《数学物理方法》第一章 复变函数解析

合集下载

《数学物理方法》第一章作业参考解答

《数学物理方法》第一章作业参考解答

《数学物理方法》第一章作业参考解答1. 利用复变函数导数的定义式,推导极坐标系下复变函数),(),()(ϕρϕρiv u z f +=的C-R 条件为∂∂−=∂∂∂∂=∂∂ϕρρϕρρu v vu 11 证:由于复变函数)(z f 可导,即沿任何路径,任何方式使0→∆z 时,z z f z z f ∆−∆+)()(的极限都存在且相等,因此,我们可以选择两条特殊路径,(1)沿径向,0→∆=∆ϕρi e z.ϕϕρρϕρρϕρρϕρϕρϕρρϕρρϕρϕρρi i e v i u e iv u iv u z f f −→∆∂∂+∂∂=∆−−∆++∆+=∆−∆+),(),(),(),(),(),(),(),(lim(2)沿半径为ρ的圆周,()()ϕρρρρϕϕϕϕϕ∆≈−=∆=∆∆+i i i i e i e e e zϕϕϕϕϕρϕϕρϕϕρϕρϕρϕρϕϕρϕϕρρϕρϕρϕϕρϕϕρϕρϕϕρi i i i e u i v ie iv u iv u e e iv u iv u zf f −∆→∆∂∂−∂∂=∆−−∆++∆+=−−−∆++∆+=∆−∆+1),(),(),(),(),(),()1(),(),(),(),(),(),(lim以上两式应相等,因而,ϕρρ∂∂=∂∂vu 1 ϕρρ∂∂−=∂∂u v 1 2. 已知一平面静电场的等势线族是双曲线族C xy =,求电场线族,并求此电场的复势(约定复势的实部为电势)。

如果约定复势的虚部为电势,则复势又是什么?解:0)(2=∇xy xy y x u =∴),(由C-R 条件可得C x x b x y u x b x v x b y y x v y x u y v +−=⇒−=∂∂−=′=∂∂+=⇒=∂∂=∂∂2221)()()(21),(C y x y x v +−−=)(21),(22电场线族为:(或者:由 +−=+−=∂∂+∂∂=222121),(y x d ydy xdx dy y v dx x v y x dv ,得C y x y x v +−−=)(21),(22)iC z i i C y x xy +−=+−−+=2222)(21w 复势为:若虚部为电势,则xy y x v =),(同理由C-R 条件可得Cx x A x y v x A x u x A y y x u y x v y u +=⇒=∂∂=′=∂∂+−=⇒−=∂∂−=∂∂2221)()()(21),(C y x y x u +−=)(21),(22C z ixy C y x +=++−=22221)(21w 复势为:3.讨论复变函数||)(xy iy x z f =+=在0=z 的可导性?(提示:选择沿X 轴、Y 轴和Y=aX 直线讨论)解:考虑当函数沿y=ax 趋近z=0时2)(ax z f = )1()1(||||lim )()(lim00+±=+∆−∆+=∆−∆+→∆→∆ia aia x x a x x a z z f z z f x z 可见上式是和a 有关的,不是恒定值所以该函数在z=0处不可导4.判断函数()()111)(2−++=−+=z z z z z z f 的支点,选定一个单值分支)(0z f ,计算)(0x f ?计算)(0i f −的值? 解:可能的支点为∞−=,1,1,0z 。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

