔融物注入模具中,然后冷却固化成型。

2. 吹塑成型:将高分子材料加热熔融后通过吹塑机,将其吹入充气的模具中,然后冷却固化成型。

3. 挤出成型:将高分子材料加热熔融后,通过挤出机将熔融物挤出成型。

4. 压延成型:将高分子材料通过双辊压延机,经过连续的冷却和压延,使其变成薄膜或板材。

5. 注塑拉伸吹塑成型:将高分子材料通过注塑机注塑成形后,再通过拉伸和吹塑成型,制成透明的容器或瓶子。

6. 焊接和粘接:在高分子材料表面使用热焊或化学粘接剂
将两个或多个零部件连接在一起。

此外,还有其他加工技术如热压、胎具法、模压、拉伸成
型等。

这些加工技术都有各自的特点和适用范围,根据实
际需求选择合适的加工技术可以提高生产效率和产品质量。

四大高分子材料加工方法

四大高分子材料加工方法

一.挤出成型挤出成型工艺适用于所有的高分子材料,制造各种连续制品如管材、型材、板材(或片材)、薄膜、电线电缆包覆、橡胶轮胎胎面条、内胎胎筒、密封条等。

其中的塑料挤出成型几乎能成型所有的热塑性材料,也可用于少数几种热固性材料,如酚醛。

原因:因为挤出成型工艺具有以下特点:1.连续成型,产量大,生产效率高;2.制品连续,断面形状不变,制品外形简单;3.制品质量均匀密实,尺寸准确较好。

二.注射成型注射成型的应用十分广泛,几乎所有的热塑性塑料及多种热固性塑料都可用此法成型,也可以成型橡胶制品。

但主要是热塑性塑料的注射。

原因:因为注射成型工艺具有以下特点:1.成型周期短,生产效率高,易实现自动化;2.能成型形状复杂,尺寸精确;3.带有金属或非金属嵌件的塑料制件;4.产品质量稳定。

三.模压成型模压成型工艺广泛用于热固性塑料和橡胶制品的成型加工,几乎所用的高分子材料都可用此方法来成型制品。

目前主要用于:热固性塑料的成型;橡胶制品的成型;复合材料的成型。

原因:因为模压成型工艺具有以下特点:1.与挤出和注射等成型工艺相比,模压成型工艺所需设备结构简单、制造精度不髙、制造费用低,所以投资少、见效快,为发展多品种、小批量的生产提供了有利条件;2.在模压成型过程中,由于塑料的流动距离很短,受填料的定向影响小,所以塑件的尺寸变动小,不易变形,尺寸稳定性好,机械性能稳定;3.相同吨位的压机可以成型较大平面的制品;4.模压成型工艺成熟,生产过程易于控制;5.模压成型中没有浇注系统,原材料浪费相对较少。

对于不能重复利用的热固性材料来讲,节约原料尤为重要;6.模压成型基本上适合于加工各种塑料,尤其像氨基树脂、环氧树脂和聚酰亚胺等材料,用注射成型既困难又会影响制品外观质量;对于用石棉或玻璃纤维等增强的塑料,在注射和挤出成型中,纤维易在浇口部分断裂,使制品的机械强度特别是冲击强度降低,失去增强的意义;聚酯团状和片状模塑料若采用注射成型,则需特殊的强迫加料装置,导致设备费用昂贵。

