2018年高考理科数学浙江卷导 数压轴题解析

合集下载

2018年高考浙江卷数学试题解析(精编版)(解析版)

2018年高考浙江卷数学试题解析(精编版)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A,B互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018浙江省高考压轴卷数学含答案解析

2018浙江省高考压轴卷数学含答案解析

2018浙江省高考压轴卷数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:球的表面积公式 锥体的体积公式24S R =π13V Sh =球的体积公式 其中S 表示棱锥的底面面积,h 表示棱锥的高 343V R =π台体的体积公式其中R 表示球的半径 1()3a ab b V h S S S S =+⋅柱体的体积公式其中S a ,S b 分别表示台体的上、下底面积V =Sh h 表示台体的高其中S 表示棱柱的底面面积,h 表示棱柱的高1.若集合P={y|y ≥0},P ∩Q=Q ,则集合Q 不可能是( ) A .{y|y=x 2,x ∈R}B .{y|y=2x ,x ∈R}C .{y|y=lgx ,x >0}D .∅2.抛物线y=﹣2x 2的准线方程是( )A .B .C .D .3.一个几何体的三视图如图所示,则该几何体的表面积是( )A .B .C .D .4.若存在实数x ,y 使不等式组与不等式x ﹣2y+m ≤0都成立,则实数m 的取值范围是( )A .m ≥0B .m ≤3C .m ≥lD .m ≥3 5.不等式2x 2﹣x ﹣1>0的解集是( )A .⎭⎬⎫⎩⎨⎧<<-1x 21|xB .{x|x >1}C .{x|x <1或x >2}D .⎭⎬⎫⎩⎨⎧>-<1x 21x |x 或6.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n+1﹣2B .3nC .2nD .3n﹣17.定义在R 上的奇函数f (x )满足在(﹣∞,0)上为增函数且f (﹣1)=0,则不等式x •f (x )>0的解集为( ) A .(﹣∞,﹣1)∪(1,+∞)B .(﹣1,0)∪(0,1)C .(﹣1,0)∪(1,+∞)D .(﹣∞,﹣1)∪(0,1)8.随机变量X 的分布列如下表,且E (X )=2,则D (2X ﹣3)=( )A .2B .3C .4D .59.已知平面α∩平面β=直线l ,点A ,C ∈α,点B ,D ∈β,且A ,B ,C ,D ∉l ,点M ,N 分别是线段AB ,CD 的中点.( )A .当|CD|=2|AB|时,M ,N 不可能重合B .M ,N 可能重合,但此时直线AC 与l 不可能相交 C .当直线AB ,CD 相交,且AC ∥l 时,BD 可与l 相交 D .当直线AB ,CD 异面时,MN 可能与l 平行10.设k ∈R ,对任意的向量,和实数x ∈,如果满足,则有成立,那么实数λ的最小值为( )A .1B .kC .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年浙江省高考压轴卷理科数学试题及答案 精品

