运筹学 指派问题课件

合集下载

运筹学指派问题

运筹学指派问题

n
n
总成本最小
每项任务由一人完成 每人只承担一项任务
解矩阵的特征
• 全部元素仅取0或1 • 每行有且仅有一个1 • 每列有且仅有一个1
0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0
例如,n=5时, X xij
数学模型 : m in z cij xij j 1 i 1
n xij 1, j 1,2 ,...,n i 1 n s .t . xij 1, i 1,2 ,...,n j 1 x 0 ,1 i , j 1,2 ,...,n ij
在C中找出最多独立0的步骤
• 设Wi表示第i行0的数目,Lj表示第i列0的数目.
• 1.统计Wi和Lj(i,j=1,2,…n).
• 2.按W1,W2,…,Wn,L1,L2,…,Ln顺序找出 第一个最小正数,选中该行(列)首个0. • 3.删除该0所在的行与列,对应的Wi=0,Lj=0. • 4.重复步骤1~3,直到全部Wi=0为止.
0
0
这样就找到 4个独立0
如果按自上而下从左到右顺序找
0 0 0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• 这样,4条线就覆盖了全部0
0 0 0 0 0 0
0
0 0
0 0 0 0

运筹学课件ch5指派问题[全文]

运筹学课件ch5指派问题[全文]

运筹学课件ch5指派问题[全文] 指派问题assignment problem 运筹学课件一种特殊的线性规划问题,我们也经常遇到指派人员做某项工作的情况。

指派问题的许多应用都用来帮助管理人员解决如何为一项将要开展进行的工作指派人员的问题。

其他的一些应用如为一项任务指派机器、设备或者是工厂。

指派问题运筹学课件指派问题的形式表述:给定了一系列所要完成的任务(tasks)以及一系列完成任务的被指派者(assignees),所需要解决的问题就是要确定出哪一个人被指派进行哪一项任务。

指派问题模型运筹学课件指派问题的假设:被指派者的数量和任务的数量是相同的每一个被指派者只完成一项任务每一项任务只能由一个被指派者来完成每个被指派者和每项任务的组合有一个相关成本目标是要确定怎样进行指派才能使得总成本最小指派问题模型运筹学课件指派问题assignment problem 【例51></a>.14】人事部门欲安排四人到四个不同的岗位工作,每个岗位一个人(经考核四人在不同岗位的成绩(百分制)如表5-34所示,如何安排他们的工作使总成绩最好。

88809086丁90798382丙95788795乙90739285甲DCBA工作人员表5-34【解】设1 数学模型运筹学课件数学模型为:甲乙丙丁ABCD图5. 3指派问题assignment problem运筹学课件假设m个人恰好做m项工作,第i个人做第j项工作的效率为cij?0,效率矩阵为[cij](如表5-34),如何分配工作使效率最佳(min或max)的数学模型为指派问题assignment problem运筹学课件2 解指派问题的匈牙利算法匈牙利法的条件是:问题求最小值、人数与工作数相等及效率非负【定理5.1】如果从分配问题效率矩阵[cij]的每一行元素中分别减去(或加上)一个常数ui(被称为该行的位势),从每一列分别减去(或加上)一个常数vj(称为该列的位势),得到一个新的效率矩阵[bij],其中bij=cij,ui,vj,则[bij]的最优解等价于[cij]的最优解,这里cij、bij均非负(指派问题assignment problem【证】运筹学课件【定理5.2】若矩阵A的元素可分成“0”与非“0”两部分,则覆盖“0”元素的最少直线数等于位于不同行不同列的“0”元素(称为独立元素)的最大个数( 如果最少直线数等于m,则存在m个独立的“0”元素,令这些零元素对应的xij等于1,其余变量等于0,这时目标函数值等于零,得到最优解(两个目标函数相差一个常数 u+v,约束条件不变,因此最优解不变。

