2021新课标高中数学高考第一轮总复习综合测试题带答案解析

合集下载

2021年高考数学第一轮复习 课后练习册子及其答案和详细解析

2021年高考数学第一轮复习 课后练习册子及其答案和详细解析
高考Байду номын сангаас复习课程--2021 年高 考数学第一轮总复习
强化练习题
目录
第 1 讲 集合与简易逻辑...........................................................................................................................- 1 第 2 讲 函数及其性质经典精讲 ...............................................................................................................- 2 第 3 讲 函数及其性质 2019 高考真题赏析 .............................................................................................- 3 第 4 讲 函数及其性质 2018 高考真题赏析 .............................................................................................- 4 第 5 讲 平面向量.......................................................................................................................................- 5 第 6 讲 三角函数与三角恒等变换经典精讲 ............................................................

2021年高考数学一轮复习 第七章 数列 第43课 数列的通项公式(2)文(含解析)

2021年高考数学一轮复习 第七章 数列 第43课 数列的通项公式(2)文(含解析)

2021年高考数学一轮复习第七章数列第43课数列的通项公式(2)文(含解析)四、递推式为“”型的数列,构造等比数列求通项适用于递推式为“”型,可以在它的两边相加数,构造等比数数列,然后利用等比数列的通项公式求解例4.已知数列满足,,求【解析】,∴,即,.∴是以为首项,为公比的等比数列,∴,即.【变式】已知数列满足,求【解析】原等式可化为,∴,∴数列是以2为首项、以3为公比的等比数列,∴,∴.五.递推关系形如的数列,取倒数法方法:取倒数变形成【例5】已知数列满足,,求【解析】∵,∴,即∴数列是等差数列,,它的首项,公差∴,即.【变式】已知数列满足,,求.【解析】∵,∴,∴,即∴数列是等比数列,它的首项,公比为∴,∴.六、递推关系形如,两边同除以方法:①将原递推公式两边同除以,②得,③,得,④再利用“递推关系形如”方法来求.【例6】已知数列满足,,求【解析】在两边除以,得,令,则,∴,∴,∴.∴.【变式】已知数列满足,求.【解析】在原不等式两边同除以,得,不妨引入辅助数列且,则,∴,∴,∴.第43课: 数列的通项公式(2)的课后作业1.数列中,,,则 ( )A .1B .2C .3D .4解析:a 10=(a 10-a 9)+(a 9-a 8)+…+(a 2-a 1)+a 1=lg 109+lg 98+…+lg 21+1=lg ⎝ ⎛⎭⎪⎫109×98×…×21+1=2.故选B. 答案:B2. 已知数列的前项和为 ,且 ,则 ( )A .-16B .16C .31D .32解析:由已知可得时,,所以 ,所以是等比数列,公比为2,所以 .故选B. 答案:B3. 在数列中, ,,则为( )A .34B .36C .38D .40解析:因为na n +1=(n +1)a n +2,所以a n +1n +1-a n n =2n n +1=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以a 1010=a 1010-a 99+a 99-a 88+…+a 22-a 11+a 1 =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫19-110+⎝ ⎛⎭⎪⎫18-19+…+⎝⎛⎭⎪⎫1-12+2=3810,所以a 10=38.故选C. 答案:C4. 已知数列满足,,求【解析】,∴,即,.∴是以为首项,为公比的等比数列,∴,即.5. 已知数列满足,,求.【解析】∵,∴,∴∴数列是等差数列,它的首项,公差为∴,∴.6. 已知数列满足,,求【解析】在两边除以,得,令,则,∴,∴数列是等比数列,其中首项,公比∴,∴.∴.7. 已知数列满足,,(1)求证:数列是等比数列;(2)求数列的通项公式【解析】,令则,∴,解得.∴,∴,∴.-29002 714A 煊35699 8B73 譳38825 97A9 鞩I34360 8638 蘸26769 6891 梑O29448 7308 猈39718 9B26 鬦38740 9754 靔34191 858F 薏33744 83D0 菐q29810 7472 瑲。