2018年浙江省高考压轴卷理科数学试题及答案 精品

2018年浙江省高考压轴卷数学理本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至2页,非选择题部分3至4页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上. 注意事项: 1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件,A B 互斥,那么 棱柱的体积公式()()()P A B P A P B +=+ V Sh =如果事件,A B 相互独立,那么 其中S表示棱柱的底面积,h 表示棱柱的高()()()P A B P A P B ⋅=⋅ 棱锥的体积公式如果事件A 在一次试验中发生的概率是p ,那么 13V Sh =n 次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积,h 表示棱锥的高()(1),(0,1,2,,)k kn k n n P k C p p k n -=-= 棱台的体积公式球的表面积公式)(312211S S S S h V ++=24S R π= 其中S 1、S 2分别表示棱台的上、下底面积,球的体积公式 h 表示棱台的高334R V π=其中R 表示球的半径第I 卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目要求的) 1.22,(,1)(),[1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩,则[(2)]f f -=( )A. 16B. 4C. 14D. 1162.""α≠︒30是1"sin "2α≠的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件3.数列{}n a 中,13a =,{}n b 是等差数列且*1()n n n b a a n N +=-∈,若3102,12b b =-=,则8a =A. 0B. 3C. 8D. 11 ( )4.已知cos()sin 6παα-+=,则7sin()6πα+的值是( )A. 5-B. 5C. 45-D. 455.已知三个平面,,αβγ,若,βγα⊥与γ相交但不垂直,,a b 分别为,αβ内的直线,则( )A. ,a a αγ∃⊂⊥B. ,//a a αγ∃⊂C. ,b b βγ∀⊂⊥D. ,//b b βγ∀⊂6.为求使不等式222212310000n ++++≤…成立的最大正整数n ,设计了如图的算法,则在输出框中应填写的语句为 ( )A. 输出i +1B. 输出iC. 输出i -1D. 输出i -27.某射击小组有甲、乙两名射手,甲的命中率为23,乙的命中率为12,在设计比武活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.则该小组在一次检测中荣获“先进和谐组”的概率为 ( ) A. 16B. 13C. 12D.712 8.若满足条件2020210x y x y kx y k -+≥⎧⎪+-≥⎨⎪--+≥⎩的点(,)P x y 构成三角形区域,则实数k的取值范围是( )A. (,1)-∞-B. (1,)+∞C. (0,1)D. (,1)(1,)-∞-⋃+∞9.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0)(,0)F c F c -、.若双曲线上存在点P (异于实轴的端点),使得1221sin sin c PF F a PF F ∠=∠,则该双曲线离心率的取值范围是( )A.B. (1,1C.D. (1,1 10.已知f(x)是定义在R 上的奇函数,满足33()()22f x f x -+=+,当3(0,)2x ∈时,f(x)=2ln(1)x x -+,则函数f(x)在区间[0,6]上的零点个数是( )A. 3B. 5C. 7D. 9非选择题部分(共100分)二、填空题(本大题共7小题, 每小题4分,共28分) 11.复数1212ii -+的模为____________ 12.右图是各条棱长均为2的正四面体的三视图,则侧视图中 三角形的面积为____________ 13.二项式10的展开式中,常数项为____________14.编号为1,2,3,4的四个球放入编号为1,2,3,4的四个盒子中,每个盒子放一个球.若记ξ为球的编号数与盒子编号数相同的盒子数,则E ξ=__________15.抛物线24y x =与直线l 相交于A 、B 两点,点P (4,2),若OA BP =(O 为坐标原点),则直线l 的方程为_____________________ 16.已知653()222f x x x x x =+++,则1)f =_________________ 17.不等式222(5)4a x y x xy +≤+对于任意非零实数x,y 均成立,则实数a 的最大值为______三、解答题(本大题共5小题,满分72分.解答须写出文字说明,证明过程和演算步骤) 18.(本题满分14分)在锐角△ABC 中,角A,B,C 所对的边分别为a,b,c .已知+=.b Cc B a Acos cos2cos(Ⅰ)求角A的大小. (Ⅱ)求sin sinB C+的取值范围.19.(本题满分14分)已知数列{},{}n n a b 满足:11222,,.11n n n n n a a a b a a ++===+- (Ⅰ)求n b . (Ⅱ)求使1|1|n a n-<成立的正整数n 的集合.20.(本题满分14分)如图,四棱锥P-ABCD 中,PA ⊥平面ABCD ,PB 与底面所成的角为4π,底面ABCD 为直角梯形, 2ABC BAD π∠=∠=,AD =2PA =2BC =2.(Ⅰ)求证:平面PAC ⊥平面PCD ;(Ⅱ)在线段PD 上是否存在点E ,使CE 与平面PBC 所成的角为6π?若存在,确定点E 的位置;若不存在,说明理由.21.(本题满分15分)设椭圆C :2213x y +=,点A 、B 是椭圆C 上的两点.(Ⅰ)若||AB =求AOB ∆面积的最大值S ;(Ⅱ)设||AB L =,求当AOB ∆的面积取到第(Ⅰ)问中的最大值S 时弦长L 的取值范围.22.(本题满分15分)已知函数2(),()ln f x x ax g x x =-=.(Ⅰ)若()()f x g x ≥对于定义域内的x 恒成立,求实数a 的取值范围; (Ⅱ)设()()()h x f x g x =+有两个极值点12,x x ,且11(0,)2x ∈,求证: 123()()ln 24h x h x ->-. (Ⅲ)设1()()()2ax r x f x g +=+对于任意的(1,2)a ∈,总存在01[,1]2x ∈,使不等式20()(1)r x k a >-成立,求实数k 的取值范围.2018年浙江省高考压轴卷数学理参考答案 一、选择题1.A2.B3.B4.C5.B6.D7.B8.A9.D 10.D 二、填空题11.212. 13. 638- 14. 115. 9x+8y-26=0 16. 1 17. 45- 三、解答题18. (Ⅰ) (Ⅱ)cos cos 2cos sin cos sin cos 2sin cos sin()sin 2sin cos 1sin 0cos 23b C c B a AB C C B A A B C A A A A A A π+=∴+=+==≠∴=∴=(,63(,2y ∴∈19. (Ⅰ)111111122212(2)22111124,4(2)1n n n n nn n n n n a a a b b a a a a b b a +++-++++====----++==∴=-- (Ⅱ)111311,|1||1|612|4(2)1|61,4216,23521,4216,2342{|4,}n n n n n n n n n a a b n b nnn n n n n n n n n n n n N ----=-<->--->->>+≥+>>-≥≥∈由得即当为奇数时即得当为偶数时即得所以正整数的集合为20.,,AC AC CD PA ABCD PA CDCD PAC CD PCD PAC PCD⊥⊥∴⊥∴⊥⊂∴⊥(Ⅰ)连接则又平面平面平面平面平面0,0.(1,0,1)y x z n =-=∴=则2230,(1,12,||1(12)CE PBC CE PBC n n Dλλλ︒∴--++与平面所成角为与平面的法向量成位置为点21.2223321(13)(3)324(113d kk k k k ==++++=++当且仅当222222131131L d k k k m m ==+++-=+当且仅当236]k ∈22.22ln ()(),(0)ln ln 1(),'()(0,1),'()0,(1,),'()0()(1)1,(,1]xf xg x a x x xx x x x x x x x x x x x x a ϕϕϕϕϕϕ≥∴≤->+-=-=∈<∈+∞>∴≥=∴∈-∞(Ⅰ)设当时当时22212122212111222222222111222122222221()ln '()(0)11,(0,)(1,).21(1,2)22()()(ln )(ln )1(1ln )(1ln )lnln 2(1)4()i i x ax h x x ax x h x x xx x x x ax x i h x h x x ax x x ax x x x x x x x x x x x x x x μ-+=-+∴=>∴=∈∴∈+∞=+=∴-=-+--+=--+---+=-+=-->=(Ⅱ)且设222223121(21)ln 2(1),'()04233()(1)ln 2,()()ln 244x x x x x x x x h x h x μμμ---≥=≥∴>=-->-即220max 2222()212112'()2,112222211()[,).()(1)1ln ,22111ln (1),()1ln (1)(1,2)22(1) 1.()0(1,2),'()(211a ax x a a a a r x x a ax ax a a ar x r x r a a aa k a a a k a a aa a a ka aφφφφ---=+-==-≤-=++++∞∴==-+++∴-+>-=-+--∈=>∈=-++(Ⅲ)所以在上为增函数设由在恒成立2)1,0,'()()(1,2),()(1)0;1212,0,'()(1)()(1,2),()(1)0;1221113,0'()(1),11,()(1,min{2,1})1222()(1)0k ak a a a a a ka k a a a a a a k ka k a a a a k k ka φφφφφφφφφφφφ-==∴∈<=+<=-+∈<=+>=-+-≥-+<=若则,在递减此时不符合时,在递减此时不符合时,若则在区间上递减,此时不;11[,)14412k k k k>⎧⎪⇒≥+∞⎨-⎪⎩符合综合得即实数的取值范围为。

精品解析:2018年全国普通高等学校招生统一考试数学(浙江卷)(解析版)

精品解析:2018年全国普通高等学校招生统一考试数学(浙江卷)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:互斥,则 相互独立,则分别表示台体的上、下底面积,台体的高柱体的体积公式表示柱体的底面积,表示柱体的高锥体的体积公式表示锥体的底面积,表示锥体的高球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U ={1,2,3,4,5},A ={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数(i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年高考理科数学浙江卷导数压轴题解析

2018年高考理科数学浙江卷导数压轴题解析

2018年高考理科数学浙江卷导数压轴题解析【题目分析】此题综合考察了函数的单调性、极值和零点的分析。

解决第(I )问中12()()f x f x +取值范围问题的关键在于成立1x 与2x 之间的关系将双变量转化为单变量,寻觅该单变量的取值范围,构造函数并依照函数的单调性和概念域讨论其值域,难度不大。

第(II )问重点考察函数零点的寻觅,“零点存在性定理”与“函数单调性”的结合是解决“唯一零点”这种问题的常规套路——“零点存在性定理”解决有无的问题,“函数单调性”解决可能有几个的问题。

题目中需要构造()ln h x x kx a =--如此一个含有双参变量的函数,参数a 可不能阻碍“函数单调性”,也确实是意味着函数()h x 的单调性比较益处置,难点在于“零点存在性定理”的运用,()h x 是不是存在大于0或小于0的点是由参数k 和a 一起操纵的,关于如此一个既含有根号又含有对数的函数而言,处置起来比较棘手。