数学物理方法第四版课后答案

数学物理方法第四版课后答案

数学物理方法第四版课后答案《数学物理方法第四版课后答案》第一章:复变函数1.1 复数与复平面题目1:将以下复数写成极坐标形式:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) r = √(3^2 + 4^2) = 5, θ = arctan(4/3)∴ z = 5(cos(arctan(4/3)) + i*sin(arctan(4/3)))b) r = √((-2)^2 + (-5)^2) = √(4 + 25) = √29, θ = arctan((-5)/(-2)) = arctan(5/2)∴ z = -√29(cos(arctan(5/2)) + i*sin(arctan(5/2)))c) r = √(0^2 + 5^2) = 5, θ = arctan(0/5) = 0∴ z = 5(cos(0) + i*sin(0)) = 5i题目2:计算以下复数的共轭:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) z* = 3 - 4ib) z* = -2 + 5ic) z* = -5i...第二章:常微分方程2.1 一阶微分方程题目1:求解以下一阶线性非齐次微分方程:a) \\frac{dy}{dx} + 2y = e^xb) \\frac{dy}{dx} - y = 3x^2解答:a) 首先求齐次方程的解,即 \\frac{dy}{dx} + 2y = 0观察到该方程的解为 y = Ce^{-2x},其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} + 2y = e^x令 y = A e^{-2x},其中 A 为待定常数\\frac{dy}{dx} = -2A e^{-2x},代入方程得到 -2A e^{-2x} + 2A e^{-2x} = e^x解得 A = -\\frac{1}{4}∴ 非齐次方程的解为 y = -\\frac{1}{4} e^{-2x},加上齐次方程的解得到最终解 y = Ce^{-2x} - \\frac{1}{4} e^{-2x}b) 首先求齐次方程的解,即 \\frac{dy}{dx} - y = 0观察到该方程的解为 y = Ce^x,其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} - y = 3x^2令 y = A e^x + B,其中 A、B 为待定常数\\frac{dy}{dx} = A e^x,代入方程得到 A e^x - (A e^x + B) = 3x^2解得 B = -3x^2∴ 非齐次方程的解为 y = A e^x - 3x^2,加上齐次方程的解得到最终解 y = Ce^x - 3x^2...通过以上两个例题,可以看出在解一阶线性非齐次微分方程时,首先解齐次方程得到通解,然后根据非齐次项的形式确定待定系数,最后将通解与待定解相加得到最终解。

复变函数第一章

复变函数第一章
内点: N (z0 ) E
边界点: N (z0 )既有E的点,也有不是E的点,
集E的全部边界点所组成的集合称为E的边界,
记为 E.
3.开集: 所有点为内点的集合;
闭集: 或者没有聚点,或者所有聚点都属于它;
E' E,
有界集:
M 0,z E, z M, 或M 0,使E NM (0)
例 E {z | z 1}
例3: 设 z 1 ,试证 (1 i)z3 iz 3 .
2
4
证明: (1 i)z3 iz z (1 i)z2 i
z (1i z 2 i )
1 (1 2 1) 1 (1 1) 3
24
22
4
例4: 求复数 1 z 的实部,虚部和模.(z 1)
1 z
解:
1 1
z z
(1 z)(1 1 z 2
由几段依次相接的光滑曲线所组成的曲线 称为按段光滑曲线.
注:按段光滑曲线是可求长的,但简单曲线不一定可求长.
5 单连通区域
复平面上的一个区域D, 如果在其中任作 一条简单闭曲线, 而曲线的内部总属于D, 就称 为单连通域. 一个区域如果不是单连通域, 就称 为多连通域.
单连通域
多连通域
例 (1) 满足下列条件的点集是什么, 如果是区 域, 指出是单连通域还是多连通域?
E的每一点及圆周 z 1上点都是E的聚点, 圆周 z 1为E的边界,
E为开集.
4.聚点(极限点)的等价说法
(1) z0 E', (2) N (z0 ) E有无穷多点, (3) N (z0 )存在异于z0属于E的点, (4) N (z0 )含属于E的两个不同的点,
(5)
{zn}
E, lim n

第01章_复变函数

第01章_复变函数

a ib
a cos cos(2 ) cos(3 ) cos( n )
sin(n 1/ 2) sin( / 2) 2sin( / 2)
b sin sin(2 ) sin(3 ) sin(n )
WangChengyou © Shandong University, Weihai
(cos isin ) e i
1 i i cos (e e ) 2
(二) 无限远点 N 无限远点 A z S
1 i i sin (e e ) 2i
黎曼(Riemann) 复数球 球面
有限远点
WangChengyou © Shandong University, Weihai
数学物理方法
第1章 复变函数
17
ei /2 (ei( n 1/2) ei /2 ) W i /2 i /2 i /2 e (e e )
cos(n 1/ 2) i sin(n 1/ 2) cos( / 2) i sin( / 2) 2i sin( / 2)
WangChengyou © Shandong University, Weihai
数学物理方法
第1章 复变函数
14
例:计算 W a ib 解:令 z a ib z (cos i sin )
z a 2 ቤተ መጻሕፍቲ ባይዱ2
1/2
W a ib z (cos i sin )
Argz
x
y
Argz 2kπ
(k 0, 1, 2,)
r
Argz
x
0 arg z 2π

