第一个 单容自衡水箱液位特性测试实验

合集下载

第一个 单容自衡水箱液位特性测试实验

第一个  单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数;二、实验设备PCS-E 过程控制综合实验装置,电脑 三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图2-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。

液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。

若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。

根据动态物料平衡关系有Q 1-Q 2=Adtdh (2-1)将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=Adth d ∆ (2-2)式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量;A ——水箱截面积。

在平衡时,Q 1=Q 2,dtdh =0;当Q 1发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图。

由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=Rh ∆ 或 R=2Q ∆∆h (2-3)式中:R ——阀F1-11的阻力,称为液阻。

将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为W 0(s )=)()(1s Q s H =1RCs R +=1s +T K (2-4)式中T 为水箱的时间常数,T =RC ;K 为放大系数,K =R ;C 为水箱的容量系数。

一阶单容上水箱对象特性的测试实验报告

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告实验题目:一阶单容上水箱对象特性的测试课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.05实验一一阶单容上水箱对象特性的测试一、实验目的1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3. 掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1和F1-6全开,设上水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,上水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q2。

液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。

若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。

根据动态物料平衡关系有:Q1−Q2=A dhdt(1)变换为增量形式有:∆Q1−∆Q2=A d∆hdt(2)其中:∆Q1,∆Q2,∆ℎ分别为偏离某一平衡状态的增量;A为水箱截面积图1 单容自衡水箱特性测试结构图(a)及方框图(b)在平衡时,Q1=Q2,dhdt=0;当Q1发生变化时,液位h随之变化,水箱出口处的静压也随之变化,Q2也发生变化。

由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q2与h成正比关系,与阀F1-11的阻力R成反比,即∆Q2=∆ℎR 或R=∆ℎ∆Q2(3)式中: R为阀F1-11的阻力,称为液阻。

实验报告:单容自横水箱液位特性测试实验报告

实验报告:单容自横水箱液位特性测试实验报告

过程控制综合实验报告实验名称:单容自衡水箱液位特性测试实验专业:班级:姓名:学号:实验方案一、实验名称:单容自衡水箱液位特性测试实验二、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。

三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

四、实验准备在所给实验设备准备好时,由实验指导书连线,检查线路之后上电,打开启动按钮,对实验对象进行液位特性测试。

通过该实验,我们最后要得到的理想结论是,通过手动控制阀门的开度来对水箱进行液位的特性测试,测试结果应该是,在给实验对象加扰动的情况下,贮蓄容器可以依靠自身重新恢复平衡的过程。

在实验之前,将储水箱中贮足水量,实验过程中选择下水箱作为被测对象,将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭,进行观察实验。

(a)结构图(b)方框图一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备三相电源(~380V/10A)远程数据采集模拟量输出模块SA-22、SA-23(24V输入)三相磁力泵(~380V)压力变送器电动调节阀(4~20mA、~220V)三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图2-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告

单容水箱液位pid控制实验报告实验报告:单容水箱液位PID控制实验实验目的:本实验旨在通过PID控制器对单容水箱的液位进行控制,验证PID控制算法在液位控制中的应用效果,并了解PID控制器参数调节的方法和影响因素。

实验装置和仪器:1. 单容水箱:用于存放水并模拟液位变化。

2. 液位传感器:用于实时监测水箱的液位。

3. 控制器:采用PID控制器,用于调节水箱液位。

4. 电源和信号线:提供电力和信号传输。

实验步骤:1. 将水箱与液位传感器连接,并确保传感器能够准确测量液位。

2. 将PID控制器与液位传感器连接,建立控制回路。

3. 设置PID控制器的参数,包括比例系数(P)、积分时间(I)和微分时间(D)。

4. 将控制器调至手动模式,并将控制器输出设定值调整为合适的初始值。

5. 开始实验,记录初始液位和控制器输出设定值。

6. 观察液位的变化,并记录实时液位值。

7. 根据液位变化情况,调整PID控制器的参数,使液位尽可能接近设定值。

8. 结束实验,记录最终液位和控制器参数。

实验结果:通过实验,我们得到了如下的结果和观察:1. PID控制器的参数调节对液位控制有重要影响,不同的参数组合会导致液位的不同响应和稳定性。

2. 比例系数P的增大可以增加控制器对液位误差的敏感程度,但过大的P值可能引起震荡或超调。

3. 积分时间I的增大可以减小稳态误差,但过大的I值可能导致震荡或系统不稳定。

4. 微分时间D的增大可以提高系统的动态响应速度,但过大的D值可能引起噪声干扰或导致系统不稳定。

5. 通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,使液位尽可能接近设定值并保持稳定。

结论:本实验通过PID控制器对单容水箱的液位进行控制,验证了PID控制算法在液位控制中的应用效果。

通过逐步调整PID控制器的参数,我们可以实现较好的液位控制效果,并使液位保持稳定。

实验结果表明,PID控制器的参数调节对液位控制有重要影响,需要根据实际情况进行调整和优化。

实验1 单容水箱液位数学模型的测定实验

实验1 单容水箱液位数学模型的测定实验

实验1 单容水箱液位数学模型的测定实验一、实验目的1、熟练掌握液位测量方法。

2、熟练掌握调节阀流量调节特性。

3、获得单容水箱液位数学模型。

二、实验设备A3000-FS/FBS 常规现场系统,任意控制系统。

三、实验原理与介绍1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ,给定值 图4-1单容水箱液位数学模型的测定实验其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。