固然考虑()h x 在0x +=及x =+∞处的极限很容易患出()h x 存在零点的结论,可是需要强调的是求极限严格来讲不属于高中时期内的知识点(尽管高中教材中有涉及),高考时得不得分存在专门大争议,因此高考数学官方标准答案中都会带入“特殊值”,通过不等式的放缩来证明函数值是不是存在大于(小于)0的点,此题中官方标准答案中给出(||)a k m e -+=和22(||1)1n a k =++如此两个极为复杂的“特殊值”,让人望而生叹直呼好难想到。

本解答进程另辟蹊径,给出了两个超级简单的范围来讲明()h x 的正负号问题——将()h x 分为kx 与ln x a --两部份,现在参数k 和a 分开(k 和a 二者之间没有关系,彼此独立),一一讨论范围以后再归并,从而确信()h x 的正负号。

【题目解答】(I )21111(()2416f x x '-=-=-+,0x >;令12()()f x f x m ''==12(0)x x ≠>,是关于t的一元二次方程212t t m-+-=的两个不相等的正数根,从而1211612256mx xm⎧⎪<<⎪⎪⇒⎪>⎩121212()()ln lnf x f x x x x x+==;令()lng t t=-,那么14()4g tt t'=-=,()g t在(016),上单调递减,在(16,)+∞上单调递增,因此当12256x x>时,12()(256)88ln2g x x g>=-,即12()()88ln2f x f x+>-,得证.(II)直线y kx b=+与曲线()f x有唯一公共点等价于函数()lnh x x kx a=--有唯一零点;(a)零点的存在性证明:当21(0,)xk∈时0kx>,当(0,)ax e-∈时ln0x a-->,因此当21(0,min(,))ax ek-∈时,(ln0h x kx x a-->;当21(+)xk∈∞,时0kx<,当(+)ax e-∈∞,时ln0x a--<,因此当21(max(,),)ax ek-∈+∞时,(ln0h x kx x a--<;依照零点存在性定理可知函数()h x在区间2211(min(,),max(,))a ae ek k--至少存在一个零点,从而()h x在(0,)+∞至少存在一个零点.(b)零点的唯一性证明:2111()416h x k kx'-=--+-;若116k≥,则()0h x'≤恒成立,()h x单调递减,现在()h x在(0,)+∞最多只有一个零点;若116k<<,()=0h x'有两个不相等正根3x和4x(设34x x<)且易知1142<<<<,从而()h x在3(0,)x上单调递减,34(,)x x上单调递增,4(,)x+∞上单调递减。

2018高考浙江数学带答案(最新整理)

2018高考浙江数学带答案(最新整理)

为 θ3,则
A.θ1≤θ2≤θ3
B.θ3≤θ2≤θ1
C.θ1≤θ3≤θ2
D.θ2≤θ3≤θ1
π 9.已知 a,b,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 ,向量 b 满足
3
b2−4e·b+3=0,则|a−b|的最小值是
A. 3 −1
B. 3 +1
C.2
D.2− 3
10.已知 a1, a2 , a3 , a4 成等比数列,且 a1 a2 a3 a4 ln(a1 a2 a3 ) .若 a1 1 ,则
2018 年普通高等学校招生全国统一考试(浙江卷) 数 学·参考答案
一、选择题:本题考查基本知识和基本运算。每小题 4 分,满分 40 分。 1.C 2.B 3.C 4.B 5.D 6.A 7.D 8.D 9.A 10.B 二、填空题:本题考查基本知识和基本运算。多空题每题 6 分,单空题每题 4 分,满分 36 分。
值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,
鸡雏个数分别为
x

y

z
,则
x y
5x
3y
z 100, 1 z 100,
3

z
81
时,
x
___________,
y
___________.
x y 0, 12. 若 x, y 满 足 约 束 条 件 2x y 6, 则 z x 3y 的 最 小 值 是 ___________, 最 大 值 是
由题意知各点坐标如下:
A(0, 3, 0), B(1, 0, 0), A1(0, 3, 4), B1(1, 0, 2),C1(0, 3,1),

2018年浙江卷高考真题数学试卷(详解版)(加密版)

2018年浙江卷高考真题数学试卷(详解版)(加密版)

2018 年浙江卷高考真题数学试卷一、选择题(本大题共10 小题,每小题4 分,共40 分)1.已知全集U = {1,2,3,4,5},A = {1,3},则∁U A =().A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵全集U = {1,2,3,4,5},A = {1,3}∴A的补集∁U A = {2,4,5}∴正确答案为C.2.双曲线x 2−y2 = 1的焦点坐标是().3A.(−√2, 0),(√2, 0)B.(−2,0),(2,0)C.(0, −√2),(0, √2)D.(0, −2),(0,2)【答案】B【解析】双曲线x 2−y2 = 1,其中a2 = 3,b2 = 1,3∴c2 = a2 + b2 = 3 + 1 = 4,∴双曲线的焦点坐标为(−2,0)和(2,0),∴正确答案是B.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是().A.2B.4C.6D.8【答案】C【解析】由三视图可知,原图如下:V = S底⋅ℎ= (1+2)×2 × 22= 6∴正确答案为C.4.复数2(i为虚数单位)的共轭复数是().1−iA.1 + iB.1 − iC.−1 + iD.−1 − i 【答案】B【解析】21−i = 2(1+i)(1−i)(1+i)= 2(1+i) = 1 + i1−i2∴其共轭复数为1 + i∴正确答案为B5.函数y = 2|x|sin 2x的图象可能是().A. B.C. D.【答案】D【解析】函数y = 2|x|sin 2x是奇函数,其函数图象关于原点对称,∴排除A,B选项,又∵当x∈ (−π, 0)时,函数有零点x= − π,2∴正确答案为D.6.已知平面α,直线m,n满足m⊄ α,n⊂ α,则“m//n”是“m//α”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】∵m⊄ α,n⊂ α,m//n可以推出m//α,∴“m//n”是“m//α”的充分条件,又∵m⊄ α,n⊂ α,m//α不能推出m//n,∴“m//n”不是“m//α”的必要条件,综上“m//n”是“m//α”的充分不必要条件,∴正确答案是A.7.设0 < p < 1,随机变量ξ的分布列ξ0 1 2P1−p212p2(( 则当p 在(0,1)内增大时,( ).A.D (ξ)减小B.D (ξ)增大C.D (ξ)先减小后增大D.D (ξ)先增大后减小 【答案】 D【解析】 方法一:E (ξ) = 0 ⋅ 1−p+ 1 × 1+ 2 × p 2 2 = 1 + p D (ξ) = (0 − 21 − p )2 2⋅ 1−p + 2 (1 − 1 21 1 ⋅2 2 = −p 2 + p + 141 2 1 = −(p − ) +22∴p 在(0,1)上增大时,D (ξ)先增大后减小,∴正确答案为D . 方法二:E(ξ) = 1 ×1D(ξ) = [0 − (21+ 2 × p22= 1 + p1 11222= 1+ p )22× 1−p + 1 2 2 − p )21 3 × + (2 2 − p )2 × p2 = − 1 2p 3 + 3p + 81 + 1 82p 2 − 1p + 1+ 281 p 3 2− 3p 2 2+ 9p 8= −p 2 + p +1 41 2 1 = −(p − ) +22p ∈ (0,1)时,D(ξ)在1 增大,在 1减小,所以先增大后减小.故选D .(0, ) 2 ( , 0)28. 已知四棱锥S − ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S − AB − C 的平面角为θ3,则 ( ).A.θ1 ⩽ θ2 ⩽ θ3B.θ3 ⩽ θ2 ⩽ θ1C.θ1 ⩽ θ3 ⩽ θ2− p )2 ⋅ + (2 2 − − p )2 p 2 2 2+ p )] × 1−p + [1 − ( + + +p22D.θ2 ⩽θ3 ⩽θ1【答案】D【解析】∵线线角大于或等于线面角,二面角大于或等于线面角,∴θ1 ⩾θ2,θ3 ⩾θ2,∴正确答案是D.→→→→9. →→π→→2 →已知a,b,e是平面向量,e是单位向量,若非零向量a与e的夹角为,向量b满足b− 4e⋅3→b + 3 = 0,则|a− b|的最小值是().A.√3 − 1B.√3 + 1C.2D.2 − √3【答案】A→→ →→→ →→【解析】b− 4e⋅ b + 3 = (b− e)(b− 3e) = 0→→设e = (1,0),b = (x, y)∴(x− 1)(x− 3) + y2 = 0∴(x− 2)2 + y2 = 1→→→如图a− b = BA,→而BA在O′A⊥ OA时最短,→→→→→此时|a− b| = |BA| = |OA| − |OB| = √3 − 1∴正确答案是A。