复变函数第一章讲义

复变函数第一章讲义

引言复数理论的产生、发展经历了漫长而又艰难的岁月。

复数是16世纪人们在解代数方程时引入的。

1545年意大利数学物理学家H Cardan ⋅在所著《重要的艺术》一书中列出并解出将10分成两部分,使其积为40的问题,即求方程(10)40x x -=的根。

他求出形式的根为55,积为25(15)40--=。

但由于这只是单纯从形式上推广而引进,并且人们原先就已断言负数开平方是没有意义的.因而复数在历史上长期不能为人们所接受。

“虚数"这一名词就恰好反映了这一点。

直到十八世纪,J R D Alembert '⋅⋅,L Euler ⋅等人逐步阐明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人们缍接受并理解了复数。

复数函数和理论基础是在十九世纪奠定的,主要是围绕Cauchy 、Weierstrass 和Riemann 三人的工作进行的。

到本世纪,复数函数论是数学的重要分支之一,随着它的领域不断扩大而发展成庞大的一门学科,在自然科学其它学科及数学的其它分支中,复数函数论都有着重要应用。

第一章 复数与复变函数教学重点: 复变函数的极限和连续性 教学难点: 复平面上点集的n 个概念教学基本要求:1、了解复数定义及其几何意义,熟练掌握复数运算 2、知道无穷远点邻域3、了解单连通区域与复连通区域 4、理解复变函数、极限与连续§1复数1、复数域形如z x iy =+或z x yi =+的数,称为复数,其中x 和y 均是实数,分别称为z 的实部和虚部,记作Re x z =,Im y z =;i =称为虚单位.两个复数111z x iy =+,222z x iy =+,12z z =1212,x x y y ⇔==.虚部为零的复数可看作实数。

因此,全体实数是全体复数的一部分.x iy +和x iy -称为互为共轭复数,记为x iy x iy +=-或x iy x iy -=+.复数四则运算规定为:121212()()z z x x i y y ±=+±+ 1212121221()()z z x x y y i x y x y =-++ 1121212122222222222(0)z x x y y y x x y i z z x y x y +-=+≠++易验证复数的四则运算满足与实数的四则运算相应的运算规律。

数学物理方法习题解答(完整版)

数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。

证明:令Re z u iv =+。

Re z x =,,0u x v ∴==。

1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。

于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。

2、试证()2f z z=仅在原点有导数。

证明:令()f z u iv =+。

()22222,0f z z x y u x y v ==+ ∴ =+=。

2,2u u x y x y ∂∂= =∂∂。

v vx y∂∂ ==0 ∂∂。

所以除原点以外,,u v 不满足C -R 条件。

而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。

()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。

或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。

22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。

【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。

证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数首先,复数是由实数和虚数单位i组成的数,形式上可以写成a+bi,其中a和b分别表示实部和虚部。

复数之间的加、减、乘、除运算规则与实数类似,只是需要注意虚数单位i的平方等于-1,即i²=-1接下来,复变函数是指自变量和函数值都是复数的函数。

对于复数z=x+iy,其中x和y是实数,我们可以将复变函数f(z)再拆分为u(x,y)+iv(x,y),其中u(x,y)和v(x,y)分别是实部和虚部。

如果在一些区域内u(x,y)和v(x,y)都是连续且可微的,那么f(z)就是该区域内的解析函数。

解析函数的几何意义是它可以通过无限次的微商得到。

解析函数具有一些重要的性质。

首先,解析函数的实部和虚部满足柯西-黎曼方程,即它们的一阶偏导数满足以下关系:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x。