2021届高考数学一轮复习第七章数列数学归纳法第5节数学归纳法选用含解析

2021届高考数学一轮复习第七章数列数学归纳法第5节数学归纳法选用含解析

第5节数学归纳法(选用)考试要求 1.了解数学归纳法的原理;2.能用数学归纳法证明一些简单的数学命题.知识梳理1。

数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n =k+1时命题也成立。

只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立。

2。

数学归纳法的框图表示[常用结论与易错提醒]1。

数学归纳法证题时初始值n0不一定是1.2.推证n=k+1时一定要用上n=k时的假设,否则不是数学归纳法.诊断自测1。

判断下列说法的正误。

(1)用数学归纳法证明等式“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边式子应为1+2+22+23.()(2)所有与正整数有关的数学命题都必须用数学归纳法证明.()(3)用数学归纳法证明问题时,归纳假设可以不用.()(4)不论是等式还是不等式,用数学归纳法证明时,由n=k到n=k+1时,项数都增加了一项。

()解析对于(2),有些命题也可以直接证明;对于(3),数学归纳法必须用归纳假设;对于(4),由n=k到n=k+1,有可能增加不止一项.答案(1)√(2)×(3)×(4)×2。

(选修2-2P99B1改编)在应用数学归纳法证明凸n边形的对角线为错误!n(n-3)条时,第一步检验n等于()A.1B.2C。

3 D.4解析三角形是边数最少的凸多边形,故第一步应检验n=3。

答案C3。

已知f(n)=错误!+错误!+错误!+…+错误!,则()A.f(n)中共有n项,当n=2时,f(2)=错误!+错误!B.f(n)中共有n+1项,当n=2时,f(2)=错误!+错误!+错误!C.f(n)中共有n2-n项,当n=2时,f(2)=错误!+错误!D。

f(n)中共有n2-n+1项,当n=2时,f(2)=错误!+错误!+错误!解析f(n)共有n2-n+1项,当n=2时,错误!=错误!,错误!=错误!,故f(2)=错误!+错误!+错误!.答案D4.用数学归纳法证明1+错误!+错误!+…+错误!<n(n∈N,且n〉1),第一步要证的不等式是________。

2021·一轮数学参考答案(新高考)

2021·一轮数学参考答案(新高考)

$ $ 件&则)&4&所以
!'*&'"&所以 !%*&!+&
*&#&故 *&0&
满足题意

*
!!解析 "!#正确!因为%,!包含于%*!&所以/;0&但0+;/&所以 6 不存在!
/ 是0 的充分不必要条件! ""#错误!所有长方形的对角线相等&故命题是全称命题! "##正确!当0是/ 的必要条件时&有0</&故正确! "$#错误!有些量词可以省略&有些量词不能省略! 答案 "!#)"""#*""##)""$#*
6 6 6 6
3'#/"*'!& 2*%!/$& 解得'!/*-"!综上得**'!!故选 ,项! 4"*'!-*%!&
考点精讲
6 递进题组
!!'"解析
由已知得"0+&则"$
&+&所以$&+&于是""&!&即"&!
6 6
!!)'&"解析 依据子集定义&任何集合都是自身的子集&1 项正 确(单元素+构成的集合含一个元素+&不是空集&. 项错误(
6 槡*&解得*&+或#!故选 .项!