2018年高考数学压轴题

2018年高考数学压轴题

1
2018 年高考全国 III 卷压轴题(文科)
2018 年高考全国 III 卷压轴题(文科)
√ 1. 设 A, B, C, D 是同一个半径为 4 的球的球面上四点, △ABC 为等边三角形且其面积为 9 3 ,则三棱
锥 D − ABC 体积的最大值为( )
√ A. 12 3
√ B. 18 3
√ C. 24 3
则 △ABC 的面积为

3. 设抛物线 C : y2 = 2x ,点 A(2, 0) , B(−2, 0) ,过点 A 的直线 l 与 C 交于 M, N 两点. (1)当 l 与 x 轴垂直时,求直线 BM 的方程; (2)证明: ∠ABM = ∠ABN .
4. 已知函数 f (x) = aex − ln x − 1 .

C
的左顶点,点
P
在过
A
且斜率为
3 6
的直线上, △P F1F2
为等腰三角形, ∠F1F2P = 120◦ ,则
C
的离心率为(

A. 2
B. 1
C. 1
D. 1
3
2
3
4
2.
已知圆锥的顶点为
S ,母线
SA, SB
所成角的余弦值为
7 ,SA
与圆锥底面所成角为
45◦ .若
△SAB

8
的面积为 5 15 ,则该圆锥的侧面积为

C
上一点,且
−−→ FP
+
−→ FA
+
−−→ FB
=
−→0
,证明:2|FP来自|=|F
A|
+
|F
B|

2018高考浙江卷数学试题解析(精编版)(解析版)

2018高考浙江卷数学试题解析(精编版)(解析版)

绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页;非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:若事件A,B 互斥,则若事件A,B相互独立,则若事件A在一次试验中发生的概率是p,则n 次独立重复试验中事件A恰好发生k次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高锥体的体积公式其中表示锥体的底面积,表示锥体的高球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (−,0),(,0)B. (−2,0),(2,0)C. (0,−),(0,)D. (0,−2),(0,2)【答案】B【解析】分析:根据双曲线方程确定焦点位置,再根据求焦点坐标.详解:因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.点睛:由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3. 某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4. 复数 (i为虚数单位)的共轭复数是A. 1+iB. 1−iC. −1+iD. −1−i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,∴共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5. 函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.6. 已知平面α,直线m,n满足mα,nα,则“m∥n”是“m∥α”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:根据线面平行的判定定理得充分性成立,而必要性显然不成立.详解:因为,所以根据线面平行的判定定理得.由不能得出与内任一直线平行,所以是的充分不必要条件,故选A.点睛:充分、必要条件的三种判断方法:(1)定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.(2)等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 设0<p<1,随机变量ξ的分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.详解:,,,∴先增后减,因此选D.点睛:8. 已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC 所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D【解析】分析:分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.详解:设O为正方形ABCD的中心,M为AB中点,过E作BC的平行线EF,交CD于F,过O作ON垂直EF于N,连接SO,SN,OM,则SO垂直于底面ABCD,OM垂直于AB,因此从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9. 已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A. −1B. +1C. 2D. 2−【答案】A【解析】分析:先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.详解:设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.点睛:以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

最新高考理科数学浙江卷导数压轴题解析资料

最新高考理科数学浙江卷导数压轴题解析资料

2018年高考理科数学浙江卷导数压轴题解析【题目分析】本题综合考察了函数的单调性、极值以及零点的分析。

解决第(I )问中12()()f x f x +取值范围问题的关键在于建立1x 与2x 之间的关系将双变量转化为单变量,寻找该单变量的取值范围,构造函数并根据函数的单调性以及定义域讨论其值域,难度不大。

第(II )问重点考察函数零点的寻找,“零点存在性定理”与“函数单调性”的结合是解决“唯一零点”这类问题的常规套路——“零点存在性定理”解决有没有的问题,“函数单调性”解决可能有几个的问题。

题目中需要构造()ln h x x kx a =--这样一个含有双参变量的函数,参数a 不会影响“函数单调性”,也就是意味着函数()h x 的单调性比较好处理,难点在于“零点存在性定理”的运用,()h x 是否存在大于0或者小于0的点是由参数k 和a 共同控制的,对于这样一个既含有根号又含有对数的函数而言,处理起来比较棘手。