其次,解析函数的共轭函数也是解析函数。

第三,解析函数可以表示为幂级数的形式,这是解析函数的显著特征之一、最后,解析函数在一些区域内的积分只依赖于积分路径,与路径无关。

这个性质被称为留数定理。

在复变函数的应用中,经常会遇到三个重要的方程:拉普拉斯方程、泊松方程和亥姆霍兹方程。

拉普拉斯方程是描述无源场的分布的方程,它的形式为▽²f=0,其中▽²表示拉普拉斯算子。

泊松方程是描述有源场的分布的方程,它的形式为▽²f=ρ/ε₀,其中ρ为电荷密度,ε₀为真空介电常数。

亥姆霍兹方程是波动方程的一个特例,描述了电磁场、声波、横波等的传播与干涉,它的形式为▽²f+k²f=0,其中k为波数。

综上所述,《数学物理方法》第1章复变函数与解析函数主要介绍了复数的定义、复变函数与解析函数的概念,以及解析函数的性质和三个重要的方程的应用。

对于学习物理或数学的同学而言,掌握复变函数与解析函数的基本知识是非常重要的,它为后续的学习提供了重要的数学工具。

数学物理方法总结

数学物理方法总结
n =1

为了求得 Tn (t ) ,将上解代入泛定方程得
14
Tn (t ) + n Tn (t ) = 0
' 2
解得 Tn (t ) = An e
∞ n =1 =1
− n 2t
− n 2t

所以 u ( x, t ) = ∑ An e 代入初始条件可得
sin nx
n
∑A
n =1
sin nx = sin x + 2 sin 3 x
1 = [arctg ( x + at ) − arctg ( x − at )] 2a
用拉普拉斯变换法求解方程
6
y '' (t ) − 2 y ' (t ) + y (t ) = t 2 e t y (0) = 0, y ' (0) = 0
解:设
(t ≥ 0)
L[ y (t )]
'
=
10
解:设分离变数形式的解为
u ( x, t ) = X ( x )T (t )
X '' + λX = 0 代入泛定方程和边界条件,可得 X (0) = 0, X (π ) = 0 T ' + λT = 0
X (x ) 的方程和条件构成本征值问题,如果
λ < 0或 λ = 0
X ( x ) = 0 ,只能得无意义的解 ,故排除。
2
12
线性叠加得满足泛定方程和边界条件的解,原定解问题的形式解为
u n ( x, t ) = ∑ Ae
n =1

− n 2t
sin nx
将形式解代入初始条件得 比较系数后得

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数
在复数平面中可以引入笛卡尔 直角坐标,也可以引人平面极坐标
在使用直角坐标时,用平面上的 点 (x,y) 表示复数
z = x + iy
平面上的一点(x,y) 就与一个复数 z = x+iy 相对应,而 平面上所有的点就与全体复数一一对应, xoy平面就
称为复平面.
每一复数还可以用一个矢量来表示.矢量由坐标原点
7
第一篇 复变函数导论
自变量为复数的函数称为复变函数. 本篇讨论复变函数论的基本概念、基
本定理和基本方法,以及若干实际运 用.解析函数是本篇研究的重点。 复变函数导论是本书其后三篇的基础.
第1章介绍复变函数的微分理论.着重讨论 解析函数的微分性质及其应用.
第2章介绍复变函数的积分理论.着重讨论 解析函数的积分性质及其应用.
数学物理方法-教学内容与进度表-11级.doc
教学基本要求
以教师课堂讲授为主,精讲;学生课前预习,多练! 布置习题或讨论题,学生自学部分例题和部分章节;
因公式推导过多,部分(或全部)课时采用电子教案, 便于学生理解全过程;
2019/5/20
3
教学方式与过程
教学方式:课堂讲授
《数学物理方法》
《数学物理方法》的性质和目的
性质
为信息工程与技术专业开设的专业基础 必修课,在教学培养计划中列为主干课程。
目的
通过本课程的学习,掌握数学物理中的 常用方法,为学习理论物理课程与专业基础 理论课程提供基础。
教学内容与基本要求
教学内容
本课程主要讲述复幂级数展开、路径积分、积分变换、 特殊函数与线性数学物理方程的定解方法
版社,2006年8月
参考书:
[1]吴崇试,数学物理方法,北京大学出版社 2003-12-26出版

数学物理方法 第一章 复变函数

数学物理方法 第一章 复变函数
z1
z2
i=e

iπ / 2
e +1 = 0
This identity is particularly remarkable as it involves e, π, i, 1 and 0, arguably the five Leonhard Eular (1707-1783) Swiss most important constants in 4 mathematician, mathematics.
复数除法图示二
y z2
z1 z= z2
z1
|λ | | z | = | z 2 | | z1 | | λ |= 1 | z1 | | z |= | z2 |
ρ=1
ϕ 2- ϕ 1 ∆ o z2 λ ≈ ∆ o z1 z
o
λ x
z (杨超)13451827646
13
指数运算
z =ρ e
n n inϕ
= ρ (cos nϕ + i sin nϕ ) , 特别当 ρ = 1,
n
e inϕ = (e iϕ ) n = (cos ϕ + i sin ϕ ) n = cos nϕ + i sin nϕ
根式运算
n
z= ρe
n n
[
i(ϕ + 2 kπ )
]
1 n
=n ρ e
i
( ϕ + 2 kπ ) n
ϕ + 2 kπ ϕ + 2 kπ = ρ cos + i sin n n k = 0, 1, 2, ... , n - 1
2 2
(for 0 ≤ ϕ 0 < 2π ) (for 0 ≤ ϕ 0 < π ) (for π ≤ ϕ 0 < 2π )

