给水泵震动大的原因分析

合集下载

电动给水泵电机振动原因探讨与处理

电动给水泵电机振动原因探讨与处理
电机 轴承 振动
由于采取 了相应 的处理措施 ,轴瓦振动得到有效的解决 ,为同类 型泵 的振动处理起到了一定的借鉴作用 。
关键词 给水泵
DG型锅炉给水泵是专供 中型火力发电厂锅炉 稳定的运行 ,但是振动值偏大 ,属于越 限范围。低 给水用 ,水泵系卧式分段叶轮单侧进水的多级离心 负荷运行时 ,在给水泵转速较低时或在额定转速下
统 的主要 功能 有 :
① 水力机组稳定性实时监测 ; ② 机组振动摆度越限报警 、避免机组设备的进

行全方位状态监督 ,对设备运行状态 、影响安全经
济 、可靠运行的因素进行综合分析 ,并对设备进行
前景预测 ,根据结果再拟定检修 内容和确定检修时
步危害;
间 ,真正做到 “ 应修必修 ,修必修好 ” 。实施状态 ③ 对机组轴的振动值 、轴承( 机架) 振动值进行 检修 的 目的就是科学保养设备 ,在保 障设备安全 、 利用率 ,降低检修人 、财 、物的浪费和检修磨损 ,
表 1
4 m。 3
2原 因分析
( 电机在单独运行时 ,振动不大说明转子在冷 1 ) 态时质量不平衡可能性较小 ; ( 带负荷运行时 ,随着转速的升高 ,电机的轴 2 )
承振动慢慢增大,且都是水平振动超标 ,说 明整个
轴系存在中心偏差 ; () 3 电机在单独运行时状态 良好 ,说明电机的轴 瓦装配不是造成振动的原因; ( 在整个系统带负荷运行时,电机的基础振动 4 )
⑧ 为电站计算机监控提供多种标准数据接 口方
式 ,可方便的与电站实时监控系统进行数据交换和
实现操作控制 ; ⑨ 振动监测保护分析系统既可为机组安全运行
提供保护 ,同时也为今后的机组状态检修提供重要

给水泵汽轮机振动大跳闸原因分析及防范措施

给水泵汽轮机振动大跳闸原因分析及防范措施
自激 振动 。
A,B汽动给水泵运行 ,转速分别为 515rmi 6 / n 和 519rmi ,电动给水泵备用 ,联锁保 护、抢 5 / n 水保护投用。1:52 ,发生 B汽动给水泵跳闸, 12 : 9 C电动 给水泵未 联启 ,手动 强启 c电动给水 泵,
控 制 汽 包 水 位 ;1 :6 0 ,A 汽 动 给 水 泵 在 C 电 l2 :0 动 给 水 泵 启 动 过 程 中转速 升 至最 高 540r ri 5 / n; a 1 :63 , 位最 低下 降至 一 30mm 后开 始 回升 。 12 :6 水 1 经事后 检查 ,B给水 泵 汽轮机 前轴 承振 动大 造成 振
重新启 动试运转 ,检查未见异常,振动情况正常。 l :8 64 ,B汽动给水泵并入 系统 ,退 出 c电动给水
泵运 行 。 2 0 — 5 8 7 2 :5 0 6 0 —1T1 :4 5 ,1号 机 组 给 水 进 行
R B试验 ,负荷 2 0 7 Mw,A,B汽动给水泵运行, C电动给水泵备用 ,联锁保护、抢水保护投入当按
2 原因分析
1 机 组 B给 水 泵 汽 轮机 ( 号 以下 简称 “B给 l
水 泵 汽轮 机 ”) 闸 时其 他相 关参 数 :润滑 油压 力 跳
要降低机组出力运行 , 重则会造成锅炉断水烧干锅 ,
必 须 引起 足够 的重 视 。
1 事件概述
20 — 5 0Tl :8 3 ,1 机组负荷 30MW , 0 6 0— 5 1l :6 号 1
变功率 、变转速汽轮机,其转子临界转速 :一阶为
250r ri;二 阶 为 1 0 / i 5 / n a 22 0r r n。给 水 泵 汽 轮 a 机 是大 型火 电厂 关键 辅助设 备 ,它 的安全 经济运 行

电动给水泵振动原因分析及处理方法

电动给水泵振动原因分析及处理方法

电动给水泵振动原因分析及处理方法摘要:电动给水泵作为发电厂最主要的辅机设备,如果水泵出现明显的故障异常,必然会导致发电机组出力下降或停运造成经济损失。

从目前来看,引起泵站机组轴承振动异常的因素非常多,引起发电厂电动给水泵振动的因素非常复杂,需要检修人员结合故障的实际现象进行认真分析。

对振动简易诊断进行判断,明确设备振动或其他的状态异常利用普通测振仪以及其他的方式来,最大程度增强电动给水泵安全运行的整体效果,确保安装水平全面提升。

关键词:火电厂;给水泵;原因;处理方法1.给水泵的振动原因1.1电动机引起的振动从给水泵的结构构成和运行原理来看,电动机是给水泵的核心构成,电动机的安装质量是否达标、运行是否稳定与可靠,都将会影响到给水泵的运行效率。

因此,电动机方面的问题会引起给水泵的振动,尤其是在轴承损坏、内部磁力不平衡的情况下,振动难以避免。

一旦在电动机的安装过程中磁力中心的准确度不够,电机轴振动、泵组振动势必出现,且这种振动表现为以下特征:水平方向上的振动小,轴向振动大;在负荷与转速日渐增大的过程中,前置泵与耦合器电机侧的振动同步增大,这一情况对于主泵振动并不存在直接且明显的干扰。

1.2从给水泵支撑系统角度台板、基础底座等在整个给水泵的运行过程中起着一定的支撑作用,当在给水泵运行时这些其支撑作用的模块出现了问题时,同样会引起一定的振动。

比如,当基础的稳定性或者刚度不够的情况下,可能会伴随着微小振动的出现,在受到其他不平衡激振力的作用下,这些微小振动将朝着更大的振动发展[1]。

1.3从给水泵内流体流动角度给水泵运行时,为发挥其在火电厂机组运行中的作用,呈现出机械能向流体势能与动能的转换,一旦在给水泵中流体存在异常的流动行为和现象,势必伴随着异常振动。

根据由这种原因所引起的振动分析,汽蚀和水力冲击是主要的原因,给水泵内严重的汽蚀现象存在时,因为存在凝结过程,也就同步产生了一定的脉动力,当与其他激振力同步作用时,振动问题越发严重,振动强度偏大;水力冲击则更多地表现在导叶与动叶同方向的情况下,因为导叶叠加时的叶片冲击力巨大,同样会引起给水泵的巨大振动,对给水泵的正常运转产生极大的干扰。