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n次独立重复试验与二项分布理20210

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n次独立重复试验与二项分布理20210

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n 次独立重复试验与二项分布理2021051541341.下列表中能成为随机变量X 的分布列的是( )答案 C2.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( ) A .1,2,…,6 B .1,2,…,7 C .1,2,…,11 D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.3.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )X 0 1 2 3 P0.1mn0.1 A.-0.2 C .0.1 D .-0.1答案 B解析 由m +n +0.2=1,m +2n =1.2,可得m =n =0.4,m -n2=0.2.4.已知随机变量X 的分布列为P(X =k)=12k ,k =1,2,…,则P(2<X≤4)等于( )A.316B.14C.116D.516答案 A解析 P(2<X≤4)=P(X =3)+P(X =4)=123+124=316.5.若随机变量X 的分布列为则当P(X<a)=0.8A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X<a)=0.8时,实数a 的取值范畴是(1,2].6.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ) A .25 B .10 C .7 D .6答案 C解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.7.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,竞赛规定:关于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮竞赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了;X =0,甲没抢到题,或甲抢到2题,但答时一对一错;X =1时,甲抢到1题且答对或甲抢到3题,且一错两对;X =2时,甲抢到2题均答对;X =3时,甲抢到3题均答对.8.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=________. 答案310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 32C 42C 42C 62=15,P (ξ=1)=C 31C 42+C 32C 21C 41C 42C 62=715,又P(ξ=3)=C 31C 42C 62=130,∴P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-15-715-130=310.9.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列与数学期望.答案 (1)67 (2)175解析 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A , 则P(A)=C 21C 53+C 22C 52C 74=67. 因此取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P(X =1)=C 33C 74=135,P(X =2)=C 43C 74=435,P(X =3)=C 53C 74=27,P(X =4)=C 63C 74=47.则随机变量X 的分布列是故随机变量X 的数学期望E(X)=1×35+2×35+3×7+4×7=5.10.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列. 答案 (1)23(2)略解析 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由因此等可能地抽取,因此该顾客中奖的概率 P =C 41C 61+C 42C 102=3045=23.(或用间接法,即P =1-C 62C 102=1-1545=23).(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P(X =0)=C 40C 62C 102=13,P(X =10)=C 31C 61C 102=25,P(X =20)=C 32C 102=115,P(X =50)=C 11C 61C 102=215,P(X =60)=C 11C 31C 102=115.因此X 的分布列为:11.在103件,求:(1)取出的3件产品中一等品件数X 的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率. 答案 (1)略 (2)31120解析 (1)由于从10件产品中任取3件的结果数为C 103,从10件产品中任取3件,其中恰有k 件一等品的结果数为C 3kC 73-k,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P(X =k)=C 3kC 73-kC 103,k =0,1,2,3.因此随机变量X 的分布列是(2)设“取出的31件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P(A 1)=C 31C 32C 103=340,P(A 2)=P(X =2)=740,P(A 3)=P(X =3)=1120,∴取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A 1)+P(A 2)+P(A 3)=340+740+1120=31120. 12.(2021·大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的概率分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的概率分布列. 答案 (1)略 (2)略解析 (1)由题意知X 的可能取值为0,1,2,3, 则P(X =0)=(1-12)×(1-13)×(1-23)=19,P(X =1)=12×(1-13)×(1-23)+(1-12)×13×(1-23)+(1-12)×(1-13)×23=718,P(X =2)=12×13×(1-23)+(1-12)×13×23+12×(1-13)×23=718,P(X =3)=12×13×23=19.∴X 的分布列为(2)∵得分Y =5X +2(3∵X 的可能取值为0,1,2,3.∴Y 的可能取值6,9,12,15.则P(Y =6)=P(X =0)=19,P(Y =9)=P(X =1)=718,P(Y =12)=P(X =2)=718,P(Y =15)=P(X =3)=19.∴Y 的分布列为13.力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,若每位参赛选手演唱完之前有导师为其转身,则该选手能够选择加入为其转身的导师的团队中同意指导训练.已知某期《中国新歌声》,6位选手演唱完后,四位导师为其转身的情形如下表所示:现从这6(1)求选出的2人导师为其转身的人数和为4的概率;(2)记选出的2人导师为其转身的人数之和为X ,求X 的分布列及数学期望E(X). 