如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示:)1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、控制系统接线表3参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。

实际开口面积5.5x49.5=272.25 mm²。

此时负载阀开度系数:s m x H Q k /1068.6/5.24max -==。

水槽横截面积:0.206m²。

那么得到非线性微分方程为(标准量纲)::H H dt dH 24003.000138.0206.0/)668000.0000284.0(/-=-=进行线性简化,可以认为它是7一阶惯性环节加纯延迟的系统)1/()(+=-Ts Ke s G s τ。

实验一 单容自恒水箱液位特性测试实验

实验一 单容自恒水箱液位特性测试实验

实验报告课程过程控制及仪表实验日期2020 年6月15日专业班级自动化1702班姓名学号1706010403实验名称实验一单容自恒水箱液位特性测试实验评分批阅教师签字1.实验目的1. 熟悉利用计算法建立系统一阶惯性环节加纯延迟环节的数学模型方法。

2. 学会利用MATLAB/Simulink对系统进行建模的方法。

2.实验内容某单容水箱为被控对象,水箱液位为被控参数,水箱总量程为100mm, 在阶跃扰动20%∆=时,其阶跃响应的实验数据如表1-1所示。

u表1-1 阶跃响应实验数据响应曲线起始速度较慢,其阶跃响应曲线呈S状,可近似认为被控对象是具有纯滞后的一阶惯性环节,利用计算法,确定增益K,时间常数T和纯滞后时间τ。

(1)首先根据输出稳态值和阶跃输入的变化幅值可得增益K=(20/100)/20%=1;(2)根据系统近似为具有纯滞后的一阶惯性环节的计算方法,编写MATLAB程序(gkshiyan1_1)。

(3)建议Simulink系统仿真(gkshiyan1),将阶跃信号的初始作用时间和幅值分别设置为0和20。

(4)将实际系统和近似系统的阶跃响应曲线进行比较,编写MATLAB程序(gkshiyan1_2)。

3.实验方法与步骤(1)首先根据输出稳态值和阶跃输入的变化幅值可得增益K=(20/100)/20%=1;(2)根据系统近似为具有纯滞后的一阶惯性环节的计算方法,编写MATLAB程序(gkshiyan1_1)。

程序如下:% 将系统近似一阶惯性环节加纯延迟的计算程序tr=10; % 输出响应延迟时间,即输出无变化时间t=[10 20 40 60 80 100 140 180 250 300 400 500 600 700 800]-tr;h=[0 0.2 0.8 2 3.6 5.4 8.8 11.4 14.4 16.1 18.2 19.2 19.6 19.8 20];h=h/h(length(h)); %把输出转换成无量纲形式h1=0.39;h2=0.63;t1=interp1(h,t,h1)+tr; %利用一维线性插值计算当响应曲线在39%时的时间t1t2=interp1(h,t,h2)+tr; %利用一维线性插值计算当响应曲线在63%时的时间t2T=2*(t2-t1) %被控对象传递函数的惯性时间常数tao=2*t1-t2 %被控对象传递函数的延迟时间运行结果如下:>> gkshiyan1_1T =159.5294tao =48.4706>>(3)建议Simulink系统仿真(gkshiyan1),将阶跃信号的初始作用时间和幅值分别设置为0和20。

实验一、单容水箱对象特性测试实验

实验一、单容水箱对象特性测试实验

实验一、单容水箱对象特性测试实验一、实验目的1、 了解单容对象的动态特性及其数学模型2、 熟悉单容对象动态特性的实验测定法原理3、 掌握单容水箱特性的测定方法 二、实验设备1、 四水箱实验系统DDC 实验软件2、 PC 机(Window XP 操作系统) 三、单容对象特性实验测定法原理许多工业对象内部的工艺过程复杂,通过机理分析等寻求对象的数学模型非常困难,即使能得到对象的数学模型,仍需要通过实验方法来验证。

因此,对于运行中的对象,用实验法测定其动态特性,是了解对象的简易途径。

本次实验主要是求取对象的飞升曲线或方波响应曲线。

飞升曲线是在输入量作阶跃变化时测绘输出量随时间变化曲线得到的;方波响应曲线是在输入量作一个脉冲方波变化时测绘输出量随时间变化曲线得到的。

在获得特性曲线的基础上,进行分析获得相应的对象特性。

飞升曲线实验测定方法的具体步骤如下:A 、选择工作点给定控制量,让单容水箱对象的液位稳定B 、测绘飞升曲线让控制量做阶跃变化,并测绘单容水箱液位随时间变化的曲线C 、获得对象的动特性假定在输入量变化量为u Δ时测绘的飞升曲线如下图所示:因此,可估算单容水箱的模型为()1+=Ts Ks G p其中lenleny u u y K *ΔΔ=于是用实验法测出了单容水箱的动态特性。

四、实验步骤 1、 进入实验运行四水箱DDC 实验系统软件,进入首页界面,单击“实物模型”单选框,选择实验模式为实物模型;单击实验菜单,进入单容水箱特性测试实验界面。