给水泵电机设备振动异常原因及解决对策

给水泵电机设备振动异常原因及解决对策

给水泵电机设备振动异常原因及解决对策0 引言进入新时期以来,我国的经济建设进一步发展。

泵站在水资源调配及工农业供水等方面起着十分重要的作用,尤其是泵站中较典型的大型排灌站,在抗旱排涝、减轻灾害中发挥着巨大的功能。

在运行过程中,水泵机组常发生一些设备的故障,导致了机组的安全性降低,解决这些问题对于排灌站来说显得十分紧要。

1 常见的振动异常原因分析1.1 转轮间隙不均匀引起的振动(1)流过参差不齐间隙的流速不等,使间隙中水压力不等,从而主轴产生周期性振摆。

(2)转轮间隙不等,水流过转轮间隙的流速自然也不等。

可想而知,转轮被压力大的一侧推向压力小的一侧是必然的,使转轮发生径向位移,径向位移依靠长的弹性轴还原,周而复始,造成引起振动。

(3)转轮不断旋转,其间隙值出现变化,从而引起周期性的压力脉动。

脉动的频率等于主轴的旋转频率,脉动的振幅变化规律,近似于正弦线。

压力脉动与扬程、转速、动态间隙变化值的大小成正比,与间隙的大小成反比。

也就是说,转轮间隙大,压力脉动引起的振动就小,但是间隙太大,漏损的水量也就大,机组效率就会降低。

动态间隙变化值的大小,取决于转轮的同心度偏差的大小、水导间隙的大小和主轴摆度的大小。

1.2 叶片角度不同步或缺损引起的振动(1)制造:过去许多水泵制造粗糙,浇铸后不予加工,仅作表面处理,而翼型扭曲面往往各片不一致,因而叶片与水流的接触面不一样,位置也不一样,使叶栅流量不等,流态不一,造成泵内的水流碰撞,引起振动,同时也降低了水泵的效率;(2)叶片安装角度不统一,特别是全调节叶片,叶片很难调整一致,同样会造成水力的不平衡而引起振动。

叶片由于长期在污水杂质环境中运行,其表面自身容易磨损或汽蚀,严重时表面产生较大的穴窝,使叶片局部残缺不齐,产生附加的离心力,也易引起机组的振动。

1.3 汽蚀引起的振动汽蚀是水流形成的,而水流紊乱又与流道、叶片形状、角度、扬程、淹没深度等因素有关。

水流变化,引起压力变化,进口及叶片的正背面产生小气泡,当汽蚀发展到一定程度时,进口处产生大量的气泡,这些气泡进入高压区受挤压而爆裂,并形成一个个空穴。

电动给水泵振动原因分析及处理方法

电动给水泵振动原因分析及处理方法

电动给水泵振动原因分析及处理方法在我国经济实力逐渐壮大,科学技术不断创新的今天,电动给水泵是火电燃煤机组给水系统的重要附属机械,液力耦合器连接电动机与给水泵,传递驱动,调节转速。

文章通过分析电动给水泵几种常见振动故障的原因,介绍了处理措施。

标签:电动给水泵;振动原因;处理方法引言随着我国经济实力不断加强,我国电动给水泵的应用愈加广泛,电站用主给水泵机组轴承振动的大小直接关系到机组能否安全运行,而引起主给水泵机组轴承振动过大或者异常的原因有很多。

1电动给水泵振动原因分析1.1振动随泵运行时间而增大1)由于热应力而造成泵体变形过大或弯曲;2)轴瓦顶部间隙过小或瓦盖紧力过大,造成轴与上瓦部分接触;3)油内有杂质,润滑不良;4)泵体保温厚度不够,上下泵壳存在温差,暖泵不均匀;5)电泵进出口管道安装对口产生附加应力,支架安装错误影响管道热膨胀。

1.2启动振动高原因1)测点问题。

开始由于电泵上下缸温差偏大,认为是温度测点有问题,热工校验振动测点后,确认热工测点正确。

2)泵体积存空气。

电泵上下缸存在温差,主要是上缸温度偏低造成,认为是电泵注水排气时速度较快,排空气不充分,上部积存空气所致。

因此对电泵进行重新注水排气,使泵体内空气完全排出,但上下缸温差无明显变化。

3)暖泵流量不足。

机组调峰时,不同负荷段如350MW,和660MW时热备用中的电泵进口流量(即倒暖流量)显示波动变化,而且负荷350MW,时,备用中的电泵几乎显示不出倒暖流量,而660MW,高负荷时由于压力高,倒暖流量显示有28T/H。

怀疑倒暖流量有问题,因此在负荷660MW,时将备用中的电泵再循环阀前手动阀隔离,其倒暖流量明显上升,减小了电泵的倒暖流量经再循环调节阀分流部分,进一步提高了其倒暖效果,稳定一个多小时,但电泵上下缸温度基本不变。

4)倒暖阀故障。

由于倒暖手动阀(靠泵侧)阀杆曾经出现过漏汽,并经过了焊接处理,因此运行人员充分开大四个倒暖泵手动阀的开度,试图增加暖泵效果,但是上下缸温差未得到解决。

汽动给水泵异常振动原因分析及处理技术

汽动给水泵异常振动原因分析及处理技术

汽动给水泵异常振动原因分析及处理技术摘要:文章对电厂汽动给水泵运行中常见的振动故障进行分类,分析引起不同的异常振动故障的原因,并提出了相应的异常振动原因处理措施,以供参考。

关键词:汽动给水泵;异常振动;处理1引言近年来随着我国社会用电负荷的增加,发电企业的电能生产压力不断增加,而且随着人们对于电能依赖程度的增加,也对电力供应质量提出了较高的要求。

在目前的火电厂中,汽动给水泵是比较重要的辅机设备,其在运行中比较常见的故障类型就是振动异常故障,其不仅出现的数量和次数较多,而且汽动给水泵运行中的其他类型的故障也通常会以振动异常的形式进行表现,所以对异常振动问题的原因进行分析就能找到其他故障的原因并采取相应措施进行处理。

2给水泵的振动分类汽动给水泵的振动通常按照其频率的不同可以分为以下几种类型:一是低频振动,其频率大概为工频的0.45~0.55倍,而且此种振动问题的引起原因则主要是由于油膜涡动、油膜振荡以及转子支持系统松动等,所以在出现此异常振动现象时则可以对轴瓦比压进行调整、对轴颈以及轴瓦的接触角进行较小、对轴瓦两侧之间的间隔进行增加、以及对润滑油粘度进行降低等措施来缓解。

二是工频振动,引起此振动的主要原因主要就是不平衡的原因,主要表现在转子由于设计和制造而导致的自身不平衡、转子或叶轮在转动过程中由于摩擦、磨损或被异物堵塞等原因而导致的不平衡、由于受热不均而导致的转子弯曲变形、由于水力流动出现不平衡而导致旋转部件的偏转等。