答案 (1)15(2)E(X)=5解析 (1)设6位选手中,A 有4位导师为其转身,B ,C 有3位导师为其转知,D ,E 有2位导师为其转身,F 只有1位导师为其转身.从6人中随机抽取两人有C 62=15种情形,其中选出的2人导师为其转身的人数和为4的有C 22+C 21C 11=3种,∴所求概率为P =315=15.(2)X 的所有可能取值为3,4,5,6,7.P(X =3)=C 21C 11C 62=215;P(X =4)=15;P(X =5)=1+C 21C 21C 62=515=13;P(X =6)=C 21C 11+C 22C 62=315=15;P(X =7)=C 21C 11C 62=215. ∴X 的分布列为X 3 4 5 6 7 P215151315215E(X)=3×215+4×5+5×3+6×5+7×15=5.1.由于电脑故障,使得随机变量X 的分布列中部分数据丢失(以“x,y ”代替),其分布列如下:X 1 2 3 4 5 6 P0.200.100.x50.100.1y0.20答案 2,5解析 由于0.20+0.10+(0.1x +0.05)+0.10+(0.1+0.01y)+0.20=1,得10x +y =25,又因为x ,y 为正整数,故两个数据依次为2,5.2.一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y ,则随机变量Y 的分布列是________. 答案Y 1 2 3 4 P15152515解析 Y P(Y =1)=15,P(Y =2)=15,P(Y =3)=25,P(Y =4)=15.∴Y 的分布列为3.一个袋子中装有74,黄球3个,编号分别为2,4,6,从袋中任取4个球(假设取到任何一个球的可能性相同). (1)求取出小球中有相同编号的概率;(2)记取出的小球的最大编号为X ,求随机变量X 的分布列. 答案 (1)1935(2)略解析 (1)设“取出的小球中有相同编号的”为事件A ,编号相同可分成一个相同和两个相同,则P(A)=2(C 21C 31+C 32)+1C 74=1935. (2)随机变量X 的可能取值为:3,4,6. P(X =3)=1C 74=135,P(X =4)=C 21C 43+C 42C 74=25, P(X =6)=C 63C 74=47,随机变量X 的分布列为:4.一袋中装有102个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 答案 (1)5个 (2)略解析 (1)记“从袋中任意摸出2个球,至少得1个白球”为事件A ,设袋中白球的个数为x ,则P(A)=1-C 10-x 2C 102=79,得到x =5.故白球有5个.(2)X 服从超几何分布,P(X =k)=C 5kC 53-kC 103,k =0,1,2,3.因此可得其分布列为P112 512 512 1125.(2020·福建,理)该银行卡将被锁定.小王到该银行取钱时,发觉自己不记得了银行卡的密码,但能够确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则终止尝试;否则连续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 答案 (1)12 (2)分布列略,E(X)=52解析 (1)设“当天小王的该银行卡被锁定”的事件为A , 则P(A)=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P(X =1)=16,P(X =2)=56×15=16,P(X =3)=56×45×1=23.因此X 的分布列为X 1 2 3 P161623因此E(X)=1×16+2×16+3×3=2.6.某中学动员学生在春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列.答案 (1)2.3 (2)4199(3)略解析 依照统计图知参加活动1次、2次、3次的学生数分别为10,50,40.(1)该合唱团学生参加活动的人均次数为x -=1×10+2×50+3×40100=2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率P =C 102+C 502+C 402C 1002=4199. (3)ξ的取值为0,1,2,ξ的分布列为7.(2020·重庆)摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.依照摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列. 答案 (1)1835(2)略解析 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P(A 1)=C 31C 42C 73=1835.(2)X 的所有可能的值为:0,10,50,200, 则P(X =200)=P(A 3B 1)=P(A 3)P(B 1)=C 33C 73·13=1105,P(X =50)=P(A 3B 0)=P(A 3)P(B 0)=C 33C 73·23=2105,P(X =10)=P(A 2B 1)=P(A 2)P(B 1)=C 32C 41C 73·13=12105=435,P(X =0)=1-1105-2105-435=67.综上知X 的分布列为8.试销终止后(3件,当天营业终止后检查存货,若发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)设X 为翌日开始营业时该商品的件数,求X 的分布列和均值. 答案 (1)310 (2)114解析 (1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P(X =2)=P(“当天商品销售量为1件”)=520=14;P(X =3)=P(“当天商品销售量为0件”)+P(“当天商品销售量为2件”)+P(“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为X 的均值为E(X)=2×14+3×34=4.9.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).解析 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,因此共有8C 32对相交棱,因此P(ξ=0)=8C 32C 122=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C 122=111. 因此P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611.因此随机变量ξ的分布列是因此E(ξ)=1×611+10.(2020·贵州遵义联考)2021年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家差不多上通过层层选择才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采纳分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:(1)(2)当产品中的微量元素x ,y 满足x≥175,且y≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望). 答案 (1)35 (2)14 (3)45解析 (1)乙厂生产的产品总数为5÷1498=35.(2)样品中优等品的频率为25,估量乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i)=C 2iC 32-iC 52(i =0,1,2), ξ的分布列为3 10+1×35+2×110=45.均值E(ξ)=0×。