2、 选择执行机构在实验系统中有两个执行机构,分别由控制量“U1”和“U2”控制。

这两个控制量的范围为0~100,可以自行选择一个作为控制量。

这里假定我们选择“U1”作为控制量。

3、 选择单容对象实验系统有四个水箱:水箱1、水箱2、水箱3和水箱4,它们对应的液位分别用H1、H2、H3和H4表示,实验时可以自行选择一个水箱作为被测定对象。

这里我们选择水箱1,对应液位变量为H1。

过程控制及仪表实验报告册

过程控制及仪表实验报告册

20 20 学年第学期实验报告课程名称:专业班级:姓名:学号:同组者:指导教师:实验一:单容自衡水箱液位特性测试试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】实验二:压力变送器的使用试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】【分析与讨论】1.计算压力变送器的变差和线性度,并判断是否符合其精度等级。

2.仪表为什么会产生变差,试讨论分析;【思考题】1在测试过程中我们用的方法是测量电压,本实验是否可以测量电流?2为什么在加水时输入信号超过检测点不能再返回?实验三:温度变送器的使用试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】【分析与讨论】1、计算温度变送器的精确度、变差和线性度。

【思考题】1在测试过程中我们用的方法是测量电流,本实验是否可以测量电压?2本实验用电阻箱代替铂电阻,本实验能否用铂电阻做实验?【分析与讨论】1、计算温度变送器的精确度、变差和线性度。

【思考题】1在测试过程中我们用的方法是测量电压,本实验是否可以测量电流?2本实验用电阻箱代替铂电阻,本实验能否用铂电阻做实验?实验四:智能控制仪表的调试试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】【分析与讨论】请写出如下要求的仪表参数(没有提及要求的参数可以不写出):1.输入信号为PT100,输出为4-20mA电流信号,设定值为外给定,控制器为正作用调节,通讯地址为2,手动控制,控制方式为PID控制。

2.输入信号为0.2~1V电压信号,测量对象液位变化范围为0-20cm,输出为4-20mA 电流信号,设定值为内给定,控制器为反作用调节,通讯地址为1,自动控制,控制方式为PID控制。

【思考题】想想你的生活中哪里可以使用智能仪表来控制,并说明它控制的优点,并尝试设计出控制方案。

实验五:电动调节阀的使用试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】【分析与讨论】根据所画出的曲线,判别该电动阀的阀体是快开特性,等百分比特性还是慢开特性【思考题】1.阀门的理想流量特性曲线和工作特性曲线有什么区别?2.阀门的特性曲线的形状与哪些因素有关?实验六:锅炉内胆水温位式控制系统试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】【分析与讨论】1.由实验所得曲线分析位式控制系统的回差与振幅和周期的关系;2.分析位式控制系统的特点;【思考题】1、为什么缩小dF值时,能改善双位控制系统的性能?dF值过小有什么影响?2、为什么实际的双位控制特性与理想的双位控制特性有着明显的差异?实验七:单容液位定值控制系统试验时间:成绩:专业班级:姓名:学号:【实验目的】【实验原理】【实验设备】【实验步骤】【分析与讨论】1、绘制曲线图2、计算最大偏差、衰减比、余差、过度时间、震荡周期【思考题】1.根据实验数据分析比例控制、比例积分控制的特点。

单容液位特性实验和单容液位控制实验

单容液位特性实验和单容液位控制实验

单容液位特性实验一、实验目的1、掌握单容水箱的阶跃响应测试方法;2、记录相应的响应曲线;二、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或设备等干预,依靠其自身重新恢复平衡的过程。

水箱的结构和特性。

水箱的出水量与水压油罐,而水压又与水位高度近乎成正比。

这样,当水箱的水位升高时,其出水量也在不断增大,所以,水箱的阀开度适当,在不溢出的状况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

三、实验步骤将水箱1的进水阀全开,出水阀开30%,其他阀门全关。

1、点击“PCS-A-PPL-MCG”2、mm:12343、点击“进入运行环境”4、“系统管理”,用户登录(无密码)5、“特性实验”---“单容特性”6、“阀门开度”设定为60或者707、达到平衡时,测量值不变,记录测量值8、给系统一个扰动(增大阀门开度或者调解出水阀),待系统达到一个新的平衡后,记录测量值9、实验结束四、实验报告1、原始记录阀门开度60----对应的测量值----达到平衡时的液位高度阀门开度65----对应的测量值----达到平衡时的液位高度2、数据处理作图:测量值与实间的变化曲线思考题与习题1.做本实验时,为什么不能任意改变出水阀F1-9开度的大小?2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?单容液位控制实验一、实验目的1、了解单容水箱液位控制系统的结构与组成;2、掌握单容水箱液位控制系统调解参数的方法3、了解PID调节器对液位、水压控制的作用二、实验原理单容水箱控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所需求的高度,并减小或消除来自系统内部或外部扰动的影响。

本实验以液位控制系统的水箱作为研究对象,水箱的液位为被控制量,采用PID算法控制。

首先由差压传感器检测出水箱水位,水位实际值通过DDC单元转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID 程序算法得到输出值,再将输出值经过转换,由DDC控制单元输入模拟信号控制阀门开度,从而形成一个闭环系统,实现水位的计算机控制。