所以针对此问题则需要根据不同的原因进行相应的平衡校正或零部件更换等。

三是二倍频振动。

此种异常振动情况主要表现为振动频率是工频的两倍,其主要原因就是由于给水泵机组之间各个设备轴不对中,此时就需要对相关的技术数据和运行参数进行严格控制,并且对设备运行中产生的热量进行控制和消除。

四是多倍频振动。

其主要表现为振动频率大概为工频的2~10倍,由于其振动频率较高,所以通常具有较大的危害性,且通常是由于轴承松动或其他零部件松动而导致的,此时就需要对上述部件进行检查和紧固。

给水泵振动分析及处理措施

给水泵振动分析及处理措施

给水泵振动分析及处理措施
给水泵是一种重要的机械设备,它的工作稳定性对给水系统的正常运行有重要影响。

振动是水泵的一种性能指标,如果水泵振动不正常,会对设备的使用有很大的影响,造成系统效率的降低,也会影响设备的使用寿命。

因此,给水泵的振动分析和处理措施很重要。

给水泵振动分析主要有水泵振动特性分析和原因分析两部分。

首先,要分析水泵的振动特性,包括振动范围、振动频率、振动方向等。

然后,对水泵振动的原因进行分析,主要有水泵内部结构故障、轴承故障、安装失误、控制系统故障等因素引起的振动。

处理给水泵振动主要是采取正确的控制手段,以便达到降低振动,改善给水系统性能的目的。

为此,针对不同的振动原因采取相应的处理措施。

对水泵内部机构故障,可采取更换零件或检查结构尺寸等方式进行控制;对轴承故障,要更换损坏的轴承或更换润滑油;对安装失误,则要重新安装水泵;对控制系统故障,则要检查系统参数和调整系统控制器等方式进行控制。

此外,为了进一步提高水泵振动控制效果,可以采用一些技术措施,比如采用柔性轴套和减振器,在水泵外壳上安装振动传感器,采用智能控制系统等方式。

综上所述,要确保水泵的正常运行,必须进行给水泵振动的分析和处理。

首先,要分析水泵的振动特性,然后,对其振动原因进行分析。

接着,进行正确的控制手段,以便实现对水泵振动的控制,从而提高给水系统的性能。

另外,可以采用柔性轴套和减振器、安装振动
传感器和智能控制系统等技术措施,来进一步提高水泵振动控制效果。

浅谈给水泵汽轮机振动大分析处理

浅谈给水泵汽轮机振动大分析处理

浅谈给水泵汽轮机振动大分析处理发布时间:2022-03-14T01:26:48.593Z 来源:《科技新时代》2022年1期作者:赖赣平[导读] 通过对某电厂600MW 机组给水泵汽轮机振动大的原因进行分析,得出了振动大是由于小汽轮机存在转子质量不平衡在运行状态下引起转轴的振动,并提出了处理措施。

国能黄金埠发电有限公司江西省上饶市 335101摘要:通过对某电厂600MW 机组给水泵汽轮机振动大的原因进行分析,得出了振动大是由于小汽轮机存在转子质量不平衡在运行状态下引起转轴的振动,并提出了处理措施。

关键词:汽动给水泵;小汽轮机;振动;600MW 机组 1 概况某电厂1号机组为国产引进型600Mw 燃煤机组,汽动给水泵组的小汽轮机为上海汽轮机厂生产的N600-24.2/566/566型,配套使用沈阳水泵厂生产的14×14×16A-5stgHDB型给水泵。

汽动给水泵组振动探头的分布方式为:小汽轮机和汽动给水泵轴瓦瓦上各有X和Y方向2个轴振动探头。

#1机B小机由于长周期运行在2019后#2瓦振动有缓慢上升趋势。

调曲线发现小机转速在5500 r/min以上时最高2Y振动达100.94um,2X振动达83.7um,#1机B小机#2瓦各项变化情况见表1。

表1从表1可知,#1机B小机在运行过程中,#2瓦振动表现形式为小机随负荷、转速升高而变化。

B小机转速在5500 r/min以上时2Y振动尤为明显达100.94um,超过小机振动报警值76um,其它各项参数均没有出现明显的异常变化。

2 引起轴瓦振动的因素2.1中心不正引起的振动。

由于2个转子不同心,使对轮或转轴处的晃度增加,在高速下中心状况发生突变时可使对轮处的晃度突增。

中心不正产生振动的主要特征是在对轮两侧的轴振表现最为突出。

2.2 动、静碰摩引起的振动突变。

当机组内部结构出现故障引起动、静部件发生碰撞时就有可能产生振动突变。

转子产生热变形后,由于挠度的增加,一般使转子端部轴承的轴向振动增大,热变形引起的振动负荷和热状态有关,运行工况改变振动相应地发生变化。

节段式高速锅炉给水泵振动原因分析及消除措施

节段式高速锅炉给水泵振动原因分析及消除措施

保证介质在导叶 中流动的均匀性 ,即使各导叶流 道依次相错开 6 。 o 。这样进行处理后 的给水泵按正
常组装程序 回装 ,然后再进行试验台试验 ,试验
数据 如表 2 。
5 结

从表 2数据中可 以看 出,去掉诱导轮及 中段 销孔旋转一 定角度后 ,泵 的振动消除 了。这样 , 上述的两 个调整措施使泵 的水力流动均匀性得 到 改善 ,振动消除 ,说 明上述因素确是泵振动的主
起 高速节段式 多级锅炉 给水泵振动的一般原因 ,针对各别原因 ,列 出相应 的消除措施 。结合工程实践 ,分析查 找实 际 运行中引起锅炉给水泵振动 的原因并提 出解决办法 。
关键词 : 电厂用泵 节段式高速锅炉给水泵
振动
原因分析 消除措施
低频振动、同频振 动、二倍频振动 、多倍频振动
32 同频 振动 .
实践 中常见的振动原因进行分析 , 并利用逐项排查
法找 出引起给水泵振动的主要原因, 并据此采取相 应的解决措施 ,这些做法和经验对实际运行和检修 具有借鉴参考作用 。
同频振动也叫工频振动 ,它属于强迫振动 ,而 工频产生的原因通常是动不平衡引起的 ,在各种振 动中工频振动最明显 ,而引起工频振动的主要原 因
旋转 中的挠度均在动静零件 间的规定 间隙内,也 不是造成振动 的原因 。那么只有水力不平衡或水 力 冲击 可 能是造 成振 动 的原 因 。 通过对泵中各级导 叶及诱 导轮的分析 ,发现 泵中介 质从 叶轮流 出后在导叶中进行流动时在 圆 周方 向上并不均匀 ,造成了泵 内流动的不均匀性 , 况且诱 导轮进 口后掠角较小 ,加 大了介质进 入叶 轮后对转子的水力 冲击 ,针对此情况 ,我们对泵 中的诱导轮进行更换 ,用相应的轴套代替 ,同时