运筹学课件1.8工作指派问题

运筹学课件1.8工作指派问题

c1n c2 n cnn
关于模型的讨论
指派问题是运输问题的特殊情况 当n=m时,平衡指派问题 当 n m 时,不平衡指派问题,此时, 可设置虚工作或虚工作人员,将其化为 平衡指派问题。 对指派矩阵C,任意行(列)减去它的最 小元素后,所构成的指派问题最优解与 原指派问题相同。

45 0 40 65 45 55 55 0 0 5 0 45 0 55 60 55 45 45 0 45

0 20 40 60 95
45 0 40 65 45 55 55 0 0 5 0 45 0 55 60 55 45 45 0 45
回到第一步:圈零得新最优解
4 0 2 0 2 2 0 0 0 1 2 1 0 0 0 1 0 1 ( xij ) 0 0 0 0 0 1 1 0 0 0 0 0 1 0
最小的总工作时间:z=7+5+5+3=20。该问 题有多个最优解,请求出其它的最优解。
第八节 工作指派问题
工作指派问题及其数学模型 求解工作指派问题的匈牙利法 工作指派问题的应用举例
工作指派问题的数学模型
•例1-12
•指派问题数学模型 •指派矩阵 •对数学模型的讨论
匈牙利法
•匈牙利法的基本原理
•匈牙利法的计算步骤
•减数得零—求最优匹配
•圈零划线—查是否最大匹配
•找数调整—求新的最优匹配
ห้องสมุดไป่ตู้
指派问题一般模型
min z cij xij
j 1 i 1 n n
n xij 1, j 1,2, , n i n1 s.t. xij 1, i 1,2, , n j 1 xij 0,1

运筹学-0-1规划指派问题PPT课件

运筹学-0-1规划指派问题PPT课件
在0-1规划问题中,遗传算法通过模拟生物进化过程中的基因突变、交叉 和选择等过程来寻找最优解。算法从一个初始种群出发,通过不断迭代 进化,最终找到最优解。
遗传算法的优点是能够处理大规模、复杂的优化问题,且具有较强的鲁 棒性和全局搜索能力。缺点是算法实现较为复杂,需要较高的计算资源 和时间,且在某些情况下可能会陷入局部最优解。
指派问题通常具有整数约束和 0-1约束,即每个工人只能被分 配一项任务,且每个任务只能 由一个工人完成。
指派问题的解通常具有最优子 结构和局部最优解的特性。
变量定义
• $x{ij}$:如果第i个工人被分配第j项任务,则$x{ij}=1$; 否则$x_{ij}=0$。
目标函数
• $min \sum{i=1}^{n} \sum{ j=1}^{n} c{ij} x{ij}$: 最小化总成本。
04
指派问题在0-1规划中的应用
指派问题的定义
• 指派问题是一种组合优化问题,旨在将一组任务分配给一组工 人,使得总成本最小化。每个工人只能完成一项任务,每项任 务只能由一个工人完成。目标是找到一种最优的分配方式,使 得总成本最低。
指派问题的特点
指派问题具有NP难解的特点, 即没有已知的多项式时间算法 来解决该问题。
04
总结词:整数规划
பைடு நூலகம்
案例三:旅行商问题
总结词:旅行商问题
总结词:图论
详细描述:旅行商问题是一个经典的组合优 化问题,涉及到寻找一条最短路径,使得一 个旅行商能够访问一系列城市并返回出发城 市,同时最小化总旅行距离。
详细描述:图论是研究图形和图形结构的数 学分支,提供了解决旅行商问题和其他优化 问题的理论基础。
在0-1规划问题中,分支定界法将问题分解为多个子问题,每个子问题对应一种指派 方案。算法通过不断排除不可能的解来缩小搜索范围,最终找到最优解。