实验一单容水箱对象特性测试虚拟实验

实验一单容水箱对象特性测试虚拟实验

实验一 单容水箱对象特性测试实验一、实验目的及要求1、了解过程特性测试的原理。

2、掌握过程特性计算机测试方法。

二、预习思考题1、什么是过程特性?为什么要获得过程特性?2、过程特性有哪些类型,其各自的主要特点是什么?3、过程特性测试的方法有哪些?三、实验原理本实验是采用阶跃扰动法获取一阶对象的过程特性。

阶跃扰动法又称为反应曲线法。

当过程处于稳定状态时,在过程的输入端施加一个幅度已知的阶跃扰动,测量和记录过程输出变量的数值,即可画出输出变量随时间变化的反应曲线。

根据响应曲线,再经过处理,就能得到过程特性参数。

图1-1即为根据响应曲线求取过程特性的方法。

采用该方法,求得三个参数,放大倍数K ,时间常数T 和纯滞后τ。

图1-1 阶跃扰动法求过程特性四、虚拟实验原理和步骤1、实验原理 虚拟实验的原理是用数学模型模拟一阶过程.设一阶对象的传递函数模型为:(t F A )(t c A B /B放大系数:时间常数:T 纯滞后:τse TS S G τ-+=1K )(其中K 、T 、τ三个参数就可以表征过程特性。

不同的过程,这三个参数不同。

为了方便计算机数值仿真,这里取微分方程形式:u x T dt dx +-=1 x T K y =其中x 表示状态,y 表示输出,u 表示输入。

(实验一这里可以不考虑)2、实验步骤1.当学生选择开始实验室,系统随机给出三个参数K 、T 、τ(学生是看不到的)。

为了方便数值仿真,建议如下参数设置范围:K 可以取1~20,T 可以取2~40, τ 可以取(0~0.3)×T 。

参数设置好后且学生选择开始实验时,系统自动把u 从0变化到1(可理解为图1-1中的A 为1),则可以按照如下的关系,得到x 随时间t 变化的规律: x(t)= K[1-exp(-Tτ-t )] 2在实验过程中,系统自动绘出x ~t 曲线,其中x 为纵坐标,t 为时间,是横坐标。

横坐标t 的范围是0~M t ,这里M t 随不同的过程特性会不同,要求是到达M t 时,x 的数值几乎不再变化,即系统达到了新的稳态,这时系统可以自动中止实验,当然,实验过程中最好也允许学生中止实验。

实验一单容水箱对象特性的测试

实验一单容水箱对象特性的测试

实验一单容水箱对象特性的测试一、实验室基本概况测控实验室始建于2009年,是我校最新建设的实验室之一,承担着我校理工科本科生“工程光学实验”“过程控制实验”“自动控制原理实验”等教学任务。

目前实验室面积约380平方米,仪器设备总值325余万元。

测控实验室下设6个分室,包括工程光学实验室,传感器检测实验室,过程控制实验室,自动控制/计算机控制实验室,虚拟仿真实验室,测控技术/无损检测实验室。

测控实验室主要设备有:多用途光学平台,计算机控制技术实验平台,微型电子计算机,等传感器综合实验装置,台式电脑,pm2.5检测仪,超声波测厚仪,光电脉搏计,电子计数秤,高级过程控制实验装置,高级过程控制对象系统实验装置,综合自动化控制系统实验平台,过程控制实验装置,打印机,计算机,NI虚拟仪器软件,多功能USB2.0数据采集卡,电脑,仿真软件,测控技术综合实验平台,表面粗糙度测量仪、涡流探伤仪、超声波探伤仪、经度仪。

测控实验室现开设项目包括:典型环节的电路模拟与软件仿真研究;二阶系统动态性能和稳定性分析;MATLAB仿真分析软件在自控原理中的应用;线性定常系统的稳态误差;线性定常系统串联校;A/D与D/A转换;数字滤波器;数字PID控制算法的研究;最少拍控制算法的研究;应变式传感器实验;压力传感器设计与应用;温度传感器实验;气敏、湿敏传感器实验/半导体传感器的应用与设计;光纤位移传感器实验;扩散硅压阻式压力传感器实验/霍尔式传感器实验;MATLAB基础知识;典型环节模拟;— 1 —控制系统时域仿真和频域仿真;Fluent的安装与使用;仿真算例;实验装置的基本操作与仪表调试;单容水箱对象特性的测试;双容水箱对象特性的测试;单容水箱液位PID控制系统;智能仪表控制系统;串级控制系统连线;实验装置的基本操作与仪表调试;单容水箱对象特性的测试;双容水箱对象特性的测试;单容水箱液位PID控制系统;智能仪表控制系统;串级控制系统连线;应变式传感器实验;常用传感器产品的设计(应变式电子秤的设计与应用);温度传感器实验;扩散硅压阻式压力传感器实验/气敏、湿敏传感器实验;光纤位移传感器实验;霍尔式传感器实验/电容传感器实验;LabVIEW入门、程序的模块化层次化。

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告

单容水箱液位过程控制实验报告一、实验目的1、了解单容水箱液位控制系统的结构与组成。

2、掌握单容水箱液位控制系统调节器参数的整定方法。

3、研究调节器相关参数的变化对系统静、动态性能的影响。

4、了解PID调节器对液位、水压控制的作用。

二、单容水箱系统模型图12.1液位控制的实现本实验采用计算机PID算法控制。

首先由差压传感器检测出水箱水位,水位实际值通过A/D转换,变成数字信号后,被输入计算机中,最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值经过D/A模块转换成模拟信号,进而控制电机转速,从而形成一个闭环系统,实现水位的计算机自动控制。