给水泵震动大的原因分析

给水泵震动大的原因分析

给水泵震动大的原因分析水泵在运行过程中产生震动的原因有很多,下面对其中的几个可能原因进行分析:1.不平衡负载:当水泵所承受的负载不均匀时,会导致不平衡的转子运动,从而引起震动。

可能的原因包括管道系统的堵塞、不均匀磨损以及介质的变化等。

解决这个问题的方法是对管道系统进行检修,确保清洁无堵塞,并定期维护和更换易损件。

2.不合适的安装位置:水泵的安装位置也可能导致震动。

比如,如果水泵没有正确地固定在地面上或基础上,或者没有使用正确的垫片和密封件进行安装,都可能导致震动。

此外,如果水泵的房间结构不稳定,也可能影响水泵的运行,引起震动。

解决这个问题可以通过重新安装水泵,确保其稳定地固定在地面上,同时修复房间结构上的问题。

3.轴承和密封件的磨损:水泵的轴承和密封件在运行过程中可能会磨损,导致不稳定的转子运动,进而引起震动。

这可能是由于轴承老化、润滑不足或密封件损坏等原因造成的。

解决此问题需要定期检查和维护轴承和密封件,并根据需要进行更换。

4.不平衡的转子:水泵的转子在制造过程中可能存在不平衡的问题,导致转子在运行时产生震动。

解决这个问题的方法是使用精密设备进行动平衡,以保证转子在高速旋转过程中的平衡性。

5.输送介质的问题:输送介质的压力、温度和浓度等参数超过了水泵所能承受的范围,都可能导致水泵的震动。

此外,介质中可能含有颗粒物质,也可能对水泵的正常运行产生不利影响。

解决这个问题可以通过调整介质参数,确保其在允许范围内,或者使用合适的过滤设备对介质进行处理。

6.运行中的故障:水泵在运行过程中可能出现故障,如叶轮断裂、轴承损坏等,这些故障都可能导致水泵的震动。

解决这个问题需要定期对水泵进行检查和维护,及时发现和处理故障。

在分析以上可能的原因时,需要综合考虑水泵的工作环境、设计和制造质量以及运行维护等方面的因素。

不同的水泵可能存在不同的问题,因此在实际应用中需要根据具体情况进行分析和解决。

同时,定期检查和维护水泵是保证其正常运行的关键,只有保持良好的运行状态,才能减少震动的发生。

发电厂给水泵振动原因分析及处理

发电厂给水泵振动原因分析及处理

发电厂给水泵振动原因分析及处理摘要:在发电厂中,给水泵是非常重要的设施,因为给水泵的工作状态,会直接影响到发电厂的运行情况。

但是在日常工作中,由于发电厂工作环境复杂,可能会受到很多条件的影响,给水泵会出现不同程度的振动异常情况,这就会延误给水泵的正常运行,影响发电厂的工作进度。

因此,相关人员在检查给水泵时,若发现异常振动,就要快速明确原因,选择合适的解决方法。

本文从实际工作出发,介绍给水泵的振动分类,并分析其产生的原因,提出了发电厂给水泵异常振动的处理办法,希望可以为相关人员提供参考。

关键词:发电厂;给水泵;振动原因引言:在发电厂的运行过程中,给水泵发挥了很大的作用,也就是说,只有给水泵进行安全的运行,以及稳定的工作,就能在很大程度上保障发电厂的工作进度。

近些年,发电厂的规模越来越大,设备越来越多,其中,给水泵的运行速度更快,流量更多,电压更高,在这个过程中,难免会出现一些问题,影响给水泵的正常运行。

如果给水泵出现振动异常,就会导致零件受损,严重时,还会影响整个发电厂的运行情况。

因此,相关工作人员要分析技术泵异常振动的原因,选择合适的解决方法,保障给水泵的正常工作。

一、给水泵的振动分类衡量给水泵的振动是否异常,就要测量给水泵的振动频率,不同频率的振动,会有不同的表现形式,因此解决的方法也不同。

常见的振动分为以下类:(一)低频振动正常来讲,振动频率处在0.45至0.55倍工频之间时,就是低频振动。

导致低频振动大多是由油膜引起,比如油膜的振动,以及涡动,有时还会受到转子系统的异常影响。

如果出现低频振动,可以选择调节减小轴瓦长度的方式,还可以缩小轴套和轴颈的角度,以及增大轴套两边的距离,同时,减小润滑油的粘度,也可以减小给水泵的振动。

(二)工频振动振动不平衡会引起工频振动,具体引起的原因为以下几点:1.转子的自身力量不够,也就是说,在其制作过程就出现了失误;2.工作轮或者转子等零件,在运行的过程中出现磨损等损害;3.工作轮流道被一些物体堵住;4.在给水泵使用之前,没有进行进行暖泵,转子受热不均匀,导致轴变形;5.相关的旋转零件发生位置的偏移,或者水力流动不均衡。

给水泵汽轮机振动异常的分析与处理

给水泵汽轮机振动异常的分析与处理

给水泵汽轮机振动异常的分析与处理摘要:汽轮机作为发电厂中重要的装置之一,安全使用尤为重要,给水泵汽轮机是电站热力循环系统的主要部件之一,在自动化水平、安全性能等方面的要求很高,其运行状态影响着整个电站设备的运行。

因此,技术人员需要对其产生的原因进行查找并且及时修理,做到事先预防,只有这样才能保证汽轮机的安全使用以及工作人员的人身安全。

关键词:汽轮机;振动故障;原因分析;处理措施当前我国给水泵汽轮机在运作过程中都会出现或大或小的问题,其中,给水泵汽轮机振动故障发生的频率最高,为了更好地排查、检修相关故障,就要对其可能发生的原因进行探讨,进而进行维修。

给水泵汽轮机是电站热力循环系统的主要部件之一,在自动化水平、安全性能等方面的要求很高,其运行状态影响着整个电站设备的运行。

1给水泵汽轮机振动异常(1)转子存在间歇性动静摩擦现象,汽封、轴封、油封间隙小,动静摩擦造成转子局部温度上升,导致振动上下波动。

(2)轴封泄漏量大,压力较高,造成转子局部温度升高,油封、轴封处温度升高,部分回油泄漏结焦与转子轴径产生摩擦,导致振动波动。

在运行过程中,轴封泄漏量一直处于偏大状态。

(3)蒸汽品质较差,做完功的蒸汽压力降低后含水量较多,对末级叶轮造成冲击,导致转子失衡,振动上涨,长期的冲刷导致叶片发生断裂。

(4)汽轮机末级叶片存在设计上的缺陷,受力不均匀,部分叶片强度不符合要求,导致部分叶片断裂,使机组振动上涨异常。

2引起给水泵汽轮机振动故障的原因2.1质量平衡问题引起质量不平衡的因素有很多:零部件受到猛击之后的松落、叶片运转过程中受外界因素影响脱节断裂、汽轮机主要运作部分发生错乱等,这些都将导致给水泵汽轮机质量不平衡,影响着给水泵汽轮机振动。