运筹学运输与指派问题 ppt课件

运筹学运输与指派问题 ppt课件
a1 a2
am
18
设xk( =0或1)表示第k个中转站启用次数,xik表示从第i个仓库运到第k个中转站的 物资数量,ykj表示从第k个中转站运到第j个单位的物资数量,则
p
mp
pn
z f k x k
d ik x ik
e kj y kj
k 1
i1 k 1
k 1 j1
p
x ik a i
… … … …… …
Am cm1 cm2 … cmn am
Am+1 0
0 … 0 am+1
销量 b1 b2 … bn
mn
minz
cij xij
n
i1
xij ai
j1
i 1, 2,..., m
j1
s.t. m xij bj j 1, 2,..., n
i1
xij 0 i 1, 2,..., m; j 1, 2,..., n
mn
minz
cij xij
n
i1 j1
xij ai
i 1, 2,..., m
s.t.
j 1 m
xij
bj
j 1, 2,..., n
i1
xij 0 i 1, 2,..., m; j 1, 2,..., n
若用表上作业法求之,可设一个假想销地, 使其销
量为bn+1=∑ai-∑bj,ci,n+1=0.
已知该厂的生产能力与生产成本如下表。若生产出的产品当季不交货,则需
储存、维护等费用1500元。要求在完成合同的情况下,做出全年生产费用最
小的决策。
生产能力与生产成本
季度
1 2 3 4
生产的能力(台)

管理运筹学第四章整数规划与指派问题 ppt课件

管理运筹学第四章整数规划与指派问题 ppt课件

资源
小号容器
金属板(张)
2
劳动力(个)
2
机时(小时)
1
中号容器 大号容器 资源拥有量
4
8
500
3
4
300
2
3
100
利润
4
5
6
11
解:设x1 , x2 , x3分别表示小、中、大号容器的生产数量, M为很大的正数,z表示总利润
引入逻 辑变量
yj 10,,
xj 0 xj 0
j1,2,3
m ax z 4 x1 5 x2 6 x3 100 y1 150 y2 200 y3
32
分枝的方法
max z CX
AX b
s.t.
X
0,
X为整数
m ax z CX
AX b
s .t . x r b r
X
0,
X为


m ax z CX
AX b
s .t . x r b r
X
0, X 为 整 数
33
定界的方法
当前得到的最好整数解的目标函数值 分枝后计算放松的线性规划的最优解
.t
.
X
0
如果最优解x
i中某个分量
x
0 i
非整
max z CX
AX b
s.t
.
X 0
X为整数向量
xi [ xi0 ]
max z CX
AX b
s.t
.
X 0
X为整数向量
xi [ xi0 ] 1
26
分枝定界法的两个要点:分枝和定界 ☺如何定界? • 整数规划ILP的最优解不会优于松弛LP的最优解; • 对极大化问题来说,松弛 LP 的目标函数最优值是原

运筹与决策PPT:运输问题和指派问题

运筹与决策PPT:运输问题和指派问题

+ 690x23 + 791x24 + 995x31 + 682x32 + 388x33 + 685x34
s.t.
工厂 1: 工厂 2: 工厂 3: 仓库 1: 仓库 2: 仓库 3: 仓库 4:
x11 + x12 + x13 + x14
x21 + x22 + x23 + x24
= 75 供
= 125 x31 + x32 + x33 + x34 = 100
运输问题的Excel求解模型- 案例1
B
C
3 Unit Cost
4
5 Source
Bellingham
6 (Cannery)
Eugene
7
Albert Lea
8
9
10 Shipment Quantity
11 (Truckloads)
12 Source
Bellingham
13 (Cannery)
Eugene
问题:如何改进运输策略以降低成本?
案例1:P&T公司的配送问题
CANNERY1 Bellingham
最偏远的厂
CANNERY2 Eugene
WAREHOUSE 3 Rapid City
WAREHOUSE 2 Salt Lake City
WAREHOUSE 1 Sacramento
WAREHOUSE 4 Albuquerque
4、运输问题和指派问题
引例
案例1:P&T公司的配送问题
▪ 家族经营的小公司,加工蔬菜罐头并分销到各地:
– 三个食品厂,四个分销仓库