数学物理方法知识点归纳

数学物理方法知识点归纳

第一章 复述和复变函数 1.5连续若函数)(x f 在0z 的领域内(包括0z 本身)已经单值确定,并且)()(0lim 0zf z f z z =→,则称f(z)在0z 点连续。

1.6导数若函数在一点的导数存在,则称函数在该点可导。

f(z)=u(x,y)+iv(x,y)的导数存在的条件 (i)x u ∂∂、y u ∂∂、x v ∂∂、yv ∂∂在点不仅存在而且连续。

(ii)C-R 条件在该点成立。

C-R 条件为⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂y y x u xy x v y y x v x y x u ),(),(),(),( 1.7解析若函数不仅在一点是可导的,而且在该点的领域内点点是可导的,则称该点是解析的。

解析的必要条件:函数f(z)=u+iv 在点z 的领域内(i)x u ∂∂、y u ∂∂、x v ∂∂、yv ∂∂存在。

(ii)C-R 条件在该点成立。

解析的充分条件:函数f(z)=u+iv 在领域内(i)x u ∂∂、y u ∂∂、x v ∂∂、yv∂∂不仅存在而且连续。

(ii)C-R 条件在该点成立。

1.8解析函数和调和函数的关系 拉普拉斯方程的解都是调和函数:22x u ∂∂+22y u∂∂=0 ①由此可见解析函数的实部和虚部都是调和函数。

但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足C —R 条件。

②当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)?通过C —R 条件列微分方程 第二章 复变函数的积分 2.2解析函数的积分柯西定理:若函数f(z)在单连区域D 内是解析的,则对于所有在这个区域内而且在两个公共端点A 与B 的那些曲线来讲,积分⎰BAdz z f )(的值均相等。

柯西定理推论:若函数f(z)在单连区域D 内解析,则它沿D 内任一围线的积分都等于零。

⎰=Cdz z f 0)(二连区域的柯西定理:若f(z)在二连区域D 解析,边界连续,则f(z)沿外境界线(逆时针方向)的积分等于f(z)沿内境界线(逆时针方向)的积分。

数学物理方法课件-1 复数与复变函数

数学物理方法课件-1 复数与复变函数

sin z sinx iy
sin x cosiy cosx sin iy
sin x ey e y cos x ey e y
2
2i
sin2 x ey e y 2 cos2 x ey e y 2
4
4
1 sin 2 x e2 y 2 e2 y cos2 x e2y 2 e2y 2
所有的无穷大复数(平面上无限远点)投影到唯一的北极 N。故我们为 方便,将无穷远点看作一个点。其模无穷大,幅角无意义。
§1.2 复变函数
1. 定义
zz0
邻域
以复数 z0 为圆心,以任意小实数 为半径
作一圆,则圆内所有点的集合称为z0的邻域.
内点
z0 和它的邻域都属于 E, 则 z0 为 E 的内点。
(2) 极坐标
x cos y sin
z x iy cos i sin 复数的极坐标表示
模 幅角, Argz x2 y2
arctg( y / x)
由于三角函数的周期性,复数的幅角不唯一,且 彼此相差2π的整数倍.
)
,
lim
zz0
g(z)
g ( z0 ),则
lim [ f (z) g(z)]
zz0
f (z0) g(z0)
lim
zz0
f (z)g(z)
f
(z0 )g(z0 )
lim f (z) f (z0 ) zz0 g(z) g(z0 )
(g(z0 ) 0)
§1.4 可导与可微
第一章 复数与复变函数
§1.1 复数与复数运算 1. 复数的基本概念