质量不平衡问题将引发一系列的问题,给水泵汽轮机的安全带来隐患,主要表现为给水泵汽轮机的振动幅度发生变化,转动速度严重影响着震动的频率,并且振动影响着整个汽轮机的轴系,给汽轮机带来巨大震动,使得给水泵不能正常运作。

电厂高压锅炉给水泵振动原因分析及解决措施

电厂高压锅炉给水泵振动原因分析及解决措施

电厂高压锅炉给水泵振动原因分析及解决措施摘要:高压锅炉给水泵是电厂中十分重要的设备之一,如果其出现故障,则会直接导致电厂停产。

振动值是高压锅炉给水泵能否长期健康运行的重要指标,振动超差严重威胁电厂生产安全,监测并分析振动值,可以保障高压锅炉给水泵健康长久运行。

振动问题十分复杂,分析解决振动问题时应该综合考虑各个方面,尽量做到以最小的代价解决问题。

当出现振动超差时要及时分析振动超差原因,在振动尚未没有引起事故前及时将其解决处理。

关键词:高压锅炉;给水泵振动;解决措施引言随着现代化的发展,发电厂规模的扩大,机组容量与日俱增,给水泵向高能化发展是必然趋势,为了满足发电机组给水需求,给水泵的转速不断提高,导致给水泵振动愈加明显;一般高压给水泵的级数较多,转子较长,其一阶固有频率通常低于工频,在低频情况下会造成泵的结构共振加大;如今大部分电厂为节约能源,普遍采用调速控制,但泵在设计时,首先考虑到的是设计点的工况,在设计工况下泵能够平稳运行,但当泵转速变化时,泵的运行点就会偏离最优工况,导致泵不能满负荷运行,在泵部分负载时,也会为泵振动埋下隐患。

1电厂高压锅炉给水泵振动原因分析1.1管路系统产生的振动管路系统作用在给水泵上的外力过大,使给水泵发生振动。

这种振动的主要特征是:多见于2倍工频,主要振幅多见于轴向,也见于水平和垂直方向。

消除方法是重新设计管路系统,尽量减小作用在泵体上的外力。

另外,管路系统支撑不牢也会产生振动,这个振动会直接传导给给水泵,使泵也产生振动。

1.2水力冲击产生的振动汽蚀产生的振动:给水泵在发生汽蚀时,会产生剧烈的振动和噪声,这种振动的主要特征是次低频振动。

主要振幅在水平和垂直方向,主要振幅位置在泵体吸入侧、基础和管道。

压力脉动产生的振动:给水泵在低于最小流量工况长时间运行时,会导致泵体内流场状态恶化,甚至在局部区域产生回流或负压区,并沿圆周方向旋转。

由此产生的压力脉动使泵的压力和流量出现交错变化,使泵及其压力管路产生剧烈振动。

某350MW机组汽动给水泵振动故障诊断及处理

某350MW机组汽动给水泵振动故障诊断及处理

某350MW机组汽动给水泵振动故障诊断及处理发布时间:2022-10-23T08:45:16.732Z 来源:《科技新时代》2022年10期作者:刘超[导读] 汽动给水泵是将除氧器中具有一定温度和压力的水连续输送至锅炉的设备,在机组的运行中发挥着重要的作用刘超阳城国际发电有限责任公司山西省晋城市048102摘要:汽动给水泵是将除氧器中具有一定温度和压力的水连续输送至锅炉的设备,在机组的运行中发挥着重要的作用。

某热电厂1号机组主机为350MW超临界汽轮机,配备一台50%容量的汽动给水泵和一台50%容量的电动给水泵。

在分系统调试阶段,在转速达到3200r/min 时由于3瓦和4瓦振动通频振动大而导致保护动作跳机,始终未能达到额定工作转。

对某厂350MW汽轮发电机组汽动给水泵的振动进行了分析及处理,振动的主要特征为低转速下晃度大,并且高转速下出现了较大的5倍频分量,通过分析提出了解决振动的具体措施,为今后同类型振动的处理提供参考和借鉴。

关键词:350MW;晃度;5倍频;给水泵高参数、大容量火力发电厂的主要辅机设备采用单列布置能够大幅节约初投资、运行维护和设备检修费用,在生产运行期间的低负荷经济性较高,但是对设计制造能力、运行可靠性等方面要求较高。

随着制造业的快速发展,为了节省投资、节能降耗、降低发电成本,主要辅机设备单列布置逐渐投入使用。

汽动给水泵作为火力发电厂重要的辅机设备,单列布置汽动给水泵的可靠运行对机组的稳定有着至关重要的意义。

1轴系及测试设备简介1.1轴系简介此汽动给水泵轴系由小汽轮机转子、膜片联轴器、给水泵转子组成,总计四个轴瓦,其中汽轮机调端为1瓦,联轴器侧为2瓦,给水泵联轴器侧为3瓦,自由侧为4瓦,小汽机和给水泵的轴承均为椭圆轴承。

键相传感器安装在1瓦附近,位置从驱动端看为左90°。

1.2振动测试设备在轴系振动测试时选用的测量设备为SKVMA旋转机械振动监测分析仪,该设备可用于各种旋转机械的振动测试、分析、故障诊断,测量通道可根据机组的实际情况进行扩展,能够满足目前所有机组的振动测试,并可采集如下的动态数据:通频振幅、选频振幅、间隙电压、博德图、极坐标图、频谱图、趋势图、时基图等,可以满足机组振动分析、故障诊断、现场动平衡等各项要求。