高分子材料生产工艺

高分子材料生产工艺

高分子材料生产工艺高分子材料生产工艺是指将原材料经过一系列的加工和处理工序,制成高分子材料产品的过程。

以下是一个典型的高分子材料生产工艺流程。

1. 原料准备:首先需要准备好高分子材料的原料。

通常情况下,高分子材料的原料主要由单体和辅助物质组成。

单体是高分子材料的主要成分,可以通过化学合成或提取方法获得。

辅助物质包括催化剂、稳定剂、填料等,用于改善材料的性能。

2. 单体合成:对于需要化学合成的高分子材料,单体合成是一个重要的工序。

该工序一般包括原料与催化剂的混合、加热反应、冷却等步骤。

通过控制反应条件,可以实现单体的聚合,生成高分子链。

3. 成型加工:得到的高分子材料通常是一种无定形的物质,需要通过成型加工得到所需的形状。

常见的成型加工方法包括挤出、注塑、压延、吹塑等。

在成型加工过程中,高分子材料需要经过加热、加压、冷却等步骤,以实现形状的塑性变形和固化。

4. 表面处理:某些高分子材料产品需要进行表面处理,以改善其表面性能。

例如,可以通过喷涂、镀膜、离子束处理等方法,给高分子材料的表面增加一层保护层或改善其光滑度、耐磨性等特性。

5. 检测与质量控制:在高分子材料生产工艺中,检测与质量控制是一个不可或缺的环节。

通过使用各种物理、化学、机械等检测手段,对高分子材料的成品进行检测,以确保其质量符合标准要求。

检测项目包括密度、硬度、拉伸强度、耐热性、化学稳定性等。

6. 包装与运输:高分子材料成品需要进行包装,以保护其不受外界环境的危害。

常见的包装材料包括塑料袋、纸箱、木箱等。

在运输过程中,需要注意避免高温、潮湿等不利因素对成品的影响。

7. 储存与销售:高分子材料成品通过储存和销售环节,进入市场。

在储存过程中,需要注意适宜的环境条件,以防止成品的老化、变形等问题。

销售环节需要通过有效的市场营销手段,将成品宣传和推广给潜在的客户。

以上是一个典型的高分子材料生产工艺流程。

根据具体的高分子材料种类和产品要求,实际的生产工艺可能会有所不同。

常用高分子材料的加工工艺

常用高分子材料的加工工艺

P S1 PS的性能PS为无定形聚合物,流动性好,吸水率低(小于00.2%),是一种易于成型加工的透明塑料。

其制品透光率达88-92%,着色力强,硬度高。

但PS制品脆性大,易产生内应力开裂,耐热性较差(60-80℃),无毒,比重1.04g\cm3左右(稍大于水)。

2 PS的工艺特点PS熔点为166℃,加工温度一般在185-215℃为宜,分解温度约为290℃,故其加工温度范围较宽。

PS料在加工前,可不用干燥,由于其MI较大、流动性好,注射压力可低些。

因PS比热低,其制作一些模具散热即能很快冷凝固化,其冷却速度比一般原料要快,开模时间可早一些。

其塑化时间和冷却时间都较短,成型周期时间会减少一些;PS制品的光泽随模温增加而越好。

HIPS1 HIPS的性能HIPS为PS的改性材料,分了中含有5-15%橡胶成份,其韧性比PS提高了四倍左右,冲击强度大大提高。

它具有PS 具有成型加工、着色力强的优点。

HIPS制品为不透明性。

HIPS吸水性低,加工时可不需预先干燥。

2 HIPS的工艺特点因HIPS分子中含有5-15%的橡胶,在一定程度上影响了其流动性,注射压力和成型温度都宜高一些。

其冷却速度比PS 慢,故需足够的保压压力、保压时间和冷却进间。

成型周期会比PS稍长一点,其加工温度一般在190-240℃为宜。

HIPS制件中存在一个特殊的“白边”的问题,通过提高模温和锁模力、减少保压压力及时间等办法来改善,产品中夹水纹会比较明显。

AS(SAN)1 AS的性能AS为苯乙烯-丙烯睛共聚体,不易产生内应力开裂。

透明度很高,其软化温度和搞冲击强度比PS高。

2 AS的工艺特点AS的加工温度一般在200-250℃为宜。

该料易吸湿,加工前需干燥一小时以上,其流动性比PS稍差一点,故注射压力亦略高一些。

模温控制在45-75℃较好。

ABS1 ABS的性能ABS为丙烯睛-丁二烯-苯乙烯三元共聚物,具有较高的机械强度和良好“坚、韧、钢”的综合性能。

高分子材料加工工艺学

高分子材料加工工艺学

高分子材料加工工艺学
高分子材料加工工艺学是研究原材料加工和性能改善的一种材料加工技术。

它主要涉及的内容:第一是研究复合材料的成型工艺,如热压、挤压、拉伸、挤出等方法用于生产复合材料和复合部件;第二是制备高分子复合材料,如高分子溶液、聚合物增强等方法;第三是研究高分子添加剂,根据高分子材料的应用特点裁定相应的添加剂;第四是研究高分子材料塑料加工和制造技术,探讨不同的工艺、装备和工艺条件之间的关联;最后是研究热塑性高分子模压成型工艺中的因素变化,如模具的准备、模具的设计、模流特征和模具温度等。

上述是高分子材料加工工艺学的主要内容。

从加工工艺方面来看,研究包括热塑性高分子成型和复合材料的成型工艺,其中复合成型包括热压、挤压、拉伸、挤出等技术;从材料配比方面来看,研究包括添加剂的种类、量和混合比例;从设备配置方面来看,研究包括机械设备、电气设备、热力学设备及气体控制系统等设备的搭配。

另外,高分子材料加工工艺学还运用了计算机技术对材料成型过程中的原料,工艺参数和工件状态进行模拟和优化,进而提高材料制备过程中的控制手段及生产效率。

高分子材料加工工艺

高分子材料加工工艺

高分子材料加工工艺引言高分子材料是一类具有很高分子量的大分子物质,具有良好的可塑性和可加工性,因此在工业生产中得到广泛应用。

高分子材料的加工工艺对材料的性能和质量具有重要影响。

本文将介绍高分子材料的常见加工工艺及其特点。

压延法压延法是高分子材料加工的基本方法之一。

它通过将高分子材料置于两个连续旋转的辊子之间,通过压力将材料挤压成所需的厚度和形状。

压延法适用于制备薄膜、片材、带材等产品。

压延法的工艺流程包括以下几个步骤:1.原料准备:将高分子材料切碎或研磨成粉末状,准备好所需的添加剂和填充剂。

2.混炼:将高分子材料与添加剂、填充剂加入混炼机中进行混合。

3.炼胶:将混炼好的材料送至炼胶机中进行炼胶,以提高材料的可塑性和可加工性。

4.压延:将炼胶好的材料放入压延机中,通过辊子的旋转和压力的作用,将材料挤压成所需的薄膜、片材或带材。

5.后处理:对压延好的产品进行表面处理、冷却等后续工艺,使其达到所需的性能要求。

压延法的优点是加工速度快、效率高,可以制备出很多种形状的产品。

但是,压延法在某些高分子材料中容易产生气泡、缺陷等问题,需要通过优化工艺参数和加入消泡剂等方式解决。

注塑成型注塑成型是高分子材料加工的常用方法之一,尤其适用于制备大批量的复杂形状产品。

注塑成型通过将高分子材料加热熔融,然后将熔融材料注入模具中,通过模具的冷却固化成型。

注塑成型适用于制备塑料制品、零件、模具等产品。

注塑成型的工艺流程包括以下几个步骤:1.原料准备:将高分子材料切碎或研磨成粉末状,准备好所需的添加剂和填充剂。

2.预处理:将原料加入注塑机的料斗中,通过加热和混合来提高材料的可塑性和可加工性。

3.注塑:将预处理好的材料注入注塑机的料筒中,材料在高温和高压的作用下熔融。

4.冷却:在注塑机的模具中,熔融材料通过冷却固化成型。

5.后处理:将成型好的产品从模具中取出,进行修整、清洁、质检等后续工艺。

注塑成型的优点是生产效率高、制品成型精度高,还可以制备出各种复杂形状的产品。

高分子材料加工

高分子材料加工

高分子材料加工高分子材料是一类具有高分子量、由重复单元结构组成的材料,广泛应用于塑料、橡胶、纤维等领域。

高分子材料的加工是指将原料通过一系列工艺加工成成品的过程,包括塑料成型、橡胶硫化、纤维纺丝等多种加工方法。

本文将重点介绍高分子材料加工的一些常用方法和技术。

首先,塑料成型是高分子材料加工中最常见的方法之一。

塑料成型包括挤出成型、注塑成型、吹塑成型等多种方法。

挤出成型是将塑料通过挤出机加热后挤出成型,常用于生产管材、板材等产品;注塑成型是将塑料加热后注入模具中成型,常用于生产各种塑料制品;吹塑成型是将热塑性塑料加热后吹制成型,常用于生产各种塑料容器。