运筹学指派问题课件

运筹学指派问题课件

c
i 1 j 1
n
n
ij
xij
n xij 1 i 1 n st . xij 1 (i , j 1, 2, ..., n) j 1 x 1or 0 ij
运筹学教程
例1:某商业公司计划开5家新商店,商业公司决定由5家建筑 公司分别承建。已知建筑公司Ai(i=1,2…5)对新商店Bj(j=1…5) 的建筑费用报价Cij.问题:商业公司对5家建筑公司如何分配任 务,才能使总的建筑费用最少? Cij Ai Bj
运筹学教程
指派问题解法:匈牙利解法 解法思想:
若从系数矩阵C的任何一行(列)各元素中分别减去 一个常数K(K可正可负)得到新矩阵C’,则以C’为系 数矩阵的指派问题与原问题有相同的解,但最优值 比原问题最优值小K。
匈牙利法条件: MIN、i=j 、Cij≥0
运筹学教程
匈牙利法的主要步骤: 步骤1:变换系数矩阵,使在各行各列都出现零元素。 (1)从矩阵C的每行元素减去该行的最小元素;
0 11 8 7 7 3 3 2 1 C ' 5 0 4 3 4 0
第二步 圈0 寻找不同行不同列的0元素,圈之。 所在行和列其它0元素划掉
0 0 0 0 0 3 0 11 8 第三步 打 无的行打,打行上0列打 , 1 7 7 3 打列上行打,打行上0列打 ' 2 3 2 1 C 0 5 0 4 0 3 0 11 8 0 1 7 7 3 2 3 4 0 C ' 0 2 3 2 1 第四步 确定方案划线 0 0 5 0 4 没有打行上画一条横线; 0 2 3 4 0 有打列上画一条竖线;
15 120 15 12 0 14 100 14 100 8 7 0 0 8 7

第4章 运输问题和指派问题ppt课件

第4章 运输问题和指派问题ppt课件

x13
x 23
x 33
5
x14 x 24 x34 6
x
ij
0 (i
1, 2 , 3;
j
1,2,3,4 )
4.2 运输问题的数学模型和电子表格模型
运输问题是一种特殊的线性规划问题,一般采用“表上作
业法”求解运输问题,但Excel的“规划求解”还是采用
“单纯形法”来求解。
例4.1的电子表格模型
4.2 运输问题的数学模型和电子表格模型
需要注意的是,运输问题有这样一个性 质(整数解性质),即只要它的供应量 和需求量都是整数,任何有可行解的运 输问题就必然有所有决策变量都是整数 的最优解。因此,没有必要加上所有变 量都是整数的约束条件。
由于运输量经常以卡车、集装箱等为单 位,如果卡车不能装满,就很不经济了 。整数解性质避免了运输量(运输方案 )为小数的麻烦。
i1
x
ij
0
(i 1, 2,
, m ; j 1, 2,
, n)
4.2 运输问题的数学模型和电子表格模型
(2)产大于销(供过于求)运输问题
的数学模型
(以满足小的销量为准)
m
n
ai bj
mn
m in z
cij xi j
i 1
j 1
i1 j 1
n
xij ai
Байду номын сангаас(i 1, 2,
,m)
m in
z 1 6 0 x A1 1 3 0 x A 2 2 2 0 x A3 1 7 0 x A4 1 4 0 xB1 1 3 0 xB 2 1 9 0 xB3 1 5 0 xB 4 190 xC1 200 xC 2 230 xC 3

运输问题与指派问题讲义(PPT 40页)

运输问题与指派问题讲义(PPT 40页)

§3 Transportation Network 运输问题的网 络表示
销地
供应量
产地
B1
B2
B3
B3
ai
A1
6
7
5
3
25
A2
8
4
2
7
10
A2
5
9
10
16
15
需求量 bj
13
21
9
7
Transportation Network 运输问题的网络表示
sources
运价
Destinations 需求地
Warehouses
Destinations目的地
Output from a cannery
Supply from a source运出量
Allocation to a warehouse
Demand at a destination需求量
Shipping cost per truckload from a Cost per unit distributed from a
Eugene
125 truckloads
Salt Lake City
Albert Lea
100 truckloads
Rapid City
Total
300 truckloads
Albuquerque
Total
总产量=总的需求量=300车,产销平衡
分配量Allocation 80 truckloads 65 truckloads 70 truckloads 85 truckloads 300 truckloads
运输模型
例1、某公司从两个产地A1、A2将物品运往三个销地B1、B2、B3,各产地的 产量、各销地的销量和各产地运往各销地每件物品的运费如下表所示,