给水泵振动分析及处理措施

给水泵振动分析及处理措施

给水泵振动分析及处理措施水泵的振动分析和处理措施是水泵运行过程中非常重要的一项工作,振动问题的存在会影响水泵的正常运行,甚至会引起设备设施的损坏。

下面将介绍水泵振动的原因和处理措施。

一、水泵振动的原因1.动平衡不良:水泵的动平衡不良是导致振动问题的主要原因之一、动平衡失调会导致转子的旋转中心和质量中心偏离,从而引起振动。

2.设备老化:随着设备的使用年限增加,水泵的部件会磨损,导致设备的结构变形,从而引起振动问题。

3.安装不规范:水泵的安装不规范会导致设备的安装不稳定,进而引起振动问题。

4.介质不均匀:如果水泵所抽取的介质中存在不均匀的物质,如固体颗粒或气体泡沫,都会引起水泵的振动。

5.设备质量问题:水泵的制造质量问题也是引起振动的原因之一,如轴承的质量不达标、叶轮的加工精度不够等。

二、水泵振动的处理措施1.动平衡校正:对水泵进行动平衡校正是解决水泵振动问题的首要措施。

通过在转子上加重物或切除物来调整质量分布,使转子的质量中心与旋转中心重合,从而达到动平衡的目的。

2.设备维护:定期对水泵设备进行维护保养,包括清洗设备、检查轴承润滑情况、检查紧固件等,以确保设备运行的稳定性和正常性。

3.安装规范:在安装水泵时,应遵循相关的安装规范,如采取合适的基础、固定设备的支架、正确安装联轴器等,以保证设备的安装稳定性。

4.介质处理:如果水泵所抽取的介质中存在不均匀物质,应采取相应的处理方法,如安装过滤器、排气系统等,以减少介质的不均匀对水泵的影响。

5.设备质量控制:在水泵制造过程中,应加强质量控制,确保设备的零件加工精度和质量达到标准要求,特别是轴承、叶轮等关键部件的质量。

三、水泵振动分析和处理的步骤1.振动观测:在水泵运行时,使用专业的振动测量仪器对水泵的振动情况进行观测和记录,包括振动的幅度、频率等信息。

2.分析振动原因:通过对振动数据的分析,找出引起水泵振动的原因,如动平衡不良、设备老化等。

3.制定振动处理方案:根据振动分析结果,制定相应的处理方案,如进行动平衡校正、设备维护等。

给水泵震动大的原因分析

给水泵震动大的原因分析

给水泵震动大的原因分析(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--给水泵震动大的原因分析针对水泵机组的各部件存在的振动,分析了产生振动的原因。

从水泵的水力、机械结构设计,到泵的安装、运行、维护等方面几提出了减轻泵振动的措施。

结果表明,保证泵零部件结构尺寸、精度与泵的无过载性能等水力特性相适应;保证泵的实际运行工况点与泵的设计工况点吻合;保证加工精度与设计精度的一致性;保证零部件安装质量与其运行要求的一致性;保证检修质量与零部件磨损规律的一致性,可以减轻泵的振动。

振动是评价水泵机组运行可靠性的一个重要指标。

振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。

引起水泵振动的原因是多方面的。

泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。

1 对引起泵振动原因的分析电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。

质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。

另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。

电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。

基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。

300MW机组电动给水泵剧烈振动的原因分析及对策

300MW机组电动给水泵剧烈振动的原因分析及对策

Ke r s moo r e olrfe w tr u ( F );vbain;h da l o pig ai t B P v e p irt o y rui cu l ;c vt i c n ao
三 河 发 电 有 限 责 任 公 司 二 期 工 程 2×3 0 0 M 热 电 联 产 供 热 机 组 给 水 系 统 设 计 有 2台 W 3 %容 量 的 电 动 给 水 泵 组 。 给 水 泵 的 型 号 为 0 C T 4 6 由沈 阳鼓 风集 团公 司 生 产 。其 工 作 参 H C/ , 数 如下 : 水 温 度 为 1 3 ; 水 泵 出 口 流 量 为 给 8℃ 给
不 良和 密封 圈 汽蚀 。针 对 存 在 的 问题 采 取 了相 应 的 措 施 , 得 了理 想 的 效 果 , 除 了电 动 给 水 泵 不 能 正 常备 用 取 排
的安全 隐患。
关键 词 : 电动 给 水 泵 ; 动 ; 力 联 轴 器 ; 蚀 振 液 汽
中 图分 类 号 : K 6 . T 24 1
L in s a o g Xi f n i a —h n,S n u—a J
( a h o e e eainC .Ld ,S n e0 5 0 ,C ia S n eP w rG n rt o t. a h 6 2 1 hn ) o
Ab ta t T emoo r e olrfe w trp mp ( F sr c : h trdi n b i ed ae u v e MB P) o nt1 i a h o e ln n o nee xesv fu i n S n eP w rPa te c u trd e csie
文 献标 识 码 : B
文 章 编 号 :0 39 7 ( 0 0 0 - 3 -3 1 0 —1 1 2 1 ) 20 9 0 0

电厂给水泵振动原因分析及解决措施

电厂给水泵振动原因分析及解决措施

电厂给水泵振动原因分析及解决措施发表时间:2020-12-24T02:50:13.787Z 来源:《中国电业》(发电)》2020年第21期作者:任文涛[导读] 作为我国600MW超临界机组火电设备国产的重要项目,取得了良好的效果。

河北衡丰发电有限责任公司河北衡水 053000摘要:给水泵作为火力发电厂热力系统的重要辅机设备,发生缺陷或事故将严重影响机组安全稳定运行,造成电量损失和设备损坏。

给水泵运行中最容易引起设备强迫退出运行的问题就是振动。

当给水泵振动超标时,如不及时退出运行检修,将会造成设备故障扩大,容易引发机组强停事故。

对此,文章就结合几项事故案例分析电厂给水泵振动原因分析及解决措施。

关键词:电厂给水泵;振动原因;解决措施1锅炉给水泵的发展概述目前国内双壳体筒型多级离心锅炉给水泵应用于高压和超高压场合,具备抗热冲击,适应机组负荷变化等特点。

锅炉给水泵有两种主流结构形式,一种是蜗壳轴向剖分,开式结构,采用的企业包括美国B.J公司,美国FPD、日本荏原,以及日本三菱泵业;另一种是径向剖分,多级节段式结构,主要应用于企业自备发电装机容量不大的场合,采用的企业包括德国KSB、英国韦尔泵,以及瑞士苏尔寿。

锅炉给水泵国内的发展路线是:引进,积累,吸收转化。

其中主要代表企业有:中国电建集团上海能源装备有限公司、郑州电力机械厂、以及沈阳水泵股份有限公司。

中国电建集团上海能源装备有限公司于2011年通过台架试验测试了首台1000MW超超临界火电机组锅炉给水泵的性能,获得较满意的结果,各项测试数据均达到世界先进水平[3]。

郑州电力机械厂以国内外先进技术为依托,以高效、可靠以及便于维修为目标,开发研制了350MW锅炉给水泵,投入市场后获得良好反响,带来显著的社会和经济效益。

沈阳水泵股份有限公司与美国FPD公司联合生产HDB型锅炉给水泵,作为我国600MW超临界机组火电设备国产的重要项目,取得了良好的效果。

2引起给水泵振动的常见因素2.1转子不平衡当转子的重力中心不在转轴的轴线上时转子便出现不平衡而引起的转子振动,即使转子静平衡再理想常常还有残余的不平衡将产生离心力,离心力使转子产生动挠度,在转子达到临界转速时动力挠度最大,离心力也达到最大,造成转子振动。

给水泵振动原因分析及解决方案

给水泵振动原因分析及解决方案

给水泵振动原因分析及解决方案摘要:对于分段式高压多级离心泵,当泵运行在设计点流量50% ~ 70% 范围内(最高效率点流量为530m3/h)时,瓦振动(壳体振动)的振动速度超过 iso10816标准,不能满足变负荷发电厂的供电要求。