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

2021年新高考数学一轮专题复习第09讲-对数与对数函数(解析版)

(2)由题意,易知 a>1.
在同一坐标系内作出 y=(x-1)2,x∈(1,2)及 y=logax 的图象.
若 y=logax 过点(2,1),得 loga2=1,所以 a=2. 根据题意,函数 y=logax,x∈(1,2)的图象恒在 y=(x-1)2,x∈(1,2)的上方. 结合图象,a 的取值范围是(1,2]. 规律方法 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高 点、最低点等)排除不符合要求的选项. 2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 考点三 对数函数的性质及应用 【例 3-1】 已知函数 f(x)=ln x+ln(2-x),则( )
调性时,一定要明确底数 a 的取值对函数增减性的影响,及真数必须为正的限制条件.
[方法技巧]
1.对数值取正、负值的规律
当 a>1 且 b>1 或 0<a<1 且 0<b<1 时,logab>0;
当 a>1 且 0<b<1 或 0<a<1 且 b>1 时,logab<0.
2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化
2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.
1,-1
3.对数函数 y=logax(a>0,且 a≠1)的图象过定点(1,0),且过点(a,1),a
,函数图象只在
第一、四象限.
三、 经典例题
考点一 对数的运算
【例 1-1】
(1)计算:
lg1-lg 25 4
÷100-1=________.

2021届全国高考数学一轮复习知识巩固AB卷:专题13 统计、统计案例与概率(A卷)(含解析)

2021届全国高考数学一轮复习知识巩固AB卷:专题13 统计、统计案例与概率(A卷)(含解析)