这些方法都是通过加热塑料使其变软,然后通过模具或模具组合使其成型,是塑料制品生产中不可或缺的加工方法。

其次,橡胶硫化是橡胶制品加工中的重要环节。

橡胶硫化是指将橡胶加入硫化剂和促进剂后进行加热处理,使其发生交联反应从而获得所需的物理性能。

橡胶硫化的方法有热硫化、冷硫化等多种,其中热硫化是最常用的方法。

在橡胶硫化过程中,控制硫化温度、时间和硫化剂的种类和用量是非常重要的,这直接影响着橡胶制品的质量和性能。

最后,纤维纺丝是纤维制品加工中的关键环节。

纤维纺丝是指将聚合物溶液或熔体通过纺丝机械加工成纤维的过程,包括湿法纺丝、干法纺丝等多种方法。

湿法纺丝是将聚合物溶液挤出成纤维后通过凝固、拉伸、固化等工艺制备纤维;干法纺丝是将聚合物熔体挤出后通过拉伸、冷却等工艺制备纤维。

纤维纺丝是制备纤维制品的关键步骤,直接影响着纤维制品的质量和性能。

综上所述,高分子材料加工涉及多种方法和技术,对原料的选择、工艺参数的控制、设备的运行等都有着严格的要求。

只有在加工过程中严格控制各项参数,才能获得具有优良性能的高分子材料制品。

希望本文介绍的内容能够对高分子材料加工有所了解,并在实际生产中加以应用。

高分子材料加工及表面改性技术

高分子材料加工及表面改性技术

高分子材料加工及表面改性技术高分子材料,其实就是具有很高分子量的化合物。

这种材料具有比较高的强度和韧性,可以应用在很多领域中,例如工业、医学、电子等等方面,而高分子材料加工及表面改性技术,则是围绕着这种材料的处理技术而展开的研究和实践。