通过对流体流态和振动频谱的分析,调整导叶进口叶片的角度,改善流态,解决了振动问题,满足变负荷供电的节能要求。

关键词:离心泵;振动;频谱图;叶片角度1给水泵的结构此项目所采用的给水泵,其结构为HGC型卧式、多级、高压离心泵,此种产品为模块化、标准化产品,具体由转子部件(包括水力部件)、壳体部件、轴承部件等组成。

其中叶轮和导叶体属于泵的水力部件,其设计选型直接决定了泵的水力性能。

2振动原因分析及解决方案2.1振动原因分析2.1.1流体激励泵是把原动机的机械能转化成液体能量的机械。

离心泵属于叶片泵,可以连续运转,通过叶轮的高速运转对液体做功,使其能量增加,从而实现能量的转化。

但是在其运转过程中,由于过流部件叶轮和导叶所组成流道的变化和不连续性,使得液体在高速旋转的叶轮及固定导叶中流动时产生液压激励振动,从而有可能会引起泵运转的不稳定,导致泵的振动。

2.1.2流体流态对比及分析由图1可知,泵的壳振超标发生在运行流量270~350m3/h之间,也就是最高效率点的50%~70%(Qopt=530m3/h,Qopt为泵的最高效率点),因此说明振动不合格点发生于泵在非满负荷点运行情况下。

叶片泵的水力部件由转子(叶轮)和定子(导叶)两部分组成。

在叶轮的径向截面可以看出叶轮的出口边截面积大于叶轮入口边截面积,因此流体从进入旋转叶轮到流出叶轮的运行过程中是减速流动的,在此过程中静压力是增加的。

由于流量泄漏的客观存在,当泵的流量减少时,流体在叶轮中的相对速度也是减少的。

在流量减少的情况下,当减速发生在流体流速较低的情况下,就会产生失速,使液体相对回流,这就意味着当低于某一特定流速时,在叶轮内部由于速度分离,不同流向的液体相互作用而产生紊流。

汽动给水泵轴振大原因分析及对策

汽动给水泵轴振大原因分析及对策

汽动给水泵轴振大原因分析及对策林森,李凡林,张美,方俊,张大伟(淮南矿业集团发电有限责任公司,安徽淮南232033)摘要:某电厂汽动给水泵在启动过程中由于轴振大导致机组无法升负荷,针对这一异常状况进行了分析0通过对故障芯包的运行现象分析及初步检查,判定轴振大的直接原因为芯包平衡鼓损坏0芯包返厂进行检修,发现其平衡鼓、径向轴瓦、轴承支架均存在不同程度的缺陷°检修完成后将芯包回装至给水泵,设备运行正常,安全隐患消除"关键词:给水泵;轴振;芯包;平衡鼓;润滑油中图分类号:TH921 文献标志码:B文章编号:2095-6614(2019)06-0052-04Cause Analysis and Countermeasure for Shaft Vibrationof Steam Feed-water PumpLIN Sen,LI Fanlin,ZHANG Mei,FANG Jun,ZHANG Dawei(Huainan Mining Group Power Generation Co.,Ltd.,Huainan232033,China)Abstract:This paper analyzes the abnormal condition of steam feed-water pump in a certain power plant, which causes failure for the unit to lift load due to large shaft vibration during the start-up process.Through the analysis and preliminary inspection on the operation phenomena of the faulty core package,it is determined that the direct cause of the large shaft vibration is the damage on the balance drum in the core package.Then the core package is returned to the factory for maintenance,it is found that the balance drum,radial bearing liners and bearing bracket all have defects in different degree.After the maintenance is completed, the core package is reinstalled to the feed-water pump,the equipment operates normally and the potential safety hazard is eliminated.Key words:feed-water pump;shaft vibration;core package;balance drum;lubricating oil0引言汽动给水泵作为火力发电厂重要的辅机设备之一,其运行可靠与否将对发电机组的生产产生直接影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

给水泵震动大的原因分析针对水泵机组的各部件存在的振动,分析了产生振动的原因。

从水泵的水力、机械结构设计,到泵的安装、运行、维护等方面几提出了减轻泵振动的措施。

结果表明,保证泵零部件结构尺寸、精度与泵的无过载性能等水力特性相适应;保证泵的实际运行工况点与泵的设计工况点吻合;保证加工精度与设计精度的一致性;保证零部件安装质量与其运行要求的一致性;保证检修质量与零部件磨损规律的一致性,可以减轻泵的振动。

振动是评价水泵机组运行可靠性的一个重要指标。

振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。

引起水泵振动的原因是多方面的。

泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。

1 对引起泵振动原因的分析电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。

质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。

另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。

电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。

基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。

水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。

另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。

?联轴器联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。

这些原因都会造成振动。

离心泵叶轮①离心泵的叶轮质量偏心。

叶轮制造过程中质量控制不好,比如,铸造质量、加工精度不合格;或者输送的液体带有腐蚀性,叶轮流道受到冲刷腐蚀,导致叶轮产生偏心。

②离心泵叶轮的叶片数、出口角、包角、喉部隔舌与叶轮出口边的径向距离是否合适等。

③使用中叶轮口环与离心泵的泵体口环之间、级间衬套与隔板衬套之间,由最初的碰摩,逐渐变成机械摩擦磨损,这些将会加剧离心泵的振动。

传动轴及其辅助件轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。

另外,泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。

轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。

旋转轴的偏心,会导致轴的弯曲振动。

水泵选型和变工况运行|每台水泵都有自己的额定工况点,实际的运行工况与设计工况是否符合,对泵的动力学稳定性有重要的影响。

水泵在设计工况下运行比较稳定,但在变工况下运行时,由于叶轮中产生径向力的作用,振动有所加大;单泵选型不当,或是两种型号不匹配的泵并联。

这些都会造成泵的振动。

轴承及润滑轴承的刚度太低,会造成第一临界转速降低,引起振动。

另外,导轴承性能闭不良导致耐磨性差,固定不好,轴瓦间隙过大,也容易造成振动;而推力轴承和其他的滚动轴承的磨损,则会使轴的纵向窜动振动以及弯曲振动同时加剧。

润滑油选型不当、变质、杂质含量超标及润滑管道不畅而导致的润滑故障,都会造成轴承工况恶化,引发振动。

电动机滑动轴承油膜的自激也会产生振动。

管道及其安装固定泵的出口管道支架刚度不够,变形太大,造成管道下压在泵体上,使得泵体和电机的对中性破坏;管道在安装过程中较劲太大,进出口管路与泵连接时内应力大;进、出口管线松动,约束刚度下降甚至失效;出口流道部分全部断裂,碎片卡人叶轮;管路不畅,如出水口有气囊;出水阀门掉板,或没有开启;进水口有进气,流场不均,压力波动。