数学物理方法复变函数解析

数学物理方法复变函数解析
= r1r2[cosθ(1+θ2)+isin( θ1+θ2)]
=r 1r2e i(θ1+θ2) 因此 |z1z2|=r1r2,Arg( z1z2)=Arg z1+Arg z2
几何意义 将复数z1按逆时针方向旋转一个角度 Arg z2,再将其伸缩到 |z2|倍。
y
(z)
z1z2
?2
z2
z1
?2 ?1
解: z1 ? 5 ? 5i ? (5 ? 5i)(? 3 ? 4i ) z2 ? 3 ? 4i (? 3 ? 4i)(? 3 ? 4i)
? ? 35 ? 5i ? ? 7 ? i
25
5
例2 : 求
?? 1 ? i ??4 ?1? i ?
Q 1 ? i ? (1 ? i)(1 ? i) ? i 1 ? i (1 ? i )(1 ? i)
3 1 ? cos 0 ? 2k? ? i sin 0 ? 2k? , (k ? 0,1,2).
3
3
即?
0
?
1, ?
1
?
?
1 2
?
3 2
i,?
2
?
?
1 2
?
3 i.
2
当k=0 ,1,…,n -1 时,可得 n 个不同的根, 而k取其它整数时,这些根又会重复出现。
几何上,n z 的n个值是 以原点为中心, n r 为半
解 设 z ? x ? iy
y (z)
? i z ? i ( x ? iy )
? y ? ix
Re(iz) ? 3
? Re( i z ) ? y
O
x
2 (0, -1)
? y? 3 故 Re( i z ) ? 3 图 形 为

数学物理方法题目 解答

数学物理方法题目 解答

cos sin
d

解: ez 在 z 1所围区域内解析,且 z 0 在 z 1所围区域内。
由柯西积分公式得 ez dz 2i ez 2i 。
cz
z0
(1)
在 c 上令 z ei , ,则
ez dz i eei d
cz
i e d cos isin
i ecos cos
。(5)
于是由(4)和(5)得
0
1 2cos d 5 4cos
0。
14、设
F
z
z6 z2 4
,证明积分
c
F
z dz
a.当 c 是圆周 x2 y2 1时,等于 0 ;
8
b.当 c 是圆周 x 22 y2 1时,等于4i ;
c.当 c 是圆周 x 22 y2 1时,等于2i 。
z
z z
1
x3 y3 i(x3 y3)
3、设
f
(z)
x2 y2
0
z 0 ,证明 f z 在原点满足 C-R 条件,但不
z=0
可微。
证明:令 f z u x, y ivx, y,则
x3 y3
u
x,
y
x2
y2
0
x2 y2 0,
x2 y2 =0
x3 y3
v(x,
y)
则 lim f z f z0 。(复变函数的洛必达法则)
zz0
z
z0
证明:
lim f (z) f (z0 )
f (z) f (z0)
f (z0 ) (z0 )
z z0
z z0
lim (z) (z0 )
lim z z0
z z0 (z) (z0)

数学物理方程第一章复变函数

数学物理方程第一章复变函数

dx
u x
dy
可由 (1) 曲线积分
(2) 凑全微分显式
(3) 不定积分
求出

u(x, y) x2 y2 求 v(x, y), f (z)
二元函数的线积分,将来在热力学中出现。
解:
2u x 2
2,
2u y 2
2
u 是调和函数;
全微分的积分与路径无关
(1)
v(x,
y)
u y
dx
u x
dy
2 ydx
根式 指数函数 三角函数
双曲函数 对数函数 幂函数
a0 a1z a2 z 2 an z n a0 a1z a2 z 2 an z n b0 b1z b2 z 2 bm z m
a0 a1z a2 z 2 an z n
ez exiy exeiy ex (cos y i sin y)
所有的无穷大复数(平面上无限远点)投影到唯一的北极 N。故我们为 方便,将无穷远点看作一个点。其模无穷大,幅角无意义。
小结
复数 z 是两个独立变量 (x, y) 的集合。 它在数值计算中是一个整体,服从通常的四则运算规则和虚单位的特殊规则; 它可以看作具有两个独立分量的量来表示(矢量)和计算。
1.2. 复变函数
可导:对任何方向的z,极限都存在并唯一。
u(x, y)
u2
u1
r1
r2
0
r1
r2
y
x
y
z z
z
z z'
x 复数
0
x x x
实数
可导:对任何方向的z,极限都存在并唯一。
因此,复函数的可导性是比实函数的可导性强 的多的条件。
柯西—黎曼方程