2021年全国高考数学一轮复习知识巩固AB卷(理科)专题13 统计、统计案例与概率(A卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2019年夏季来临,某品牌饮料举行夏季促销活动,瓶盖内部分别印有标识“谢谢惠顾”、A B C标识的饮料数量之比标识B“再来一瓶”以及标识C“品牌纪念币一枚”,每箱中印有,,为3:1:2,若顾客购买了一箱(12瓶)该品牌饮料,则兑换“品牌纪念币”的数量为()A.2 B.4 C.6 D.82.一般来说,一个班级的学生学号是从1开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3、21、17、19、36、8、32、24,则该班学生总数最可能为()A.39人B.49人C.59人D.超过59人3.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编 从中抽取60个样本,如下提供随机数表的第4行到第6行:号分别为001,002,,599,60032 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号()A.522B.324C.535D.5784.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A、B、C、D、E五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( ) A .获得A 等级的人数减少了 B .获得B 等级的人数增加了1.5倍 C .获得D 等级的人数减少了一半D .获得E 等级的人数相同5.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s <>6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .9007.某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )A .甲型号手机在外观方面比较好B .甲、乙两型号的系统评分相同C .甲型号手机在性能方面比较好D .乙型号手机在拍照方面比较好8.某企业的一种商品的产量与单位成本数据如下表:产量x (万件) 14 16 182022单位成本y (元/件)12107a3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( ) A .4.5 B .5C .5.5D .69.相关变量的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程,相关系数为;方案二:剔除点,根据剩下数据得到线性回归直线方程,相关系数为.则( )A .B .C .D .10.为了判断高中生选修理科是否与性别有关.现随机抽取50名学生,得到如下列联表:根据表中数据,得到的观测值()22501320107 4.84423272030K ⨯⨯-⨯=≈⨯⨯⨯,若已知,,则认为选修理科与性别有关系出错的可能性约为( ) A .B .C .D .11.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( ) A .12B .13C .14D .1512.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是( ) A .310B .23C .35D .45第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.某公司对2019年14月份的获利情况进行了数据统计,如下表所示:月份x 123 4利润y /万元5 6 6.58利用线性回归分析思想,预测出2019年8月份的利润为11.6万元,则y 关于x 的线性回归方程为__________.14.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率最多不超过______(填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++15.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为_____.16.如图,在边长为2的正方形中,以的中点为圆心,以为半径作圆弧,交边于点,从正方形中任取一点,则该点落在扇形中的概率为_____.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)本市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼.摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[25,85]之间,根据统计结果,做出频率分布直方图如图:(1)根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中评出20个最佳作品,并邀请作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组应抽取的人数;年龄[25,35)[35,45)[45,55)[55,65)[65,75)[75,85]人数②若从较年轻的前三组作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[35,45)的概率.18.(12分)国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):规定:实心球投掷距离在[)9,13之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值ξ,将频率视为概率.(1)求ξ,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;(2)现在从实心球投掷距离在[)5,7,[)13,15之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在[)5,7内的概率.19.(12分)已知某商品每件的生产成本x (元)与销售价格y (元)具有线性相关关系,对应数据如表所示:(1)求出y 关于x 的线性回归方程y bx a =+;(2)若该商品的月销售量z (千件)与生产成本x (元)的关系为221z x =-+,[2,10]x ∈, 根据(1)中求出的线性回归方程,预测当x 为何值时,该商品的月销售额最大.附:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.20.