运筹学 指派问题课件 PPT

运筹学 指派问题课件 PPT
产品1 产品2 产品3 产品4
效率表
工厂1 工厂2
58 75
69 50
180 150
260 230
工厂3 工厂4
65 82
70 55
170 200
250 280
2
返回总目录
例1 某公司拟将四种新产品配置到四个工厂生产,四 个工厂的单位产品成本(元/件)如下表所示。求最 优生产配置方案使得单位产品成本总和为最小。
15
返回总目录
第三步:用最少的直线覆盖所有0:
0 0 11 22 22 25 25 0 0 0 0 0 5 5 5 27 27 0 45 45 6 17 17 0 30 0 0 0 0 0 0 0 0 45 45 32 6 17 17 0 0 0 0 0 0 0 45 45
回到第三步,用最少的直线覆盖所有0。 此时最少直线数=4,表明矩阵中存在4个不同行不 同列的零元素,于是得到最优解。 第五步:找出4个独立的0元:
( 0 ) 30 0 32 6 17 17 0 ( 0) 0 0 0 ( 0 ) (0 ) 45 45 ( 0 ) 30 0 32 6 17 17 0 0 ( 0 ) 0 ( 0) 0 (0 ) 45 45
x14 x24 x34 x44
工厂2 x21 工厂3 x31 工厂4 x41
1 1 1 1
1
1
1
1
产品1 产品2 产品3 产品4
工厂1 工厂2 工厂3 工厂4 58 75 65 82 69 50 70 55 180 150 170 200 260 230 250
5280
返回总目录
数学模型 匈牙利算法 其他变异的指派问题

运输问题和指派问题_图文

运输问题和指派问题_图文


表4-1 各工厂到各销售点的单位产品运价(元/吨)
B1
B2
B3
B4 产量(吨)
A1
3
11
3
10
7
A2
1
9
2
8
4
A3
7
4
10
5
9
销量(吨) 3
6
5
6
3.2 运输问题数学模型和电子表格模型
(1)产销平衡运输问题的数学模型

具有m个产地Ai(i=1,2,,m)和n个销地

Bj(j=1,2,,n)的运输问题的数学模型为
运输问题是一种特殊的线性规划问题,一般采用“表上作 业法”求解运输问题,但Excel的“规划求解”还是采用 “单纯形法”来求解。
例4.1的电子表格模型
3.2 运输问题数学模型和电子表格模型
需要注意的是:运输问题有这样一个性质 (整数解性质),只要它的供应量和需求 量都是整数,任何有可行解的运输问题必 然有所有决策变量都是整数的最优解。因 此,没有必要加上所有变量都是整数的约 束条件。
工厂1 工厂2 工厂3 需求量
表4-7 产品生产的有关数据
产品1 41 40 37 20
单位成本(元)
产品2 27 29 30 30
产品3 28 - 27 30
产品4 24 23 21 40
生产能力
75 75 45
3.3 各种运输问题变形的建模
解:指定工厂生产产品 可以看作运输问题来求 解。本题中,工厂2不能 生产产品3,这样可以增 加约束条件x23=0 ;并 且,总供应( 75+75+45=195)>总需求 (20+30+30+40=120)。 其数学模型如下: 设xij为工厂i生产产 品j的数量