2.2 被控对象本实验是单容水箱的液位控制。

被控对象为图1中的上水箱,控制量为流入水箱的流量,执行机构为调节阀。

由图1所示可以知道,单容水箱的流量特性:水箱的出水量与水压有关,而水压又与水位高度近乎成正比。

这样,当水箱水位升高时,其出水量也在不断增大。

所以,若阀开度适当,在不溢出的情况下,当水箱的进水量恒定不变时,水位的上升速度将逐渐变慢,最终达到平衡。

由此可见,单容水箱系统是一个自衡系统。

三、电动调节阀流量特性物理模型电动调节阀包括执行机构和阀两个部分,它是过程控制系统中的一个重要环节。

电动调节阀接受调节器输出4~20mADC的信号,并将其转换为相应输出轴的角位移,以改变阀节流面积S的大小。

图2为电动调节阀与管道的连接图。

图2图中:u----来自调节器的控制信号(4~20mADC)θ----阀的相对开度s----阀的截流面积q----液体的流量由过程控制仪表的原理可知,阀的开度θ与控制信号的静态关系是线性的,而开度θ与流量Q的关系是非线性的。

四、单容水箱系统PID控制规律及整定方法数字PID控制是在实验研究和生产过程中采用最普遍的一种控制方法,在液位控制系统中也有着极其重要的控制作用。

本章主要介绍PID控制的基本原理,液位控制系统中用到的数字PID控制算法及其具体应用。

实验指导说明

实验指导说明

实验一单容水箱特性测试实验一、实验目的1.熟悉单容水箱的数学模型,掌握单容水箱特性的阶跃响应曲线测试方法;2..根据实验测得的液位阶跃响应曲线,确定其特征参数K 、T 、τ及传递函数。

二、实验设备及参考资料1、PCS 过程控制实验装置(使用其中:电动调节阀、AI818智能调节仪一台、上水箱及液位变送器、水泵1系统等)2、AI-818仪表的操作说明书,智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。

三、实验原理阶跃响应测试法是被控对象在开环运行状态下,待工况稳定后,通过控制器手动操作改变对象的输入信号(阶跃信号),同时记录对象的输出数据和阶跃响应曲线。

然后根据跟定对象模型的形式,对实验数据进行合理的处理,确定模型中的相关参数。

具有自衡能力的单容水箱示意图如图2.1所示。

图2.1 具有自衡能力的单容水箱示意图根据物料平衡方程,可得出单容液位过程的传递函数为1)()(1+=Ts Ks Q s H (2.1) 考虑到对象的滞后时间,则单容液位过程的传递函数可用式(2.2)表示s e Ts Ks Q s H τ-+=1)()(1(2.2) 通过实验的方法,可以测得一阶系统的阶跃响应模型。

实验方法如下:123图2.2 具有纯滞后的一阶惯性对象的S 型阶跃响应曲线1.手动改变控制器的输出信号)(k u ,观察被控变量)(k h 的变化过程。

2.由阶跃响应曲线计算被测对象的特征参数 对象的近似模型:s e Ts Ks u s h τ-+=1)()((2.3) 由图2.2可得,稳态增益K 为:10u u y y K --=∞(2.4)纯滞后时间τ与时间常数T 分别为:01T T -=τ(2.5)12T T T -=(2.6) 四、实验内容与步骤1.了解实验装置中的对象,流程图如图2.3所示。

图2.3 上水箱单容特性测试实验流程图2.按图2.4接好实验导线和通讯线。

图2.4 上水箱单容特性测试实验接线图3.将控制台背面的通讯口与上位机连接。

实验1单容水箱液位数学模型的测定实验

实验1单容水箱液位数学模型的测定实验

实验1 单容水箱液位数学模型的测定实验一、实验目的1、熟练掌握液位测量方法。

2、熟练掌握调节阀流量调节特性。

3、获得单容水箱液位数学模型。

二、实验设备A3000-FS/FBS 常规现场系统,任意控制系统。

三、实验原理与介绍1、实验结构介绍水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过闸板开度来改变。

被调量为水位H 。

分析水位在调节阀开度扰动下的动态特性。

直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。

(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。

)调整水箱出口到一定的开度。

突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。

通过物料平衡推导出的公式:μμk Q H k Q i O ==,那么 )(1H k k Fdt dH -=μμ,给定值 图4-1单容水箱液位数学模型的测定实验其中,F 是水槽横截面积。

在一定液位下,考虑稳态起算点,公式可以转换成μμR k H dtdH RC =+。

公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 02=就是水阻。

如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示:)1()(0+=TS S KR S G 。

相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。

2、控制系统接线表3参考结果单容水箱水位阶跃响应曲线,如图4-2所示:图4-2 单容水箱液位飞升特性此时液位测量高度184.5 mm ,实际高度184.5 mm -3.5 mm =181 mm 。