当然考虑()h x 在0x +=及x =+∞处的极限很容易得出()h x 存在零点的结论,但是需要强调的是求极限严格来讲不属于高中阶段内的知识点(虽然高中教材中有涉及),高考时得不得分存在很大争议,因此高考数学官方标准答案中都会带入“特殊值”,通过不等式的放缩来证明函数值是否存在大于(小于)0的点,本题中官方标准答案中给出(||)a k m e -+=以及22(||1)1n a k =++这样两个极其复杂的“特殊值”,让人望而生叹直呼好难想到。

本解答过程另辟蹊径,给出了两个非常简单的范围来说明()h x 的正负号问题——将()h x分为kx 与ln x a --两部分,此时参数k 和a 分开(k 和a 二者之间没有关系,相互独立),逐一讨论范围之后再合并,从而确定()h x 的正负号。

【题目解答】(I)21111(()2416f x x '=-=-+,0x >;令12()()f x f x m ''==12(0)x x ≠>,则是关于t 的一元二次方程2102t t m -+-=的两个不相等的正数根,从而1210161=2256m x x m ⎧⎪<<⎪⎪⇒⎪>⎩121212()()ln ln f x f x x x x x +==;令()ln 2g t t =-,则14()4g t tt '==,()g t 在(016),上单调递减,在(16,)+∞上单调递增,所以当12256x x >时,12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-,得证.(II )直线y kx b =+与曲线()f x有唯一公共点等价于函数()ln h x x kx a =--有唯一零点;(a)(b) 零点的存在性证明:当21(0,)x k ∈时0kx >,当(0,)a x e -∈时ln 0x a -->,所以当21(0,min(,))a x e k-∈时,(ln 0h x kx x a -->;当21(+)x k ∈∞,时0kx <,当(+)a x e -∈∞,时ln 0x a --<,因此当21(max(,),)a x e k -∈+∞时,(ln 0h x kx x a --<;根据零点存在性定理可知函数()h x 在区间2211(min(,),max(,))a a e e k k --至少存在一个零点,从而()h x 在(0,)+∞至少存在一个零点. (c) (d) 零点的唯一性证明:2111()416h x k k x '-=--+-;若116k ≥,则()0h x '≤恒成立,()h x 单调递减,此时()h x 在(0,)+∞最多只有一个零点; 若1016k <<,()=0h x '有两个不相等正根3x 和4x (设34x x <)且易知11042<<<<,从而()h x 在3(0,)x 上单调递减,34(,)x x 上单调递增,4(,)x +∞上单调递减。

2018年高考数学真题试卷(浙江卷)含逐题详解

2018年高考数学真题试卷(浙江卷)含逐题详解

2018年普通高等学校招生全国统一考试(浙江卷)数 学本试卷卷分选择题和非选择题两部分。

全卷共4页,选择题部分1至2页,非选择题部分3至4页。

满分150分。

考试用时120分钟。

考生注意:1.答题前,请务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填在试卷卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试卷卷上的作答一律无效。

参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上,下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一,选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线的焦点坐标是A .,0)B .(−2,0),(2,0)C .)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =UA ∅221 3=x y -A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时. A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则俯视图正视图21i-||2x ⊄⊂A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A1B+1 C.2 D.210.已知成等比数列,且.若,则A.B.C.D.非选择题部分(共110分)二,填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018年普通高等学校招生全国统一考试 数学 (浙江卷)word版含解析