《指派问题》课件

《指派问题》课件

指派问题的扩展研究
多目标指派问题
应用场景:生产调度、资源 分配等

解决方法:线性规划、启发 式算法等
定义:指派问题在多个目标 下的扩展
挑战:如何在多个目标之间 找到最优解
动态指派问题
动态指派问题的定 义
动态指派问题的应 用场景
动态指派问题的求 解方法
动态指派问题的优 化策略
大规模指派问题
问题定义:大规模 指派问题是指在给 定一组任务和一组 资源,如何将任务 分配给资源,使得 总成本最小化或总 收益最大化。
混合算法
混合算法的概念: 将多种算法进行 组合,以获得更 好的优化效果
混合算法的优点: 能够充分利用各 种算法的优点, 提高优化效果
混合算法的应用: 在指派问题中, 混合算法可以结 合多种算法,如 遗传算法、模拟 退火算法等,以 提高优化效果
混合算法的挑战: 如何合理选择和 组合各种算法, 以获得最佳的优 化效果
应用场景:大规 模指派问题广泛 应用于物流、供 应链、生产调度 等领域。
研究方法:大规 模指派问题的研 究方法包括启发 式算法、遗传算 法、神经网络等。
挑战与展望:大规 模指派问题的挑战 在于如何设计高效 的算法,以及如何 解决大规模问题中 的优化问题。未来 的研究方向包括分 布式计算、并行计 算等。
禁忌搜索法:在搜索过程中引入禁忌表,避免重复搜索已搜索过的解
元启发式方法
基本概念:元启发式 方法,也称为元启发 式算法,是一种基于 启发式策略的优化方 法。
特点:元启发式方 法具有自适应性、 鲁棒性和易于实现 等特点。
应用:元启发式方法 在指派问题、路径规 划、调度等问题中都 有广泛的应用。
实例:遗传算法、模 拟退火算法、蚁群算 法等都是元启发式方 法的典型代表。

管理运筹学 第四章整数规划与指派问题

管理运筹学 第四章整数规划与指派问题

AX b
s
.
t
.
X
0
X 为 整 数 向 量
m ax z CX
AX b
s
.t
.
X
0
如果最优解x
i中某个分量
x
0 i
非整
max z CX
AX b
s.t
.
X 0
X为整数向量
xi [ xi0 ]
max z CX
AX b
s.t .
X 0
X为整数向量
xi [ xi0 ] 1
25
例5:求解下列整数线性规划问题
( IL P0) m ax z x1 5 x 2
x1 x2 2
s
.
t
.
5 x
x
1
16 4
x2
30
x1 , x 2 0, 且 为 整 数
解:先求与之对应的线性规划问题(放松问题)

L
P

0
m ax z x1 5 x2
x1 x2 2
s
.
t
1. 引例
例1(装载问题)
有一辆卡车的最大载重量为b 吨,现有n 种货物可供装 载。设第j 种货物每件重aj 吨,每件的装载费用为cj 元 (j=1,…n)。问应该采用怎样的装载方案才能使卡车一 次装载货物的收入最大?
解:设xj为卡车装载第j 种货物的件数(j=1,2,…,,n), z表 示卡车一次装载的收入,则该问题的数学模型为
编辑版pppt
24
分枝定界法的两个要点:分枝和定界
☺如何定界?
• 整数规划ILP的最优解不会优于松弛LP的最优解; • 对极大化问题来说,松弛 LP 的目标函数最优值是原

运输问题及指派问题 ppt课件

运输问题及指派问题  ppt课件
在生产、交换活动中,不可避免地要进行物资调运工作。 某时期内将生产基地的煤、钢铁、粮食、矿砂、木材等各类物 资,分别运送到需要这些物资的地区。
3.1 运输问题概述
【例3.1】某物流公司从两个产地A1 (内蒙) 、A2 (山西)将煤 炭运往三个销地B1 (北京) 、B2 (山东) 、B3 (上海) ,各产地的产 量、各销地的销量、各产地运往各销地的每单位煤炭运费数据
x11 x12 x13 x21 x22 x23 111
111
A=
1
1
1
1
1
1
产地 约束
销地 约束
3.1 运输问题概述
x11 x12 x13 x21 x22 x23 111
111
产地 约束
A=
1
1
1
1
1
1
销地 约束
可以看出运输问题的系数矩阵有如下特征: (1)共有3+2行,分别表示各产地和销地;3×2列,分别表 示各决策变量的系数列;
指派问题
指派问题的求解
非标准指派问题
本章教学目标与要求
n 掌握产销平衡运输问题的数学模型及其特点; n 掌握运输问题的表上作业法,包括初始调运方案的确定、 检验数的计转化为产销平衡问题的处理办 法;掌握运输问题在实践中的典型应用;
n 掌握标准指派问题的求解方法,会将各种非标准指派问 题转化为标准指派问题。
3.1 运输问题概述
m z 6 x i 1 n 4 1 x 1 2 6 x 1 6 3 x 2 5 1 x 2 5 2 x 23
x11x12x13200
x21x22x23300
x11x21150
x12x22150
x13x23200
xij0(i1 A ,2 ;j1 ,2 ,3 )