在这篇文章中,我将针对高分子材料的加工和表面改性技术进行探讨。

一、高分子材料加工技术高分子材料的加工技术,主要包括成型加工、加工工艺以及加工装备等三个方面。

1. 成型加工成型加工,是指将高分子材料加工成所需形状和尺寸的工艺过程。

其中,最常见的成型加工方法,便是注塑成型。

注塑成型是一种通过芯棒将熔化的高分子塑料注入模具中冷却成型的方法。

该方法在整个加工处理过程中,需要用到注塑机、机械手等设备。

此外,还有挤出成型、吹塑成型、压缩成型等不同的成型加工方法。

这些方法,适用于不同的高分子材料以及不同的加工需求。

2. 加工工艺加工工艺,则是指通过调节加工参数,使高分子材料达到最佳加工状态。

对于不同的高分子材料,其加工参数也会有所不同。

举例来说,在进行注塑加工处理时,需要考虑高分子材料的注塑温度、注塑压力、注塑速度、模具温度等因素。

3. 加工装备高分子材料加工中,加工装备则是重要的辅助性因素。

相应的,加工装备的维护保养,以及开展相应的技术培训,也是加工成功的关键之一。

二、高分子材料表面改性技术除了高分子材料加工技术以外,改善高分子材料表面性能的技术也受到了广泛的关注。

表面改性技术,可以通过物理、化学、生物等多种途径,将高分子材料的表面性能得到改进。

1. 物理方法物理方法,指的是通过物理手段来进行表面改性。

例如,通过使用阳极氧化、喷砂处理以及激光加工等方法,对高分子材料的表面进行改良。

在这些方法中,激光加工则属于一种比较高效的表面处理技术。

通过使用激光加工设备,可以在材料表面形成微米级别的表面结构和纳米级别的结晶区域,从而达到更好的表面改性。

2. 化学方法化学方法,指的是在高分子材料表面添加化学物质,从而起到改性的作用。

高分子材料成型加工中的注射成型工艺

高分子材料成型加工中的注射成型工艺

高分子材料成型加工中的注射成型工艺高分子材料是一类分子量大、由多个重复单体组成的聚合物材料,具有优良的力学性能和化学性能,被广泛应用于各种工业领域。

在高分子材料的生产加工过程中,注射成型工艺是一种常用且高效的加工方法。

本文将就高分子材料成型加工中的注射成型工艺进行探讨。

一、注射成型工艺的原理注射成型工艺是将加热熔化的高分子材料通过注射机的螺杆进行高速注入到模具中,在模具中冷却凝固成型的过程。

注射成型工艺具有高效、精确、成型周期短等特点,适用于高产量、精密要求高的产品。

二、注射成型工艺的步骤1. 原料准备:将高分子材料颗粒加入到注射机的料斗中,根据产品要求控制好原料的配比和温度。

2. 加热熔化:注射机通过螺杆将高分子材料加热熔化,形成熔体,使得高分子链松弛、流动性增加。

3. 注射成型:熔化的高分子材料被注入到模具内,填充整个模腔,在一定时间内保持压力,使得材料充分填充模具细节。

4. 冷却固化:待高分子材料在模具中冷却凝固后,打开模具取出成型零件,即可完成注射成型的工艺。

三、注射成型工艺的优势1. 生产效率高:注射成型工艺适用于高速连续生产,成型周期短,生产效率高。

2. 产品精度高:注射成型工艺可以保证产品的尺寸精度和表面质量,适用于精密要求高的产品。

3. 操作简便:注射成型工艺的操作相对简单,只需控制好原料的配比和温度即可进行生产。

四、注射成型工艺的应用领域1. 汽车行业:汽车零部件如汽车灯罩、仪表板等采用注射成型工艺,具有高耐热性和精密加工要求。

2. 电子电器行业:手机壳、电视外壳等电子电器产品采用注射成型工艺,成型速度快、成本低。

3. 医疗器械行业:医用注射器、人工关节等产品也常采用注射成型工艺,产品质量高、检测难度低。

总之,注射成型工艺在高分子材料成型加工中具有广泛的应用前景,通过掌握好注射成型工艺的原理和步骤,可以实现高效、精密的生产加工过程。

希望本文对您对高分子材料成型加工中的注射成型工艺有所帮助。

PVDF工艺介绍

PVDF工艺介绍

PVDF工艺介绍PVDF工艺是一种常用的高分子材料加工工艺,PVDF(聚偏氟乙烯)是一种高性能工程塑料,具有优良的耐化学腐蚀性、热稳定性和电气绝缘性能。

PVDF工艺主要指的是通过加工将PVDF材料转变为所需形状和尺寸的工艺方法。

本文将为您介绍PVDF工艺的一般流程和常见的加工方法。

一、PVDF工艺的一般流程1.原料准备:将PVDF颗粒根据所需比例称量,并加入适量的添加剂,如增塑剂、稳定剂等,以调整材料的性能和加工性能。

2.预处理:将PVDF颗粒放入干燥箱中进行预烘烤,去除其中的水分,以提高后续工艺的效果。

3.加工:PVDF材料可以通过挤出、压制、注塑、吹塑等加工方式进行成型。

具体的加工方式根据所需产品的形状和尺寸而定。

4.热处理:对已经成型的PVDF制品进行热处理,通过特定的温度和时间,在一定程度上消除内应力,并提高材料的热稳定性和尺寸稳定性。

5.表面处理:根据需要进行表面处理,如打磨、抛光、喷涂等,以提高制品的表面质量和观感。

6.检验:对成品进行严格的检验,包括外观、尺寸、性能等方面,确保制品符合要求,并做好记录。

二、PVDF工艺的常见加工方法1.挤出法:将预处理后的PVDF颗粒放入挤出机中进行加热和挤出。

通过挤出机的螺杆运动,PVDF颗粒被加热熔融,然后通过模具形成所需的形状和尺寸。

挤出法适用于制作管材、板材等形状简单的制品。

2.压制法:将预处理后的PVDF颗粒放入压制机中,在高温高压的环境下,通过压力将PVDF颗粒变形成所需形状和尺寸的制品。

压制法适用于制作薄膜、板材等较薄的制品。

3.注塑法:将预处理后的PVDF颗粒放入注塑机中,在高温高压的环境下,使颗粒熔融成熔体,然后通过射嘴注入模具中,形成所需形状和尺寸的制品。

注塑法适用于制作复杂形状的制品,如零件、器皿等。

4.吹塑法:将预处理后的PVDF颗粒放入吹塑机中,通过加热使颗粒熔融成融体,然后通过模具挤出,通过气流将融体吹成所需形状和尺寸的制品。

高分子材料加工工艺

高分子材料加工工艺
高分子材料加工工艺
汇报人:
日期:
CATALOGUE
目 录
• 高分子材料概述 • 高分子材料加工工艺概述 • 挤出成型工艺 • 注塑成型工艺 • 压延成型工艺 • 高分子材料加工工艺的发展趋势
和挑战
01
CATALOGUE
高分子材料概述
高分子材料的定义
高分子材料是指由大量重复单元组成的材料,通常由相对分子质量大于10000的 化合物组成。
高分子材料具有相对分子质量高、分子链长、分子结构多样性和材料性能可调等 特点。
高分子材料的分类
根据来源,高分子材料可分为天然高分子材料和合成高分子 材料。
天然高分子材料包括纤维素、淀粉、蛋白质等,而合成高分 子材料则包括塑料、橡胶、纤维等。
高分子材料的应用
高分子材料在日常生活中有着广泛的应用,如家具、建筑 材料、汽车、电子设备等。
将高分子材料加热至熔点以上, 使其成为熔融状态,然后通过压 延设备中的口型或模具进行成型 。
冷却阶段
将已经成型的材料进行冷却,使 其从熔融状态逐渐冷却固化,最 后得到具有特定形状和性能的高 分子材料制品。
压延成型工艺的应用
塑料薄膜
压延成型工艺是制造塑料薄膜最 常用的方法之一,如聚乙烯、聚 丙烯、聚氯乙烯等塑料薄膜均可
01
02
03
材料性能的限制
高分子材料的性能与金属 和无机材料相比仍有较大 差距,需要进一步提高。
加工温度的限制
高分子材料的加工需要高 温环境,这增加了能源消 耗和环境污染。
复合材料的加工
实现不同性质材料的均匀 混合和稳定加工,提高复 合材料的性能。
未来发展的展望
新材料的研发
开发出具有优异性能的高 分子材料,满足各种领域 的需求。

高分子材料成型加工综述

高分子材料成型加工综述

高分子材料成型加工综述高分子材料是一类具有广泛应用前景的材料,其主要特点是分子链结构较长,具有良好的可塑性和变形性能。

高分子材料成型加工是将原料经过一系列加工技术,制成所需要的成品制品的过程,是高分子材料应用的重要环节。

本文将就高分子材料成型加工的工艺方法、应用领域以及发展趋势进行综述。

一、高分子材料成型加工的工艺方法1.注塑成型注塑成型是一种用于制作高分子材料制品的主要方法,其原理是将加热熔化的高分子材料通过注射器注入模具中,经冷却后形成所需的成品制品。