2018年普通高等学校招生全国统一考试 数学 (浙江卷)word版含解析

2018年普通高等学校招生全国统一考试数 学(浙江卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共10小题,每小题4分,共40分)1.已知全集12{}345U =,,,,,}3{1A =,,则U A =ð( ) A .∅ B .{1}3, C .{245},, D .1234{}5,,,, 2.双曲线22 13x y -=的焦点坐标是( )A.(),)B .()0-2,,()02, C.(0,,(D .()0,2-,()0,23.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )俯视图正视图A .2B .4C .6D .84.复数21i-(i 为虚数单位)的共轭复数是( )A .1i +B .1i -C . 1i -+D . 1i --5.函数2sin2xy x =的图象可能是( ) A .ππDB Axy πOO πyxB.ππDC Bπππxy πO OyC.πDCxπππO πyxD .πDπππ6.已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m n ∥”是“m α∥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设01p <<,随机变量ξ的分布列是则当p 在(0)1,内增大时( ) A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小8.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤9.已知a ,b ,e 是平面向量,e 是单位向量,若非零向量a 与e的夹角为 3π,向量b 满足2430-⋅+=b e b ,则-a b 的最小值是( )A 1B 1C .2D .210.已知1a ,2a ,3a ,4a 成等比数列,且()1234123ln a a a a a a a +++=++,若11a >,则( )此卷只装订不密封班级 姓名 准考证号考场号 座位号A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁、鸡母,鸡雏个数分别为x ,y ,z ,则100?1531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x=______,y=_____. 12.若x ,y 满足约束条件0262? x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最小值是__________,最大值是________.13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c,若a 2b =,60A =︒, 则sin B =_________________,c = ___________________.14.二项式81 2x ⎫⎪⎭的展开式的常数项是_________________________.15.已知λ∈R ,函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩,当2λ=时,不等式()0f x <的解集是_________,若函数()f x 恰有2个零点,则λ的取值范围是_______________________.16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成__________________个没有重复数字的四位数.(用数字作答)17.已知点()0,1P ,椭圆()2214x y m m +=>上两点A ,B 满足A P PB 2=,则当m =_____时,点B 横坐标的绝对值最大.三、解答题(本大题共5小题,共74分)18.(14分)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点3455P ⎛⎫-- ⎪⎝⎭, (1)求()sin α+π的值; (2)若角β满足()5sin 13αβ+=,求cos β的值.19.(15分)如图,已知多面体111ABC A B C -,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成的角的正弦值.C 1B 1A 1CA20.(15分)已知等比数列{}n a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项,数列{}n b 满足11b =,数列(){}1n n n b b a +-的前n 项和为22n n +. (1)求q 的值;(2)求数列{}n b 的通项公式.21.(15分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆()22104y x x +=<上的动点,求PAB △面积的取值范围.22.(15分)已知函数()ln f x x .(1)若()f x 在1x x =,()212x x x ≠处导数相等,证明:()()1288ln 2f x f x +>-;(2)若34ln 2a ≤-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.2018年普通高等学校招生全国统一考试数 学 答 案(浙江卷)一、选择题(本大题共10小题,每小题4分,共40分)1.【答案】C【解析】由题意知{2,4,5}UA =ð.故选C .2.【答案】B【解析】∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).故选B .3.【答案】C【解析】该几何体的立体图形为四棱柱,(12)2262V +⨯=⨯=.故选C . 4.【答案】B【解析】22(1i)1i 1i (1i)(1i)z +===+--+,∴1i z =-.故选B . 5.【答案】D【解析】令||()2sin 2x y f x x ==,||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,所以()f x 为奇函数①;当(0,)x p Î时,||20x >,sin 2x 可正可负, 所以()f x 可正可负②.由①②可知,故选D . 6.【答案】A【解析】若“m n ∥”,平面外一条直线与平面内一条直线平行,可得线面平行,所以“m α∥”;当“m α∥”时,m 不一定与n 平行, 所以“m n ∥”是“m α∥”的充分不必要条件.故选A . 7.【答案】D【解析】111()0122222p p E p x -=???+, 22211113()()()()222222ppD p p p x -=?+?+? 22111()422p p p =-++=--+, 所以当p 在(0,1)内增大时,()D x 先增大后减小,故选D . 8.【答案】D【解析】作SO 垂直于平面ABCD ,垂足为O ,取AB 的中点M ,连接SM .过O 作ON 垂直于直线SM ,可知2SEO θ=∠,3SMO θ=∠,过SO 固定下的二面角与线面角关系,得32θθ≥.易知,3θ也为BC 与平面SAB 的线面角,即OM 与平面SAB 的线面角,根据最小角定理,OM 与直线SE 所成的线线角13θθ≥,所以231θθθ≤≤.故选D .9.【答案】A【解析】设(1,0)=e ,(,)x y =b ,则22222430430(2)1x y x x y -⋅+=⇒+-+=⇒-+=b e b如图所示,OA =a ,OB =b ,(其中A 为射线OA 上动点,B 为圆C 上动点,3AOx π∠=.)∴min 11CD -=-a b .(其中CD OA ⊥.)故选A .10.【答案】B【解析】∵ln 1x x ≤-,∴1234123123ln()1a a a a a a a a a a +++=++≤++-,得41a ≤-,即311a q ≤-,∴0q <.若1q ≤-,则212341(1)(1)0a a a a a q q +++=++≤, 212311(1)1a a a a q q a ++=++≥>,矛盾.∴10q -<<,则2131(1)0a a a q -=->,2241(1)0a a a q q -=-<. ∴13a a >,24a a <.故选B .二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.【答案】8;11【解析】当81z =时,有811005327100x y x y ì++=ïïíï++=ïî,解得811x y ì=ïïíï=ïî. 12.【答案】2-;8【解析】不等式组所表示的平面区域如图所示,当42x y ì=ïïíï=-ïî时,3z x y =+取最小值,最小值为2-;当22x y ì=ïïíï=ïî时,3z x y =+取最大值,最大值为8.13.;3 【解析】由正弦定理sin sin a bA B =2sin B =,所以sin B =. 由余弦定理,222cos 2b c a A bc +-=,得214724c c+-=,所以3c =.14.【答案】7【解析】通项8184133318811C C 22rr rr r r r T x x x---+⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,84033r -=, ∴2r =.