运筹学指派问题

运筹学指派问题

工程 公司
B1
B2
B3
B4
B5
A1 4 8 7 15 12
A2 7 9 17 14 10
A3 6 9 12 8 7
解:由于每家建筑公司最多可以承建两项,因此可把每家建筑公司看成两家建 筑公司,其系数(xìshù)矩阵为
第十七页,共21页。
B1 B 2 B 3 B 4 B 5
4 8
4
8
7 9
7
9
B1 B 2 B 3 B 4 B 5 B 6
4 8
4
8
7 9
7
9
6 9 6 9
7 15 12 0 A 1
7
15
12
0
A1'
17 14 10 0 A 2
17
14
10
0
A2'
12 8 7 0 A 3
12 8 7 0 A 3 '
然后,用匈牙利解法求解(qiú jiě)。可得费用最省为4+7+9+8+7=35(百万元)
第五页,共21页。
步4:继续变换系数矩阵,目的(mùdì)是增加独立0元素的个数。方法是在 未被直线覆盖的元素中找出一个最小元素,然后在打“✓”行各元素中都减去 这一元素,而在打“✓”列的各元素都加上这一最小元素,以保持原来0元素不 变(为了消除负元素)。得到新的系数矩阵,返回步2。
以例说明匈牙利法的应用。
第十九页,共21页。
谢谢(xiè xie)各位的聆 听
第二十页,共21页。
第四页,共21页。
•步3:作最少数目的直线,覆盖所有0元素(目的是确定(quèdìng)系数矩阵的下一个变 换),可按下述方法进行 •1) 对没有的行打“”号; •2) 在已打“”号的行中,对 所在列打“” •3)在已打“”号的列中,对所在的行打“”号; •4)重复2)3),直到再也找不到可以打“”号的行或列为止; •5)对没有打“”的行划一横线,对打“”的列划一纵线,这样就得到覆盖所有0元 素的最少直线数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 指 派 问 题
assignment problem
在生活中经常遇到这样的问题,某 单位需完成n项任务,恰好有n个人可承 担这些任务。由于每人的专长不同,各 人完成任务不同(或所费时间),效率也 不同。于是产生应指派哪个人去完成哪 项任务,使完成n项任务的总效率最高 (或所需总时间最小)。这类问题称为指 派问题或分派问题。
行 min 2 15 13 4 2 10 4 14 15 4 例如(cij ) 9 14 16 13 9 7 8 11 9 7 0 13 11 2 0 6 0 10 11 6 0 5 7 4 0* 0 1 4 2 0 4 2列 min 13 0* 5 1
例1 有一份中文说明书,需译成英、日、德、 俄四种文字。分别记作E、J、G、R。现有甲、乙、 丙、丁四人。他们将中文说明书翻译成不同语种 的说明书所需时间如表1所示。问应指派何人去 完成何工作,使所需总时间最少?
表1
任务 E 人员 耗时 甲 2 乙 10 丙 9 丁 7 J 15 4 14 8 G 13 14 16 11 R 4 15 13 9
(xij)是n×n矩阵,对应于效率矩阵(cij).
工作
x11 人 x i1 xn1
x1 j xij xnj
x1n xin xnn
x
i 1
n
ij
1,
j 1, 2,
,n ②
表明各列之和为1 。
x
j 1
n
ij
1, i 1, 2,
min z bij xij
i 1 j 1
n
n
定理1 设 B (bij ) nn 是效率矩阵,若可行解x*的n个1(在解矩 阵的不同行不同列上)对应的n个bij都为0, 则x*是最优解. (显然z(x*)=0) 1 0 0 0 0* 14 9 3 则xij是最 0 0 1 0 如效率矩阵为 9 20 0* 23 优解 令 ( xij ) 0 1 0 0 23 0* 3 8 , 0 12 14 0* 0 0 0 1 因此需对效率矩阵作变换,使变换后效率矩阵 (bij ) nn 含有n个不同行不同列个0.由此求得最优解矩阵的n个1是 对应于效率矩阵的这n个0.
,n