这种方法适用于生产批量较大的制品,成品具有较高的精度和表面质量。

2.挤出成型挤出成型是将加热的高分子材料通过挤出机挤压成型,是一种连续生产的方法。

挤出成型适用于生产各种型材、板材、管材等,具有成本低、生产效率高等优点。

3.压缩成型吹塑成型是将高分子材料挤出成管状,再通过内部加压气体吹出成型,适用于生产一些薄壁产品,如塑料瓶、塑料薄膜等。

5.旋转成型旋转成型是将液态高分子材料置于模具中,在模具旋转过程中形成所需的成品制品。

这种方法适用于生产一些中空、对称形状的制品。

1.包装领域高分子材料在包装领域得到了广泛的应用,如塑料瓶、塑料袋、泡沫塑料等,这些制品都是通过高分子材料的成型加工制成的。

高分子材料包装制品具有成本低、制造周期短、重量轻、抗冲击性好等优点,因此得到了包装行业的青睐。

2.建筑领域高分子材料在建筑领域应用也十分广泛,如塑料管道、塑料隔热材料、弹性地板等。

这些制品通过高分子材料成型加工制成,具有耐腐蚀、耐老化、绝缘性能好等特点,因此在建筑领域有着重要的作用。

3.汽车领域4.医疗领域1.绿色环保随着人们对环境保护意识的增强,高分子材料成型加工也趋向于绿色环保。

未来的高分子材料成型加工将更加注重材料的可降解性和可循环利用性,研发出更环保的成型加工工艺和材料。

2.智能化生产随着信息技术的发展,高分子材料成型加工也将实现智能化生产。

未来的高分子材料成型加工将更加注重自动化、数字化生产,提高生产效率和成品质量。

高分子材料加工工艺

高分子材料加工工艺

高分子材料加工工艺引言高分子材料是一类重要的工程材料,具有广泛的应用领域,如塑料、橡胶、纤维和复合材料等。

高分子材料加工工艺是指将原始的高分子材料经过一系列的加工操作,制成最终产品的过程。

高分子材料加工工艺的优化,对于提高产品质量、提高生产效率、降低成本和实现可持续发展具有重要意义。

本文将介绍高分子材料加工工艺的基本原理、常用的加工方法以及加工过程中需要注意的事项,以帮助读者更好地理解和应用高分子材料加工工艺。

高分子材料加工工艺的基本原理高分子材料加工工艺的基本原理是将原始的高分子材料在适当的温度和压力条件下进行变形,使其达到所需的形状和尺寸。

高分子材料加工工艺的基本原理可以归结为以下几点:1.熔融:大多数高分子材料是通过熔融加工的方式进行加工的。

熔融是将高分子材料加热至其熔点以上,使其变为可流动的液态状,然后通过压力或其他方式将其注入模具或进行其他形状调整。

2.变形:熔融后的高分子材料可以通过压力、拉伸、挤出、注塑等方式进行变形。

这些变形过程可以改变高分子材料的形状、尺寸和性能。

3.固化:在高分子材料加工过程中,一旦完成所需的形状和尺寸调整,就需要使高分子材料重新固化,以保持所加工产品的稳定性和机械性能。

常用的高分子材料加工方法在高分子材料加工过程中,常用的加工方法包括挤出、注塑、吹塑、压延、压制等。

下面将分别介绍这些方法的基本原理和适用范围。

挤出挤出是指将熔融态的高分子材料通过模具的挤压将其挤出成所需的截面形状。

该方法适用于生产塑料管、板材、薄膜等产品。

挤出加工的基本过程包括预热、熔融、挤出、冷却等步骤。

注塑注塑是将熔融的高分子材料注入到模具中,并通过冷却使其固化成所需产品的一种加工方法。

注塑适用于生产成型复杂的塑料制品,如零件、壳体等。

注塑加工的基本过程包括模具闭锁、熔融注射、冷却、开模等步骤。

吹塑吹塑是将熔融的高分子材料放置在一定的模具中,通过气压使其膨胀成模具的形状,然后通过冷却使其固化成为所需产品的一种加工方法。

高分子材料成型加工中的注塑成型工艺

高分子材料成型加工中的注塑成型工艺

高分子材料成型加工中的注塑成型工艺在现代工业生产中,注塑成型是一种常用的高效成型工艺,尤其在高分子材料成型加工领域中得到广泛应用。

本文将探讨高分子材料成型加工中的注塑成型工艺,从原理、工艺流程、设备及应用等方面进行分析。

一、原理注塑成型是利用塑料的熔融性和流动性,通过高压将熔融的塑料材料压入模具中,经冷却后得到所需成型的制品的生产过程。

在高分子材料成型加工中,通过加热将高分子材料加工成流动性好的熔融状态,再将熔融状态的高分子材料注入模具中,通过模具的冷却使其成型。

二、工艺流程1. 原料处理:将高分子材料粉末或颗粒状的原料加热至熔融状态;2. 模具设计:设计制作适合产品形状的模具;3. 射出成型:将熔融状态的高分子材料注入模具中;4. 冷却固化:通过冷却使高分子材料固化成型;5. 脱模:取出成型产品,完成注塑成型工艺。