∴常数项为2281187C 7242⨯⎛⎫⋅=⨯= ⎪⎝⎭. 15.【答案】(1,4);(]()1,34,+∞【解析】∵2λ=,∴24,2()43,2x x f x x x x -≥⎧=⎨-+<⎩.当2x ≥时,40x -<得24x ≤<.当2x <时,2430x x -+<,解得12x <<.综上不等式的解集为14x <<. 当243y x x =-+有2个零点时,4λ>.当243y x x =-+有1个零点时,4y x =-有1个零点,13λ<≤. ∴13λ<≤或4λ>.16.【答案】1260【解析】22412135343533C C A C C C A 7205401260+=+=.17.【答案】5【解析】方法一:设11(,)A x y ,22(,)B x y ,当直线斜率不存在时,9m =,20x =.当直线斜率存在时,设AB 为1y kx =+. 联立2241x y m y kx ⎧+=⎪⎨⎪=+⎩得22(41)8440k x kx m +++-=,20410mk m ∆>⇒+->,122841k x x k +=-+,1224441mx x k -=+. ∵2AP PB =,∴122x x =-,解得121641k x k -=+,22841kx k =+. ∴228821414k x k k k==≤++(当且仅当12k =时取“=”). 122216884141k k x x k k -=⋅=-++,122442241mx x m k -==-+,得5m =, ∴当5m =时,点B 横坐标最大.方法二:设11(,)A x y ,22(,)B x y ,则11(,1)AP x y =--,22(,1)PB x y =-, ∵2AP PB =,∴1212232x x y y =-⎧⎨=-⎩,∴22222222(2)(32)(1)4(2)4x y m x y m ⎧-+-=⎪⎪⎨⎪+=⎪⎩,由(1)(2)得234m y +=.(3)将(3)代入(2),得222(5)164m x --+=,∴2x∴当5m =时,2x 取最大值.三、解答题(本大题共5小题,共74分)18.【答案】(1)45;(2)5665-或1665. 【解析】(1)445sin()sin 15αα-+π=-=-=.(2)∵()βαβα=+-,∴cos cos[()]βαβα=+-, ∵5sin()13αβ+=,∴12cos()13αβ+=±, 又∵4sin 5α=-,且α终边在第三象限,∴3cos 5α=-.①当12cos()13αβ+=时, 12354362056cos cos()cos sin()sin 1351356565βαβααβα--⎛⎫⎛⎫=+++=⨯-+⨯-==- ⎪ ⎪⎝⎭⎝⎭. ②当12cos()13αβ+=-时, 1235416cos cos()cos sin()sin 13513565βαβααβα⎛⎫⎛⎫⎛⎫=+++=-⨯-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.【答案】(1)见解析;(2. 【解析】(1)∵12AB B B ==,且1B B ⊥平面ABC ,∴1B B AB ⊥,∴1AB =同理,1AC =过点1C 作1B B 的垂线段交1B B 于点G ,则12C G BC ==且11B G =,∴11B C = 在11AB C △中,2221111AB B C AC +=,∴111AB B C ⊥,①过点1B 作1A A 的垂线段交1A A 于点H . 则12B H AB ==,12A H =,∴11A B =在11A B A △中,2221111AA AB A B =+,∴111AB A B ⊥,② 综合①②,∵11111A B B C B =,11A B ⊂平面111A B C ,11B C ⊂平面111A B C ,∴1AB ⊥平面111A B C .(2)过点B 作AB 的垂线段交AC 于点I ,以B 为原点,以AB 所在直线为x 轴,以BI 所在直线为y 轴,以1B B 所在直线为z 轴,建立空间直角坐标系B xyz -.则(0,0,0)B ,(2,0,0)A -,1(0,0,2)B,1(1C , 设平面1ABB 的一个法向量(,,)a b c =n ,则1020200AB a c BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩n n ,令1b =,则(0,1,0)=n ,又∵1AC =,1cos ,AC <>==n . 由图形可知,直线1AC 与平面1ABB 所成角为锐角,设1AC 与平面1ABB 夹角为α.∴sin α=20.【答案】(1)2q =;(2)243152n n n b -+=-.【解析】(1)由题可得34528a a a ++=,4352(2)a a a +=+,联立两式可得48a =.所以34518128a a a q q ⎛⎫++=++= ⎪⎝⎭,可得2q =(另一根112<,舍去).(2)由题可得2n ≥时,221()22(1)(1)41n n n b b a n n n n n +⎡⎤-=+--+-=-⎣⎦,当1n =时,211()213b b a -=+=也满足上式,所以1()41n n n b b a n +-=-,N n +∈, 而由(1)可得41822n n n a --=⋅=,所以1141412n n n n n n b b a +----==, 所以1213210122371145()()()2222n n n n n b b b b b b b b ----=-+-++-=++++, 错位相减得1243142n n n b b -+-=-,所以243152n n n b -+=-. 21.【答案】(1)见解析;(2)⎡⎢⎣⎦.【解析】(1)设00(,)P x y ,211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,则PA 中点为20011,282x y y y ⎛⎫++ ⎪⎝⎭,由AP 中点在抛物线上,可得2201014228y y x y ⎛⎫+⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 化简得2210100280y y y x y -+-=,显然21y y ≠,且对2y 也有2220200280y y y x y -+-=, 所以1y ,2y 是二次方程22000280y y y x y -+-=的两不等实根, 所以1202y y y +=,1202M P y y y y y +===,即PM 垂直于x 轴. (2)()()()120121122M P M M M S x x y y y y x x y y =--+-=--,由(1)可得1202y y y +=,212008y y x y =-,2220000012(2)4(8)8(4)0()y x y y x y y ∆=--=->≠,此时00(,)P x y 在半椭圆221(0)4y x x +=<上,∴2220000008(4)84(1)432(1)yx x x x x∆⎡⎤=-=--=--⎣⎦,∵010x -≤<,∴0∆>, ∴12y y -==,2222220000121212000042(8)6(44)()238888M P y x yx y y yy y y x x xx x x ---++--=-=-=-=-2003(1)x x =--,所以23012001()2M S x x y y x x=--=--=,t ⎡=⎢⎣⎦,所以3S ⎡=∈⎢⎣⎦,即PAB △的面积的取值范围是⎡⎢⎣⎦.22.【答案】(1)见解析;(2)见解析.【解析】(1)1()f x x'=-,不妨设12()()f x f x t ''==, 即1x ,2x 1t x -=2102xtx -+=的根,所以1404t ∆=->,得1016t<<12t =1t=, 12122111()()ln ln 2ln 22f x f x x x t t t t+=-=-=+,令1()2ln 2g t t t =+,222141()022t g t t t t -'=-=<,∴()g t 在10,16⎛⎫⎪⎝⎭上单调递减. 所以1()88ln 216g t g ⎛⎫>=- ⎪⎝⎭,即12()()88ln 2f x f x +>-.(2)设()()()lnh x kx a f x kxx a =+-=-+,则当x 充分小时()0h x <,充分大时()0h x >,所以()h x 至少有一个零点,则2111()164h x k k x ⎫'=+=-+-⎪⎭, ①116k ≥,则()0h x '≥,()h x 递增,()h x 有唯一零点, ②1016k <<,则令211()0416h x k ⎫'=-+-=⎪⎭,得()h x 有两个极值点1x ,212()x x x <,14>,∴1016x<<. 可知()h x 在1(0,)x 递增,12(,)x x 递减,2(,)x +∞递增,∴11111111()ln ln 1ln h x kx x a x x a x a x ⎛⎫=+=-+=-++⎪⎪⎭,又1111()h xx'==∴1()h x在(0,16)上单调递增,∴1()(16)ln163ln16334ln20h x h a<=-+≤-+-=,∴()h x有唯一零点,综上可知,0k>时,y kx a=+与()y f x=有唯一公共点.。