实际开口面积5.5x49.5=272.25 mm²。

此时负载阀开度系数:s m x H Q k /1068.6/5.24max -==。

水槽横截面积:0.206m²。

那么得到非线性微分方程为(标准量纲)::H H dt dH 24003.000138.0206.0/)668000.0000284.0(/-=-=进行线性简化,可以认为它是7一阶惯性环节加纯延迟的系统)1/()(+=-Ts Ke s G s τ。

单容水箱液位控制实验报告

单容水箱液位控制实验报告

单容水箱液位控制实验报告单容水箱液位控制实验报告一、引言液位控制是自动化领域中一个重要的研究课题。

在许多工业领域,如化工、石油、食品等,液位的准确控制对生产过程的稳定性和安全性至关重要。

本实验旨在通过搭建一个单容水箱液位控制系统,探究液位控制的原理和方法,并验证控制系统的性能。

二、实验装置及原理1. 实验装置本实验采用的实验装置包括:单容水箱、液位传感器、控制器、执行器和数据采集系统。

2. 原理介绍液位传感器通过测量液位高度将其转换为电信号,并传输给控制器。

控制器根据接收到的信号,通过控制执行器的开关状态,调节水箱进出水的流量,以达到控制液位的目的。

数据采集系统用于记录和分析实验数据。

三、实验步骤1. 搭建实验装置首先,将液位传感器安装在水箱内部,并连接到控制器。

接下来,连接执行器和控制器,并确保所有连接线路正确无误。

最后,将数据采集系统与控制器连接,确保数据采集的准确性。

2. 系统校准在实验开始之前,对液位传感器进行校准。

校准的目的是确定液位传感器输出信号与实际液位之间的关系,以确保控制系统的准确性。

3. 进水控制实验将水箱放置在合适的位置,并将进水管道连接到水箱。

打开进水阀门,控制器开始接收液位传感器的信号,并根据设定的目标液位调节进水阀门的开关状态。

记录下实验过程中的液位变化情况。

4. 出水控制实验将出水管道连接到水箱,并打开出水阀门。

控制器根据液位传感器的信号,控制出水阀门的开关状态,以维持设定的目标液位。

同样,记录下实验过程中的液位变化情况。

四、实验结果与分析通过实验数据的记录和分析,我们可以得出如下结论:1. 进水控制实验在进水控制实验中,我们观察到当液位低于目标液位时,控制器打开进水阀门,增加水箱内的水量;当液位高于目标液位时,控制器关闭进水阀门,减少水箱内的水量。

实验结果表明,控制系统能够有效地调节进水流量,使液位保持在目标值附近。

2. 出水控制实验在出水控制实验中,我们观察到当液位低于目标液位时,控制器关闭出水阀门,减少水箱内的出水量;当液位高于目标液位时,控制器打开出水阀门,增加水箱内的出水量。

一阶单容上水箱对象特性的测试实验报告

一阶单容上水箱对象特性的测试实验报告

控制工程实验》实验报告实验题目:一阶单容上水箱对象特性的测试课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期:2019.04.05实验一一阶单容上水箱对象特性的测试一、实验目的1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T 和传递函数;3. 掌握同一控制系统采用不同控制方案的实现过程。

二、实验设备1. 实验装置对象及控制柜 1 套2. 装有Step7、WinCC等软件的计算机 1 台3. CP5621 专用网卡及MPI通讯线各1 个三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图1 所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1 和F1-6 全开,设上水箱流入量为Q1, 改变电动调节阀V1 的开度可以改变Q1 的大小,上水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。

液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。

若将Q1 作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。

根据动态物料平衡关系有:(1)变换为增量形式有:(2)其中:,,分别为偏离某一平衡状态的增量;A 为水箱截面积图 1 单容自衡水箱特性测试结构图( a)及方框图( b)在平衡时,Q1=Q2,=0;当Q1发生变化时,液位h随之变化,水箱出口处的静压也随之变化,Q2 也发生变化。

由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,与阀F1-11 的阻力R 成反比,即或(3)式中: R 为阀F1-11的阻力,称为液阻。

将式(2) 、式(3) 经拉氏变换并消去中间变量Q2,即可得到单容水箱的数学模型为(4)式中T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。

05.单容水箱液位对象特性的测试

05.单容水箱液位对象特性的测试

一、强电连线
将三相电源输出端U、V、W对应连接到三相磁力泵(~380V)的输入端U、V、W;将电动调节阀的~220V输入端L、N接至单相电源Ⅲ的3L、3N端;并将LT3下水箱液位钮子开关拨到“ON”位置。

将控制屏上的直流24V电源(+、-)端对应接到FM模块电源输入(+、-)端。

二、实验结构图
三、实验步骤
1. 按上述要求连接实验系统,并将对象相应的水路打开(打开阀F1-1、F1-2和F1-8,将阀F1-11开至一定开度,其余阀门均关闭)。

2. 用电缆线将对象和DCS控制台连接起来。

3. 合上DCS控制屏电源,启动服务器和主控单元。

4. 在工程师站的组态中选择“DCSsystem”工程进行编译下装。

5. 启动操作员站,在其运行界面中选择实验1,进入实验一流程图。

6. 启动对象总电源,并合上相关电源开关(三相电源、单相Ⅲ、24V电源),开始实验(如果是控制柜,打开三相电源总开关、三相电源、单相开关,并同时打开三相磁力泵电源开关、电动调节阀电源开关、控制站电源开关)。