三、设备注塑成型设备主要由注塑机、模具和辅助设备组成。

注塑机是注塑成型的核心设备,通过加热、注塑和冷却等过程完成成型工艺。

模具根据产品的设计要求而制作,是实现产品形状的关键。

而辅助设备如热水机、冷却机等则在注塑成型过程中起着辅助作用。

四、应用注塑成型工艺在高分子材料成型加工中具有广泛的应用,包括家电、汽车、医疗器械、建筑材料等领域。

通过注塑成型工艺,可以生产出各种形状复杂、精度高的产品,且生产效率高,质量稳定。

综上所述,高分子材料成型加工中的注塑成型工艺是一种重要的生产工艺,具有广泛的应用前景。

随着科技的进步和设备技术的不断改进,注塑成型工艺将在高分子材料成型加工中发挥更加重要的作用。

高分子加工工艺

高分子加工工艺

高分子加工工艺
高分子加工工艺是指将高分子材料进行加工成型的过程。

高分子材料是由高分子化合物制成的材料,具有分子量大、可塑性好、强度高、耐磨损、耐腐蚀等特点,广泛应用于工业、农业、医疗、建筑等领域。

高分子加工工艺包括注塑、挤出、吹塑、压延、复合等多种方法。

其中,注塑是最常用的一种方法,适用于制造各种形状的塑料制品。

注塑工艺中,首先将高分子材料加热至熔融状态,然后通过注塑机将熔融的材料注入模具中,冷却后即可得到所需的制品。

挤出是将高分子材料通过挤出机挤出成型的方法。

在挤出工艺中,高分子材料首先被加热至熔化状态,然后通过挤出机的挤压作用,将熔融的材料挤出成型。

挤出工艺适用于制造管材、板材、棒材等长形制品。

吹塑工艺是通过将高分子材料加热至熔化状态,然后将其注入吹塑机中,通过气压使其膨胀成型。

吹塑工艺适用于制造各种形状的中空制品,如瓶子、罐子等。

压延工艺是将高分子材料加热至熔化状态,然后通过压延机将其压延成型。

压延工艺适用于制造薄膜、薄板等制品。

复合工艺是将不同种类的高分子材料进行复合,形成新的高分子复
合材料。

复合工艺适用于提高高分子材料的性能,如增加其强度、耐磨性等。

在高分子加工工艺中,需要注意一些技术细节。

首先,需要控制好加热温度和冷却速度,以确保制品的质量。

其次,需要注意模具的设计和制作,以确保制品的精度和表面光滑度。

最后,需要进行质量检测和控制,以确保制品符合要求。

高分子加工工艺是一项重要的制造技术,具有广泛的应用前景。

在未来,随着高分子材料的不断发展和创新,高分子加工工艺也将不断完善和提高。

高分子材料成型加工

高分子材料成型加工

高分子材料成型加工
高分子材料成型加工是指通过热压、冷压、注塑、挤出等
成型技术,将高分子材料转变成所需形状和尺寸的产品的
过程。

高分子材料成型加工可以分为热固性塑料成型和热
塑性塑料成型两种形式。

热固性塑料成型是指在加热过程中,高分子材料经化学交
联形成三维网络结构的过程。

常见的热固性塑料成型加工
方式有热压、注塑和挤出。

热压是通过将高分子材料置于
加热板之间,加热和加压使其熔融并填充模具中,然后冷
却硬化成形。

注塑是将高分子材料加热熔融后注入模具中,冷却硬化成形。

挤出是通过高分子材料在加热和压力的作
用下,从模具口中挤出成型,然后冷却硬化形成。

热塑性塑料成型是指高分子材料在一定温度范围内,经过
塑化加工后,能够通过冷却形成所需产品的过程。

常见的
热塑性塑料成型加工方式有注塑、挤出和吹塑。

注塑的原
理与热固性塑料成型相似,但材料在加热过程中并不发生
交联反应。

挤出是通过高分子材料在加热和压力的作用下,从模具口中挤出成型,然后冷却硬化形成。

吹塑是将高分
子材料加热熔融后,通过压缩空气使其膨胀成薄壁容器形状,然后冷却硬化成型。

总之,高分子材料成型加工是将高分子材料通过加热、压力、塑化等工艺,转变成所需形状和尺寸的产品的过程,广泛应用于各个领域的塑料制品生产中。

高分子材料加工工艺学

高分子材料加工工艺学

高分子材料加工工艺学高分子材料加工工艺学是研究各种高分子材料的加工工艺及其加工和性能关系的一门课程。

它是现代高分子材料科学与工程、机械工程的一门重要学科,与塑料机械、纤维机械和橡胶机械的研究有着密切联系。

它不仅包括了高分子材料的加工工艺原理和技术,而且关注高分子材料加工对高分子材料性能和制品质量的影响。

高分子材料加工工艺学的研究内容主要有三个方面:首先是高分子材料的加工工艺的研究,包括熔融挤出成型、压缩成型、注塑成型、薄膜成型、模压成型、吹塑成型等;其次是加工工艺及其参数设定,如温度控制、时间控制、压力控制等,以及加工工艺对高分子材料性能及工件质量的影响;最后是新型高分子材料加工工艺的研究,如新型挤出成型工艺、射出成型工艺、复合成型工艺等。

高分子材料加工工艺学研究的主要目标是探索有效的加工工艺,提高加工效率,使高分子材料及其制品更好地发挥其功能,并实现经济有效性,降低加工成本。

高分子材料加工工艺学的研究重点在于开发适合不同性能和用途的高分子材料的加工工艺,使高分子材料具备更优良的性能,以满足实际需要,并提高材料加工的性价比。

高分子材料加工工艺学的研究需要充分结合本学科的多个知识领域,主要包括高分子材料的力学性能以及加工工艺的物理原理,还需要结合机械工程、电子工程等相关学科,深入了解加工过程中产生的力学和热量变化,以及它们对高分子材料性能的影响。

另外,高分子材料加工工艺学还要考虑计算机技术的应用,如有限元分析等,以评估高分子材料加工的制品质量和性能以及工艺性能指标。

总之,高分子材料加工工艺学是个涉及多学科领域的复杂学科,它与高分子材料力学性能及工艺参数有着密切联系,研究多种加工工艺及其对高分子性能及制品质量的影响,以及计算机技术在高分子材料加工工艺学中的应用,将有助于提高高分子材料的加工效率和材料性能,并且为实现机械加工应用的质量和可操作性提供重要的技术保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.塑料管材的“四节”特点节能、节水、节地、节材2.PVC软管、硬管的挤出工艺区别软管的挤出生产线不设定径装置,而是靠通入压缩空气维持一定形状,起到定径效果。

3.我国管材定型一般采用外径还是内径定型,具体有几种形式我国塑料管材尺寸规定为外径公差,故多采用外径定型法。

具体形式:内压定径法、真空定径法、顶出法。

4.请分别解释挤出PVC板材时三辊压光机的作用,冷却输送辊的形式以及作用三辊压光机的作用:起冷却定型作用,不起延展成型作用;冷却输送辊的形式:排管冷却器;作用:①支持没有完全冷却的板材防止变形;②充分冷却板材5.挤出板材时机头温度一般如何控制?①机头温度沿板材幅宽分多段控制,使中间低两边高,以保证机头两边的物料容易流动;②机头温度比机身温度高5-10℃.(机头较宽,物料要在较宽机头范围内均匀分布,必须提高料温,才能保证熔料的流动性。