2018年高考浙江卷数学试题解析(精编版)(解析版)

2018年高考浙江卷数学试题解析(精编版)(解析版)

绝密★启用前2018 年一般高等学校招生全国一致考试(浙江卷)数学本试题卷分选择题和非选择题两部分。

全卷共 4 页,选择题部分 1 至 2 页;非选择题部分 3 至 4 页。

满分 150 分。

考试用时 120 分钟。

考生注意:1.答题前,请务势必自己的姓名、准考据号用黑色笔迹的署名笔或钢笔分别填在试题卷和答题纸规定的地点上。

2.答题时,请依照答题纸上“注意事项”的要求,在答题纸相应的地点上规范作答,在本试题卷上的作答一律无效。

参照公式:柱体的体积公式若事件 A, B 互斥,则此中表示柱体的底面积,表示柱体的高若事件 A, B 互相独立,则锥体的体积公式若事件 A 在一次试验中发生的概率是p,则 n 次此中表示锥体的底面积,表示锥体的高独立重复试验中事件 A 恰巧发生 k 次的概率球的表面积公式台体的体积公式球的体积公式此中分别表示台体的上、下底面积,表示台体的高此中表示球的半径选择题部分(共40 分)一、选择题:本大题共10 小题,每题 4 分,共40 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1. 已知全集U={1 , 2, 3, 4, 5} , A={1 ,3} ,则A. B. {1 , 3} C. {2 ,4,5} D. {1 ,2,3,4, 5}【答案】 C【分析】剖析:依据补集的定义可得结果.详解:由于全集,,所以依据补集的定义得,应选 C.点睛:若会合的元素已知,则求会合的交集、并集、补集时,可依据交集、并集、补集的定义求解.2. 双曲线的焦点坐标是A. (- ,0), ( , 0)B. (-2 ,0), (2, 0)C. (0, - ),(0, )D. (0,-2) , (0, 2)【答案】 B【分析】剖析 :依据双曲线方程确立焦点地点,再依据求焦点坐标 .详解:由于双曲线方程为,所以焦点坐标可设为,由于,所以焦点坐标为,选 B.点睛:由双曲线方程可得焦点坐标为,极点坐标为,渐近线方程为.3. 某几何体的三视图以下图(单位:cm),则该几何体的体积(单位:cm3)是A.2B.4C.6D.8【答案】 C【分析】剖析:先复原几何体为向来四棱柱,再依据柱体体积公式求结果.详解:依据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1, 2,梯形的高为 2,所以几何体的体积为选 C.点睛:先由几何体的三视图复原几何体的形状,再在详细几何体中求体积或表面积等.4. 复数(i 为虚数单位)的共轭复数是A. 1+iB. 1-iC. -1+iD. -1-i【答案】 B【分析】剖析:先分母实数化化简复数,再依据共轭复数的定义确立结果.详解:,∴ 共轭复数为,选 B.点睛:此题要点考察复数的基本运算和复数的观点,属于基此题.第一对于复数的四则运算,要确实掌握其运算技巧和惯例思路,如. 其次要熟习复数的有关基本观点,如复数的实部为、虚部为、模为、对应点为、共轭复数为.5.函数 y= sin2x 的图象可能是A. B.C. D.【答案】 D【分析】剖析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,由于,所以为奇函数,清除选项A,B;由于时,,所以清除选项C,选 D.点睛:有关函数图象的辨别问题的常有题型及解题思路:( 1)由函数的定义域,判断图象的左、右地点,由函数的值域,判断图象的上、下地点;( 2)由函数的单一性,判断图象的变化趋向;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的周而复始.6.已知平面αm, n知足m α, n αm∥ n m∥α,直线,则“”是“”的A.充足不用要条件B.必需不充足条件C. 充足必需条件D.既不充足也不用要条件【答案】 A【分析】剖析:依据线面平行的判断定理得充足性成立,而必需性明显不可立. 详解:由于,所以依据线面平行的判断定理得.由不可以得出与内任向来线平行,所以是的充足不用要条件,应选 A.点睛:充足、必需条件的三种判断方法:( 1)定义法:直接判断“”、“”“?”是的充足若则若则的真假.并注意和图示相联合,比如为真,则条件.(2)等价法:利用 ? 与非 ? 非, ? 与非 ? 非, ? 与非 ? 非的等价关系,对于条件或结论能否认式的命题,一般运用等价法.( 3)会合法:若?,则是的充足条件或是的必需条件;若=,则是的充要条件.7.设 0<p<1,随机变量ξ的散布列是ξ0 1 2P则当 p 在( 0, 1)内增大时,A. D(ξ)减小B. D (ξ)增大C. D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】 D【分析】剖析:先求数学希望,再求方差,最后依据方差函数确立单一性.详解:,,,∴先增后减 ,所以选 D.点睛:8. 已知四棱锥S- ABCD 的底面是正方形,侧棱长均相等, E 是线段 AB 上的点(不含端点),设 SE与 BC 所成的角为θ1 2 3, SE 与平面 ABCD 所成的角为θ,二面角 S- AB- C 的平面角为θ,则A. θ≤θ≤θB. θ≤θ≤θθ≤θ≤θθ≤θ≤θ1 23 321C. 132D.23 1【答案】 D【分析】剖析:分别作出线线角、线面角以及二面角,再结构直角三角形,依据边的大小关系确立角的大小关系 .详解:设 O 为正方形 ABCD 的中心, M 为 AB 中点,过 E 作 BC 的平行线 EF,交 CD 于 F,过 O 作 ON 垂直 EF 于N,连结 SO, SN,OM ,则 SO 垂直于底面 ABCD ,OM 垂直于 AB,所以从而由于,所以即,选 D.点睛:线线角找平行,线面角找垂直,面面角找垂面.9.已知 a,b, e 是平面向量, e 是单位向量.若非零向量 a 与 e 的夹角为,向量 b 知足 b2-4 e·b+3=0 ,则 |a- b| 的最小值是A. -1B. +1C. 2D. 2-【答案】 A【分析】剖析:先确立向量所表示的点的轨迹,一个为直线,一个为圆,再依据直线与圆的地点关系求最小值 .详解:设,则由得,由得所以的最小值为圆心到直线的距离减去半径1,为选 A.点睛:以向量为载体求有关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相联合的一类综合问题 .经过向量的坐标运算,将问题转变为解方程、解不等式、求函数值域或直线与曲线的地点关系,是解决这种问题的一般方法.10. 已知成等比数列,且.若,则A. B. C. D.【答案】 B【分析】剖析:先证不等式,再确立公比的取值范围,从而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;所以,,选 B.点睛:结构函数对不等式进行放缩,从而限制参数取值范围,是一个有效方法.如非选择题部分(共 110 分)二、填空题:本大题共7 小题,多空题每题 6 分,单空题每题 4 分,共36 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考理科数学浙江卷导数压轴题解析
已知函数.
(I)若在,处导数相等,证明:;
(II)若,证明:对任意,直线与曲线有唯一公共点.
【题目分析】
本题综合考察了函数的单调性、极值以及零点的分析。

解决第(I)问中取值范围问题的关键在于建立与之间的关系将双变量转化为单变量,寻找该单变量的取值范围,构造函数并根据函数的单调性以及定义域讨论其值域,难度不大。

第(II)问重点考察函数零点的寻找,“零点存在性定理”与“函数单调性”的结合是解决“唯一零点”这类问题的常规套路——“零点存在性定理”解决有没有的问题,“函数单调性”解决可能有几个的问题。

题目中需要构造这样一个含有双参变量的函数,参数a不会影响“函数单调性”,也就是意味着函数的单调性比较好处理,难点在于“零点存在性定理”的运用,是否存在大于0或者小于0的点是由参数k和a共同控制的,对于这样一个既含有根号又含有对数的函数而言,处理起来比较棘手。

当然考虑在及处的极限很容易得出存在零点的结论,但是需要强调的是求极限严格来讲不属于高中阶段内的知识点(虽然高中教材中有涉及),高考时得不得分存在很大争议,因此高考数学官方标准答案中都会带入“特殊值”,通过不等式的放缩来证明函数值是否存在大于(小于)0的点,本题中官方标准答案中给出以及这样两个极其复杂的“特殊值”,让人望而生叹直呼好难想到。

本解答过程另辟蹊径,给出了两个非常简单的范围来说明的正负号问题——将分为与两部分,此时参数k和a分开(k和a二者之间没有关系,相互独立),逐一讨论范围之后再合并,从而确定的正负号。

【题目解答】
(I),;令,则和是关于的一元二次方程的两个不相等的正数根,从


令,则,在上单调递减,在上单调递增,所以当时,,即,得证.(II)直线与曲线有唯一公共点等价于函数有唯一零点;
(a) 零点的存在性证明:
当时,当时,所以当时,;当时,当时,因此当时,;根据零点存在性定理可知函数在区间至少存在一个零点,从而在至少存在一个零点.
(b) 零点的唯一性证明:

若,则恒成立,单调递减,此时在最多只有一个零点;
若,有两个不相等正根和(设)且易知,从而在上单调递减,上单调递增,上单调递减。

由得:

从而;结合(I)中函数的单调性可知:,即,所以当时函数,结合的单调性可知在内无零点,在最多一个零点;此时在亦最多只有一个零点.
综上,当且时函数有唯一零点,即直线与曲线有唯一公共点.。

相关文档
最新文档