这些原因都会直接或者间接地导致泵和管路的振动。

零部件间的配合电机轴和泵轴同心度超差;电机和传动轴的连接处使用了联轴器,联轴器同心度超差;动、静零部件之间(如叶轮毅和口环之间)的设计间隙的磨损变大;中间轴承支架与泵筒体间隙超标;密封圈间隙不合适,造成了不平衡;密封环周围的间隙不均匀,比如口环未人槽或者隔板未人槽,就会发生这种情况。

这些不利因素都能造成振动。

水泵自身的因素叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而导致的出口压力分布不均;叶轮内的脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转子轴向力的不平衡和压力脉动,会增强振动。

另外,对于输送热水的热水泵,如果启动前泵的预热不均,或者水泵滑动销轴系统的工作不正常,造成泵组的热膨胀,会诱发启动阶段的剧烈振动;泵体来自热膨胀等方面的内应力不能释放,则会引起转轴支撑系统刚度的变化,当变化后的刚度与系统角频率成整倍数关系时,就发生共振。

2 消除水泵振动的方法:从设计制造环节消除振动机械结构设计方面注意的问题1)轴的设计。

增加传动轴支撑轴承的数目,减小支撑间距,在适当范围内减小轴长,适当加大轴的直径,增加轴的刚度;当泵轴转速逐渐增加并接近或整数倍于泵转子的固有振动频率时,泵就会猛烈振动起来,所以在设计时,应使传动轴的固有频率避开电机转子角频率;提高轴的制造质量,防止质量偏心和过大的形位公差。

2)滑动轴承的选择。

采用无须润滑的滑动轴承;在液态烃等化工泵中,滑动轴承材料应采用具有良好自润滑性能的材料,比如聚四氟乙烯;在深井热水泵中,导流衬套选择填充聚四氟乙烯、石墨和铜粉的材质,并合理设计其结构,使滑动轴承的固定可靠;叶轮密封环和泵体密封环处采用摩擦因数小的摩擦副,比如m20lk 石墨材料一钢;限制最高转速;提高轴瓦承载能力及轴承座的刚度。

3)使用应力释放系统。

对于输送热水的泵,设计时,应使由泵体变形而引起的连接件之间的结构应力得以释放,比如在泵体地脚螺栓上面增加螺栓套,避免泵体直接和刚度很大的基础接触。

水泵的水力设计注意事项1)合理地设计水泵叶轮及流道,使叶轮内少发生汽蚀和脱流;合理选择叶片数、叶片出口角、叶片宽度、叶片出口排挤系数等参数,消除扬程曲线驼峰;泵叶轮出口与蜗壳隔舌的距离,有资料认为该值为叶轮外径的十分之一时,脉动压力最小;把叶片的出口边缘做出倾角(比如做成20。

左右),来减小冲击;保证叶轮与蜗壳之间的间隙;提高泵的工作效率。

同时,对泵的出水流道等相关流道进行优化设计,减少水力损失引起的振动。

合理设计各种泵的进水段处的吸入室,以及压缩级的机械结构,减少压力脉冲,可以保证流场稳定,提高泵的工作效率,减小能量损失,也可以提高泵的振动动态性能的稳定性。

2)汽蚀振动是泵振动的很重要的一部分。

当泵的人口压力低于相应水温下的和压力时,会发生伴随剧烈振动的汽蚀。

减小汽蚀的措施包括:确定水泵的安装高度时,使装置的有效汽蚀余量大于泵的最小装置汽蚀余量;适当加大进水管直径,缩短进水管长度,减少管路附件,通流部分断面变化率力求最小,提高管壁的粗糙度;减少弯头数目和加大管道转弯角度;降低水泵的工作转速;采用抗空化汽蚀的材料,比如不锈钢,或在容易发生汽蚀的部位涂环氧树脂;进水流道设计要合理,力求平滑,使进人叶轮的水流速度和压力分布均匀,避免局部低压区;提高制造加工质量,避免因为叶片型线不准确造成局部流速过大,压降过多;提高泵装置的抗汽蚀性能,包括在泵的进口处设置水力增能器,增能器的结构,提高泵的吸人压头,从而提高泵装置汽蚀余量;增加几何倒灌高度;尽量减少进水管路水头损失;采用双吸式泵。

为了保证吸水管或压水管内无空气积存,吸水管的任何部分都不能高过水泵的进口。

为了减小人水口处的压力脉动,吸水管路直径应比泵人口直径大一个尺寸数量级,以便水流在泵人口处有一定的收缩,使流速分布比较均匀,同时还应当在泵人口前有一段直管,直管长度不小于管路直径的10倍。

注意创造良好进水条件,进水池内水流要平稳均匀,以消除伴随卡门涡旋的振动。

<3)基础的设计。

基础的重量应为泵和电机等机械重量总合的三倍以上;盛水池的基础应具有相当的强度;电机支架与基础最好做成一体或做成面接触;在泵和支架之间设置隔振垫或隔振器。

另外,在管路之间采用减振材料连接,减少管路布置,可以消除弹性接触和水力损失带来的振动。

从安装和维护过程作为消除水泵振动的方法1)轴和轴系。

安装前检查水泵轴、电机轴、传动轴有没有弯曲变形、质量偏心的情况,若有,则必须矫正或者进一步加工;检查与导轴承接触的传动轴,是否因弯曲而摩擦轴瓦或衬套而使自己受激力。

如果监测表明,轴实际上已经弯曲了,则矫正泵轴。

同时,检查轴的端间隙值,若该值过大,则表明轴承已磨损,需更换轴承。

2)叶轮。

动、静平衡是否合格。

3)联轴器。

螺栓间距是否良好;弹性柱销和弹性套圈结合不能过紧;联轴器内孔与轴的配合是否过松,若太松,可采用诸如喷涂的方法来减小联轴器内径直至其达到过渡配合所要求的尺寸,而后将联轴器固定在轴上。

4)滑动轴承。

间隙值是否符合标准;各处润滑是否良好;提高泵的轴瓦检修工艺水平,严格遵循先刮瓦、后研磨、再刮瓦的循环程序,保证轴瓦与轴颈的接触面积达到规定的标准:①泵轴颈与轴承间隙值,通过更换前后轴承、研磨、刮瓦、调整等手段达到合格。

②泵轴承体与轴承箱球面顶间隙值合格。

③泵轴轴承下瓦和泵轴轴颈接触点及接触角度:标准规定下瓦背与轴承座接触面积应在60%以上,轴颈处滑动接触面上的接触点密度保持在每平方厘米2一4个点,接触角度保持在60“一90”。

5)支架和底板。

及时发现有振动的支撑件的疲劳情况,防止因为强度和刚度降低造成固有频率下降。

《6)间隙和易损件。

保证电机轴承间隙合适;适当调整叶轮与涡壳之间的间隙;定期检查、更换叶轮口环、泵体口环、级间衬套、隔板衬套等易磨损零件。

相关文档
最新文档