数学物理方法 复变函数 第一章 解析函数

数学物理方法 复变函数 第一章 解析函数

7
复数的表示
三角表示
指数表示
z =r (cosφ + i sinφ)
r = |z|(模), φ= Arg(z)(辐角)
z =r exp(iφ)
exp(iφ) = cosφ + i sinφ
代数表示
z = x + iy
x = Re(z), y = Im (z)
8
共轭复数
实部相同而虚部绝对值相等符号相反的两个复数称 为共轭复数.
18
复平面上的点集
z z0 z0 定义 由不等式 (δ为任意的正数)所确定的复平面点集(以后平面点 集均简称点集),就是以z0为中心的δ邻域或邻域。而 称由不等式 0 zz
0
δ
所确定的点集为z0的去心δ邻域或去心邻域。
19
内点,外点,边界点 开集 定义 设D为点集,z0为D中的一点。如果存在z0的 一个邻域,该邻域内的所有点都属于D,则称z0为D的 内点;点z0的某一个邻域内的点都不属于D ,则称 点z0为D的外点。若在点z0的任意一个邻域内,既有属 于D的点,也有不属于D的点,则称点z0为D的边界点, 点集D的全部边界点称为D的边界。
z1 z 2 z1 z 2
- z2
复数加减法满足 平行四边形法则
z1 +(- z2)
13
乘法运算
z1 z2 ( x1 x2 y1 y2 ) i( x1 y2 x2 y1 ) 1 2 exp[i(1 2 )] 1 2 cos(1 2 ) i sin(1 2 )
除法运算
z1 x1 x2 y1 y2 x1 y2 x2 y1 i 2 2 2 z2 x2 y2 x2 y22

《数学物理方法》第1章复变函数与解析函数

《数学物理方法》第1章复变函数与解析函数
成绩:
平时考勤:5%; 平时作业:10%; 期中考试:15% (第一篇的教学考核成绩) 期终考试:70% (期末考试成绩)
本课程的考试均以闭卷方式进行 。
2021/1/14
4
教材与参考书
教材:汪德新,《数学物理方法》,第三版,科学出
版社,2006年8月
参考书:
[1]吴崇试,数学物理方法,北京大学出版社 2003-12-26出版
zz1 (x1iy1) (x1iy1)(x2iy2) z2 (x2iy2) (x2iy2)(x2iy2)
x1xx222
y1y2 y22
i
x2y1x1y2 x22 y22
同样,利用复数的指数表示式将更方便.
z
z1 z2
1ei1 2ei2
e 1 i(12)
2
35
(6)开方 复数的开方是乘方的逆运算。
为共轭复数。 常用z* 表示z的共扼复数。 (z* )* =z 例: z1=2+3i与z2=2-3i 称z1与z2互为共轭复数。
17
复数能不能比较大小?!
18
§1.1.2 复数的几何表示
复数可以用平面上的点来表示,称为复 数的平面表示法;
球面上的点来表示,称为球面表示法。
19
1. 复数平面表示法
利用复数的指数表示式计算复数的乘积,往往更为
方便 z z 1 z 2 1 e i 12 e i 2 12 e i( 1 2 )
两复数乘积的几何意义是将两复数的模相乘而辐角
相加.
30
(4)乘方 乘方可由乘法规则得到,用n个z相乘
zn nein
31
【例1.1.1-A】试证明棣莫弗(De Moivre)公式
9

(完整word版)数学物理方法总结(改)(word文档良心出品)

(完整word版)数学物理方法总结(改)(word文档良心出品)

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 复变函数
第一节 复数
§1.1.1复数及其代数运算

1. 复数的概念 2. 代数运算
3. 共轭复数


1. 复数的概念
定义 对任意两实数x、y ,称 z=x+iy或z=x+yi 为复数。 其中 i 2 1 , i称为虚单位。 •复数z 的实部 Re(z) = x ; 虚部 Im(z) = y . (real part) (imaginary part) • 复数的模 | z | • 判断复数相等
i z i ( x iy ) y ix Re (i z ) y y3
O 2
x
(0, -1)
故 Re (i z ) 3图 形 为 平行于实轴的直线
x y 0
2 2
z1 z2 x1 x2 , y1 y2 , 其中z1 x1 iy1 , z2 x2 iy2 z 0 Re(z ) Im( z ) 0
一般, 任意两个复数不能比较大小。
2. 代数运算
•四则运算
定义
z1=x1+iy1与z2=x2+iy2的和、差、积和商为:
称向量的长度为复数z=x+iy的模或绝对值; 以正实轴 为始边, 以 向量OP为终边的角的 弧度数 称为复数z=x+iy的辐角.(z≠0时)
y (z)
模: | z || OP | r 辐 角 : Argz
记作
x2 y2 ,
y
P(x,y)
z r