7. 在流程图的液位测量值上点击左键,弹出PID窗口,手动调节输出为一适当的值,使下水箱的液位处于某一平衡位置。

8. 增大或减小手动输出量的大小,使其输出有一个正或负阶跃增量的变化(此增量不宜过大,以免水箱中的水溢出),让下水箱的液位进入新的平衡状态。

9. 在实验中可点击窗口中的“趋势”下拉菜单中的“综合趋势”,选择实验1曲线,可查看相应的实时曲线和历史曲线,并分析和计算出下水箱在固定的出水阀开度下的对象参数K及T值。

《仪表及过程控制》

《仪表及过程控制》

《仪表及过程控制》实验报告册班级:姓名:学号:唐山学院电工电子实验教学中心2009年3月《仪表及过程控制》课程实验报告(一)实验名称单容自衡水箱液位特性测试实验实验时间年月日实验地点姓名合作者实验人学号实验小组第组实验性质□验证性□设计性□综合性□应用性实验成绩:评阅教师签名:一.实验测试结果1. 画出单容水箱液位特性测试实验的系统结构框图(根据实际被控对象结构绘制)。

2. 记录实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。

《仪表及过程控制》课程实验报告(二)4.比较不同PID参数对系统的性能产生的影响。

5.分析P、PI、PD、PID四种控制规律对本实验系统的作用。

《仪表及过程控制》课程实验报告(三)3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。

4.比较不同PID参数对系统性能产生的影响。

5.分析P、PI、PD、PID四种控制方式对本实验系统的作用。

《仪表及过程控制》课程实验报告(四)3.根据扰动分别作用于主、副对象时系统输出的响应曲线,分析系统在阶跃扰动作用下的静、动态性能。

4.分析主、副调节器采用不同PID参数时对系统性能产生的影响。

《仪表及过程控制》课程实验报告(五)3.根据输出的阶跃响应曲线,确定滞后的时间τ4.根据3个测试点所得的响应曲线,分析滞后时间τ的大小对系统动态性能的影响。

《仪表及过程控制》课程实验报告(六)3.根据输出响应响应曲线。

4.系统组态软件的设计。

(组态界面)《仪表及过程控制》课程实验报告(七)实验名称双容水箱液位特性测试实验实验时间年月日实验地点姓名合作者实验人学号实验小组第组实验性质□验证性□设计性□综合性□应用性实验成绩:评阅教师签名:一.实验测试结果1.画出双容水箱液位特性测试实验的系统结构框图(根据实际被控对象结构绘制)。

2.记录实验得到的数据及曲线,分析并计算出双容水箱液位对象的参数及传递函数。

《仪表及过程控制》课程实验报告(八)3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。

实验一 单容水箱对象特性的测试

实验一 单容水箱对象特性的测试

实验一、单容水箱对象特性的测试一、 实验目的1、了解本实验装置的结构与组成,掌握压力变送器的使用方法。

2、掌握实验装置的基本操作与变送器仪表的调整方法。

3、了解单容水箱的自衡特性掌握单容水箱的数学模型及其阶跃响应曲线。

4、实测单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

二、实验设备1、THKGK-1型过程控制实验装置GK-02 GK-03 GK-04 GK-07 2、 万用表一只三、实验原理阶跃响应测试法是被控对象在开环运行状况下,待工况稳定后,通过调节器手动改变对象的输入信号(阶跃信号)。

同时,记录对象的输出数据和阶跃响应曲线,然后根据给定对象模型的结构形式,对实验数据进行合理的处理,确定模型中的相关参数。

图解法是确定模型参数的一种实用方法,不同的模型结构,有不同的图解方法。

单容水箱的数学模型可用一阶惯性环节来近似描述,且用下述方法求取对象的特征参数。

单容水箱液位开环控制结构图如图2-1所示:图2-1、 单容水箱液位开环控制结构图设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h ,出水阀V2固定于某一开度值。

根据物料动态平衡的关系,求得:在零初始条件下,对上式求拉氏变换,得:式中,T=R2*C 为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),K=R2为过程Q R h dthd CR ∆=∆+∆221-2 11)()()(221+=+==TS K CS R R s Q s H s G的放大倍数,也是阀V2的液阻,C 为水箱的底面积。

令输入流量Q1(S )=RO/S ,RO 为常量,则输出液位的高度为:2-2 2-32-4式(2-3)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2所示。

由式(2-4)可知该曲线上升到稳态值的63.2%所对应的时间,就是水箱的时间常数T 。

该时间常数T 也可以通过坐标原点对响应曲线作切线,此切线与稳态值的交点所对应的时间就是时间常数T 。

过程控制及仪表实验指导书

过程控制及仪表实验指导书

过程控制及仪表实验指导书过程控制系统及仪表实验指导书潘岩左利长沙理工大学电气与信息工程学院20XX年4月1目录第一章系统概述第二章实验装置介绍一、THJ-3型高级过程控制对象系统实验装置二、THSA-1型过控综合自动化控制系统实验平台三、软件介绍四、实验要求及安全操作规程第三章实验内容实验一、单容自衡水箱液位特性测试实验实验二、双容水箱特性的测试实验实验三、单容液位定值控制系统实验2第一章系统概述THSA-1型过程综合自动化控制系统(Experiment Platform of Process Synthetic automation Control system)THJ-3型高级过程控制对象系统实验装置、THSA-1型综合自动化控制系统实验平台及上位监控PC机三部分组成。