)6.请问注射螺杆与挤出螺杆有哪些不同?注射螺杆的独特之处:①旋转运动加轴向水平运动;②长径比小,压缩比小;③加料段较长;④螺杆头部多为尖头,一般有止逆环。

7.请简单介绍反应注射成型工艺(RIM)由单体或低聚物以液态形式计量,瞬间混合的同时注入模腔,在模腔中迅速反应,以极快的速度生成含有新的特性基团结构的聚合物。

SRIM:将玻璃纤维毡、网等预成型体,预先铺放在预热的模具中,使用RIM注射机进行注射成型8.PP周转箱一般有什么用途?可采用什么材料成型?并请给出采用注射成型时的工艺流程图。

用途:周转和贮存食品,饮料。

可采用PP/HDPE材料成型成型前的准备→合模→注射(充模)→保压→冷却固化→开模→顶出制品→后处理9.采用压延成型法加工软制PVC薄膜时,请给出完整工艺流程。

配料→捏合→塑炼(开炼机、密炼机、挤出机)→供料→金属探测→压延→引离→轧花→冷却→β射线测厚→卷曲切割1.什么是蜡状层?请分析其产生原因?该如何消除?蜡状层:采用不适当的稳定剂使压延机辊筒表面蒙上的一层薄膜蜡状物质,致使薄膜表面不光,生产中发生黏辊的现象或在更换产品时发生困难。

原因:所用的稳定剂与树脂相容性较差,而且其分子极性基团的正电性较高,以致压延时被挤出而包围在辊筒表面,形成蜡状层。

消除:①选用正电性低的适当的稳定剂②掺入含水氧化铝等吸收金属皂类更强的填料③加入酸性润滑剂2.PVC人造革主要生产方法。

压延法成型PVC人造革的两种方法生产方法:压延、涂覆、层合。

压延分为:直接贴合--直接利用压延机将物料贴合引入布基,分布层合--压延成薄膜,复合设备将薄膜与布基分次贴合。

3.压延成型时,采用60m/min的辊速,但仍然采用40m/min时的辊温,料温会如何?制品质量情况?料温上升,流动性增加,出现脱辊或破裂现象,制品质量下降压延成型时,采用40/min的辊速,但仍然采用60/min的辊温,料温会如何?制品质量情况?料温过低,难以正常包辊,制品表面毛糙,不透明,有气泡甚至出现孔洞4.PE挤出吹塑桶的成型工艺流程:物料→熔融塑化→挤出型坯→吹胀→制品冷却→脱模→后处理→制品5.挤出吹塑时,如果吹气速度过快会出现什么情况?(1)进气处产生局部真空造成型坯内陷,完全吹胀后形成横隔模片(2)型坯从口模处被气流拉断以及无法吹胀6.缠绕成型的概念,湿法缠绕成型工艺流程图将浸过树脂胶液的连续纤维或布带,按照一定规律缠绕到芯模上,然后固化脱模成为增强塑料制品。

用于制造各种回转体。

分为干法(预浸带)和湿法(有胶槽)缠绕成型。

湿法工艺流程图:纱架→胶槽浸胶→张力控制(张力辊)→芯模缠绕→固化→脱模干法与湿法区别:干法--采用预浸胶处理的预浸纱带在缠绕机上经加热软化至粘流态后缠绕到芯模上,生产效率高,质量好;湿法--将纤维集束浸胶后,在张力的控制下,直接缠绕到芯模上得到制品,其成本较低。

1.请给出短纤维模压料的制备方法。

短纤维模压料的制备方法:预混法、预浸法预浸法优点:模压料质量均匀性好、备料过程中纤维强度损失少,适合与制备形状较为复杂的高强模压制品。

预混法(先切再处理):将纤维切成短纤维,然后与树脂混匀,再经过烘干工序;预浸法(先处理再切,纤维强度高一些,强度损失较小):将纤维经过树脂层浸胶,并在烘箱中烘干,然后切断成模压料。

2.LCM的概念,LCM制品的两大主要缺陷LCM—指用液态树脂直接浸润模腔中的增强材料进行成型的一类先进生产工艺。

LCM优点:成本低,表观质量佳,工艺灵活,可成型大型复杂制品.LCM制品的两大主要缺陷:气泡、干斑3.请分析LCM制品中气泡的形成原因充模时树脂有两种不同尺度的流动-纤维束间的宏观流动(注射压力)和纤维束内的微观流动(束内毛细压力)。

气泡的形成原因:注射压力较低,毛细压力起重要作用→束间大气泡。

注射压力较高,毛细压力较小→束内小气泡4.请给出一条轮胎节能减排的思路:降低轮胎滚动阻力①轮胎结构:结构子午化、断面形状扁平化、组成无内胎化等(三化一体)5.采用套筒法生产外胎的帘布筒时,有几种贴合方法?并简单解释等宽错贴:裁断同样宽度的帘布,贴合时相邻两层帘布交叉错位贴合,使两边留有差级。

(简化裁断工艺,但差级不易均匀而只适应于层数较少的乘用车胎);均匀错贴:裁成不同宽度的帘布,按差级要求顺序进行贴合,两边留有均等的差级,同样相邻两层帘布要交叉贴合6.钢丝圈的制造工艺流程钢丝→调直→浸酸→热水清洗余酸→热风吹干水分→钢丝挤出机挂胶→卷取→切断7.外胎硫化工艺①水胎装入外胎胎坯;②胎坯放入钢模;③内外同时加热硫化1.胶管的结构胶管由内胶层、骨架层、中间胶和外胶层组成。