z 0 OP 0
(三 角 不 等 式 )
o
z2
x
3. 三角表示法
x r cos 由 得 y r sin
4. 指数表示法
再 由Euler公 式: e i cos i sin得
z r (cos i sin )
z re i
引进复数的几何表示,可将平面图形用复数方程 (或不等式)表示;反之,也可由给定的复数方 程(或不等式)来确定它所表示的平面图形。 y (z ) 例1 用复数方程表示: (1)过两点 zj=xj+iyj
(conjugate)
( 2) z z
(4) z z 2 Re (z ) z z 2i Im (z )
1 z ( 3) z z Re(z ) Im( z ) x y 2 z |z|
2 2 2 2
z1 z1 ( ) z2 z2
例1 : 设z1 5 5i , z2 3 4i , z1 z1 求 , ( )及 它 们 的 实 部, 虚 部 . z2 z2
L z1 z
z2
(j=1,2)的直线;
(2)中心在点(0, -1),
半径为2的圆。 o x 解 (1) z=z1+t (z2-z1) (-∞<t <+∞)
(2)
z (i ) 2
y
例2 方程 Re(i z ) 3 表示 什么图形? 解 设 z x iy
( z)
Re (iz ) 3
z 5 5i (5 5i )( 3 4i ) 1 解: z 3 4i ( 3 4i )( 3 4i ) 2 35 5i 7 i 25 5
1 i 例2 : 求 1 i
4
1 i (1 i )(1 i ) i 1 i (1 i )(1 i )
o
x
x
z 0时, tan(Argz ) y / x
辐角无穷多:Arg z=θ=θ0+2kπ, k∈Z,
把其中满足 0 的θ0称为辐角Argz的主值, 记作θ0=argz。 z=0时,辐角不确定。 y x 0, y R arctan x 计算 x 0, y 0 arg z argz(z≠0) 2 y 的公式 arctan x 0, y 0 x x 0, y 0
§1.1.2 复数的表示方法


1. 点的表示
2. 向量表示法 3. 三角表示法
4. 指数表示法
1. 点的表示
易见, z x iy 一对有序实数 ( x, y ),
在 平 面 上 取 定 直 角 坐系 标, 则 任意点 P( x, y) 一 对 有 序 实 数 ( x, y) z x iy 平 面 上 的 点 P ( x, y )
z1±z2=(x1±x2)+i(y1±y2) z1z2=(x1+iy1)(x2+iy2)=(x1x2-y1y2)+i(x2y1+x1y2)
z1 x1 x2 y1 y2 x2 y1 x1 y2 z i 2 z2 | z2 | | z2 |2 ( z2 0)
•运算规律 复数的运算满足交换律、结合律、分配律。 (与实数相同)即, z1+z2=z2+z1;
z1z2=z2z1;
(z1+z2)+z3=z1+(z2+z3);
z1(z2z3)=(z1z2)z3;
z1(z2+z3)=z1z2+z1z3 .
3.共轭复数
定义 若z=x+iy , 称z=x-iy 为z 的共轭复数. •共轭复数的性质
(1) ( z1 z2 ) z1 z2
( z1 z2 ) z1 z2

当z落于一,四象限时,不变。


当z落于第二象限时,加
当z落于第三象限时,减


y arctan 2 x 2

由向量表示法知
z2 z1 — 点z1与z2之间的距离
由 此 得: z 2 z1 z 2 z1 z 2 z1 z 2 z1
y
(z)
z1Biblioteka 复数z x iy可用平面上坐标为 ( x,y )的点P表示.
x轴 — 实 轴 y轴 — 虚 轴 此时, 平 面— 复 平 面 或 z平 面
点的表示:z x iy 复平面上的点 P( x,y )

数z与点z同义.
2. 向量表示法
z x iy 点P ( x,y ) OP { x , y } 可用向量OP表示z x iy .
相关文档
最新文档