如图1-1所示。

图1-1 THSA-1过程综合自动化控制系统实验平台该套实验装置紧密结合工业现场控制的实际情况,能够对流量、温度、液位、压力等变量实现系统参数辨识,并能够进行单回路控制、串级控制、前馈-反馈控制、滞后控制、比值控制、解耦控制等多种控制实验,是一套集成了自动化仪表技术、计算机技术、自动控制技术、通信技术及现场总线技术等的多功能实验设备。

THSA-1型过程综合自动化控制系统能够为在校学生和相关科研人员提供有力帮助。

学生通过学习,应对传感器特性及零点漂移有初步认识,同时能掌握自动化仪表、变频器、电动调节阀等仪器的规范操作,并能够整定控制系统中相关参数。

这套实验设备综合性强,所涉及的工业生产过程多,所有部件均来自工业现场,严格遵循相关国家标准,具有广泛的可扩展性和后续开发功能,有利于培养学生的独立操作、独立分析问题和解决问题的创新能力.整套实验装置的电源、控制屏均装有漏电保护装置,装置内各种仪表均有可靠的自保护功能,强电接线插头采用封闭式结构,强弱电连接采用不同结构接头,安全可靠。

3第二章实验装置介绍“THSA-1型过控综合自动化控制系统实验平台”是实验控制对象、实验控制台及上位监控PC机三部分组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 单容自衡水箱液位特性测试实验
一、实验目的
1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数;
二、实验设备
PCS-E 过程控制综合实验装置,电脑 三、实验原理
所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图2-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。

液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。

若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。

根据动态物料平衡关系有
Q 1-Q 2=A
dt
dh (2-1)
将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A
dt
h d ∆ (2-2)
式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量;
A ——水箱截面积。

在平衡时,Q 1=Q 2,
dt
dh =0;当Q 1
发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图。

由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即
ΔQ 2=
R
h ∆ 或 R=
2
Q ∆∆h (2-3)
式中:R ——阀F1-11的阻力,称为液阻。

将式(2-2)、式(2-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为
W 0(s )=
)
()(1s Q s H =
1
RCs R +=
1
s +T K (2-4)
式中T 为水箱的时间常数,T =RC ;K 为放大系数,K =R ;C 为水箱的容量系
数。

若令Q 1(s )作阶跃扰动,即Q 1(s )=
s
x 0,x 0=常数,则式(2-4)可改写为
H (s )=T
T K 1s /+
×
s
x 0=K
s
x 0-
T
K 1s x 0+
对上式取拉氏反变换得
h(t)=K x 0(1-e -t/T ) (2-5)
当t —>∞时,h (∞)-h (0)=K x 0,因而有
K=
x 0h h )
()(-∞=
阶跃输入
输出稳态值 (2-6)
当t=T 时,则有
h(T)=K x 0(1-e -1)=0.632K x 0=0.632h(∞) (2-7)
式(2-5)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2-2(a )所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。

也可由坐标原点对响应曲线作切线OA ,切线与稳态值交点A 所对应的时间就是该时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。

图2-2 单容水箱的阶跃响应曲线
如果对象具有滞后特性时,其阶跃响应曲线则为图2-2(b ),在此曲线的拐
点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。

图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为:
H(S)=
Ts
Ke
s
+-1τ (2-8)
四、实验内容与步骤
1、了解实验装置中的对象,流程图如下图所示。

上水箱单容特性测试实验流程图
2、按附图上水箱单容特性测试实验接线图接好实验导线和通讯线。

3、将手动阀门2V1、2V10、V5、V6打开,其余阀门全部关闭。

4、先打开实验对象的系统电源,然后打开控制台上的总电源,再打开DDC 控制单元电源。

5、在控制板上打开水泵2。

6、在信号板上打开变频器输入信号、上水箱1输出信号。

7、打开计算机上PCS-E-DDC的 MCGS运行环境,选择系统管理菜单中的用户登录,登录用户。

8、选择特性实验的上水箱单容特性实验。

9、选择手动控制方式。

10、在变频器单元上按下键,启动变频器。

11、设置阀门开度值,使上水箱液位处于某一平衡位置,记下此时的阀门开度值。

12、增大阀门开度值,使系统输入幅值适宜的阶跃信号(阶跃信号不要太大,估计上水箱水不要溢出),这时系统输出也有一个变化的信号,使系统在较高液位也能达到平衡状态。

13、观察计算机上的实时曲线和历史曲线,直至达到新的平衡为止。

14、将阀门开度设置回原来的值,记录一条液位下降的曲线。

15、曲线的分析处理,对实验的记录曲线分别进行分析和处理,处理结果记录于表中。

阶跃响应曲线数据处理记录表
按常规内容编写实验报告,并根据K、T、τ平均值写出广义的传递函数。

五、实验报告要求
1.画出单容水箱液位特性测试实验的结构框图。

2.根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。

六、思考题
1.做本实验时,为什么不能任意改变出水V4开度的大小?
2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关?。

相关文档
最新文档