2.根据夹布胶管的不同受压状态,夹布胶管有几种类型,并简单解释。

①耐压胶管(适用内压大于大气压环境使用)、②吸引胶管(适用内压小于大气压环境使用)、③耐压吸引胶管(正负压都可用,排吸两用)。

3.编织胶管成型时,编织机的工作原理编织机主要利用编织盘上的两组锭子,沿着S形轨道以相反的方向移动,这样在编织盘中间通过的,套在胶芯或芯棒的内胶上形成一层互相交叉的编织层。

4.综合分析题:某塑胶公司有如下原料:PE 1(熔体流动指数为7g/10min);聚乙烯2(熔体流动指数为0.3g/10min);PS;PC;尼龙66。

(1)拟生产Φ50cm、高300cm的垃圾桶,可选用什么成型方法,选择上述什么原料(要简述选择的理由)?为了降低生产成本,打算在聚合物中加入30%碳酸钙填料,请问在加入填料后,成型工艺可能做那些调整?答:因为是大制件,所以选择挤出吹塑成型方法;选择PE1作为原料。

原因:PE1的熔融指数高,易加工;PE2熔融指数低,加工困难;PS太脆,会被强酸强碱腐蚀,不抗油脂;PC,PA66太贵,原材料费用过高,不适合做垃圾桶。

成型工艺要做的调整:①加入填料使物料粘度升高,挤出成型时应提高温度,以降低粘度,从而降低加工难度②吹气压力不宜过大,避免基体与填料产生应力开裂。

(2)拟生产手机外壳,该公司有的工程师认为采用PS较好,而有的工程师认为采用PC较好,你认为选用那种聚合物合适,谈谈理由。

若选用PC,在成型过程中应注意那些问题?答:选PC。

PS太脆,作为手机外壳抗冲击性能差,不耐摔,化学稳定性差,被紫外线照射易变色;PC无色透明,耐热,抗冲击,室温下机械性能良好。

应注意的问题:PC遇水易水解,易产生断链,分子量下降,物理机械性能下降,因此应控制物料中的水分,在PC加工前应干燥。

1.综合分析题:PE挤出吹塑桶成型时,请分析管坯制造过程中产品质量的影响因素①原料:熔融指数过大,管坯易下垂;过小,易发生不稳定流动②型坯温度:要求温度均匀,可适度偏低;温度过高导致型坯因自重下垂严重,纵向厚度不匀;温度过低,离模膨胀严重。

③螺杆转速:原则为能挤出光滑、均匀型坯基础上,在不超出挤出机负荷情况下,转速快一些④口模设计:流线型设计PE挤出吹塑桶吹塑过程影响因素1.吹气压力2.吹气速度3.吹胀比4.模具温度5.冷却时间6.成型时间2.综合分析题:影响压延制品质量的原材料因素有哪些,各自如何影响?(1)树脂:使用相对分子量高和分子量分布窄的树脂能制得性能良好的制品,但这会使得、加工困难,因此在压延配方设计时要权衡利弊,采用适当的树脂;树脂中灰分、水分和挥发物的含量不能过高,否则易产生气泡、气孔,降低制品透明度。

(2)其它组分:对压延影响较大的是增塑剂和稳定剂;要求选择适当的增塑剂和稳定剂,避免形成蜡状层。

外加蜡状层产生的原因和消除的方法3.综合分析题:影响压延制品质量的压延机操作因素有哪些,如何影响?(延伸的小题目:a.压延成型时,为什么要调节辊距?b.辊筒间为什么要留有存料量?c.以四辊压延机为例,辊距该如何设置?d.什么是压延效应?)a.调节辊距目的:①调节产品厚度;②改变存料量b.存料量目的:起补充、储备的作用c.第一道辊隙大于第二道辊隙,第二道辊隙大于第三道辊隙,而至最后一道辊隙就使熔融物料压延成所需厚度的薄膜或片材。

d.压延效应:在压延机上压延物的纵向上受有剪切应力和拉伸应力,高聚物分子会顺着薄膜前进的方向(压延方向)发生分子定向,在机械性能上出现各向异性。

由压延效应引起的变化:纵向强度高;纵向断裂延伸率高;加热时,由于解取向作用薄膜各向尺寸会发生不同变化。

1.简述PVC管材的挤出工艺流程PVC及助剂→称量→捏合→挤出造粒→冷却定型→牵引→切割→热处理(后处理)→检验→成品2.PVC都可采用什么塑料加工方法进行加工?并列举几种对应的制品。

挤出(薄膜、管材);注塑(日用品、浴缸架子);压延(薄膜、片材)3.挤出成型PVC管材时,对管材进行牵引的速度如何?为什么要进行牵引?牵引速度比管材挤出速度大1%-10%;牵引目的:消除离模膨胀效应;避免堵塞口模;解决挤出物发生的形变。

4.请列举几种板材/片材的加工方法挤出、压延、层压、静态浇铸、流延5.根据结构特点的不同,注射机的类型柱塞式;双阶柱塞式;螺杆预塑化柱塞式;移动螺杆式6.注射成型时,模具温度对制品来说是加热还是冷却?为什么要控制模具温度?模具温度对制品来说是冷却;控制模具温度的目的:①型腔内温度均匀,减少因内应力导致的制品机械强度下降;②将物料的热量迅速导出,有利于制品脱模;③缩短生产周期,提高生产效率。

7.PS的常用品种。

GPPS;HIPS;EPS;∥ABS;SAN;SBS8.压延成型的辅机有哪些,各自的作用如何?或者影响压延制品质量的辅助过程的因素有哪些,各自如何影响?(1)引离辊:使制品均匀连续无褶皱地引离;引离辊用蒸汽加热;目的:①避免薄膜冷拉伸;②增加薄膜的引离力,使薄膜中析出的增塑剂挥发,防止薄膜发皱而影响质量;(2)轧花:要求花纹清晰、深度适宜;影响因素:轧花压力和温度;(3)冷却装置:作用:冷却定型;(4)胶带输送:减少压延制品从成型、引离、轧花、冷却中产生的内应力,将薄膜摊平输送,使薄膜处于“放松”和自然“收缩”状态;(5)卷取切割:要求松紧度适当;关键因素:张力。

相关文档
最新文档