可行解矩阵
表明各行之和为1 。
满足约束条件②~④的可行解xij构成的可行解矩阵, 矩阵中有n个为1,其余都为0,而且这n个1必位于矩阵的不
同行不同列上。对应于可行解xij的目标值是这n个cij之和.
指派ቤተ መጻሕፍቲ ባይዱ题是0-1规划的特例,当然可 用整数线性规划、0-1规划的解法去求解, 但可以利用指派问题的特点设计更简便 的解法,下面介绍匈牙利法。
则令解矩阵(xij)中对应这n个独立的0元素的元
素取值为 1 ,其他元素取值为 0 。将其代入目标
函数中得到 z ' bij xij 0 ,它一定是最小。
i j
这就是以(bij)为效率矩阵的指派问题的最优解。
也就得到了原问题的最优解。
以下用例1来说明指派问题的解法。
第一步:使指派问题的效率矩阵经变换,在各 行各列中都出现0元素。 (1) 从效率矩阵的每行元素减去该行的最小元 素; (2) 再从所得效率矩阵的每列元素中减去该列 的最小元素。 若某行(列)已有0元素,那就不必再减了。 例1的计算为
证: 首先效率矩阵的这种变化只是目标值在变换,并
不影响约束方程组,其次用z和 z`分别记问题G
与G`的目标函数值,则
z ' bij xij (cij i j ) xij
i j i j
cij xij i xij j xij
类似有:有n项加工任务,怎样指派到n 台机床上分别完成的问题;有n条航线,怎样 指定n艘船去航行问题……。对应每个指派问 题,需有类似表1那样的数表,称为效率矩阵 或,其元素cij≥0(i,j=1,2,…,n)表示指派 第i人去完成第j项任务时的效率(或时间、成 本等)。解题时需引入变量xij;其取值只能 是1或0。并令
1, 当指派第 i 人去完成第 j 项任务 xij 0, 当不指派第 i 人去完成第 j 项任务
当问题要求极小化时数学模型是:
目标函数 min z cij xij
i 1 j 1 n n

n xij 1, j 1, 2, , n ② i 1 (表示一项工作只能由一个人完成) n 约束条件 xij 1, i 1, 2, , n ③ (表示每人仅做一件事情) j 1 x 1或 0 ④ ij
i j i j j i
z i j
i j
即z和 z’只相差一个常数,故它们有相同的最优解.
• 利用这个性质,可使原效率矩阵变换为含有很
多0元素的新效率矩阵,而最优解保持不变,在
效率矩阵(bij)中,我们关心位于不同行不同列
的0元素,以下简称为独立的0元素。
• 若能在效率矩阵 (bij)中找出n个独立的0元素;
行列都有 零元素
7 6 3 0*
0 * 9 (b ) ij 2 0
0 0 最优解为 ( xij ) 1 0
0 1 0 0
0 0 0 1
1 0 0 0
指派问题的最优解有这样性质,若从效率矩 阵(cij)的一行(列)各元素中分别减去该行(列)的 最小元素,得到新矩阵(bij),那么以(bij)为效率 矩阵求得的最优解和用原效率矩阵求得的最优解 相同 。即 定理2 设给定了以C = (cij)为效率矩阵指派问题G, 现将C的元素cij 改变为 bij cij i j , i 与 j 为常数 则以B= ( bij )为效率矩阵指派问题G’与G有相同的最 优解。
相关文档
最新文档