(12分)随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100分)绘制了如下茎叶图:(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;(2)求50名学员满意度评分的中位数m,并将评分不超过m、超过m分别视为“基本满意”、“非常满意”两个等级.①利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?②根据茎叶图填写下面的列联表:并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()20.0100.0050.0016.6357.87910.828P K kk≥.21.(12分)在边长为1的正六边形ABCDEF中,其中心为点O.(1)在正六边形ABCDEF的边上任取一点P,求满足OP在OE上的投影大于12的概率;(2)从A,B,C,D,E,F这六个点中随机选取两个点,记这两个点之间的距离为x,求x大于等于3的概率.22.(12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y(万人)与年份x的数据:第x年 1 2 3 4 5 6 7 8 9 10 旅游人数y(万人)300 283 321 345 372 435 486 527 622 800该景点为了预测2021年的旅游人数,建立了y与x的两个回归模型:模型①:由最小二乘法公式求得y 与x 的线性回归方程50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型②的回归方程bx y ae =.(a 精确到个位,b 精确到0.01). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②bx y ae =1021()iii y y =-∑ 30407 14607参考公式、参考数据及说明: ①对于一组数据()()()1122,,,,,,n n v w v w v w ,其回归直线w v αβ=+的斜率和截距的最小二乘法估计分别为121()(),()niii nii w w v v w v v v βαβ==--==--∑∑.②刻画回归效果的相关指数22121()1()nii i n ii yy R yy ==-=--∑∑.③参考数据: 5.46235e ≈, 1.43 4.2e ≈.x y u1021()ii xx =-∑()()101iii x x y y =--∑ ()()101iii x x uu =--∑表中1011ln ,10i i i i u y u u ===∑.专题13 统计、统计案例与概率 答 案+解 析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】根据题意,“品牌纪念币一枚”的瓶数占全部瓶数的三分之一,即11243⨯=. 2.【答案】A【解析】因为随机抽样中,每个个体被抽到的机会都是均等的,所以110,1120,2130,3140,…,每组抽取的人数,理论上应均等;又所抽取的学生的学号按从小到大顺序排列为3、8、17、19、21、24、32、36,恰好使110,1120,2130,3140四组中各有两个,因此该班学生总数应为40左右,故选A . 3.【答案】D【解析】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,578合适,则满足条件的6个编号为436,535,577,348,522,578, 则第6个编号为578,故选D . 4.【答案】B【解析】设2016年参加考试x 人,则2018年参加考试2x 人,根据图表得出两年各个等级的人数如下图所示:由图可知A ,C ,D 选项错误,B 选项正确,故本小题选B . 5.【答案】A【解析】由题意,根据品滚石的计算公式,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦()()()2221248170707050050x x x ⎡⎤=-+-++-+⎣⎦, ()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦, 故275s <.故选A . 6.【答案】A【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为0.03100.3⨯=,301000.3n ∴==,本题正确选项A . 7.【答案】C【解析】从图中可得:甲型号手机在外观方面评分为90,乙型号手机在外观方面评分为85, 故A 正确;甲型号手机在系统方面评分为95,乙型号手机在系统方面评分也为95,故B 正确; 甲型号手机在性能方面评分为85,乙型号手机在外观方面评分为90,故C 错误; 甲型号手机在拍照方面评分为85,乙型号手机在拍照方面评分为90,故D 正确; 故选C . 8.【答案】B 【解析】1416182022901855x,1210733255a ay , x y ,在线性回归方程ˆ 1.1528.1yx =-+上, 1.151828.17.4y ,则32=7.45a,解得5a =,故选B . 9.【答案】D【解析】由散点图得负相关,所以,因为剔除点后,剩下点数据更具有线性相关性,更接近,所以.故选D .10.【答案】B【解析】由观测值,对照临界值得4.844>3.841,由于P (X 2≥3.841)≈0.05,∴认为选修理科与性别有关系出错的可能性为5%.故选B . 11.【答案】C【解析】(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以甲、乙将贺年卡送给同一人丁的情况一种, 概率是14,故选C . 12.【答案】C【解析】由题意,知()00f x ≥,即200280x x -++≥,解得{}0024x x -≤≤,所以由长度的几何概型可得概率为4(2)36(4)5P --==--,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】ˆ0.954yx =+ 【解析】设线性回归方程为ˆˆˆybx a =+,因为52x =,518y =, 由题意可得551ˆ288ˆ11.6ˆˆb a b a⎧+=⎪⎨⎪+=⎩,解得ˆ0.95b =,ˆ4a =,即ˆ0.954y x =+,故答案为ˆ0.954yx =+. 14.【答案】5%【解析】由题意,计算观测值()2210010302040 4.762 3.84150503070K ⨯⨯-⨯==>⨯⨯⨯,参照附表,可得:在犯错误的概率不超过5%的前提下,认为“小动物是否被感染与有没有服用疫苗有关”. 故答案为5%.15.【答案】29【解析】试验发生包含的事件(k ,b )的取值所有可能的结果有:(﹣1,﹣2);(﹣1,1);(﹣1,2);(1,﹣2);(1,1);(1,2);(2,﹣2);(2,1);(2,2)共9种结果.而当00k b <>⎧⎨⎩时,直线不经过第三象限,符合条件的(k ,b )有2种结果,∴直线不过第三象限的概率29P =,故答案为29.16.【答案】π8【解析】如图,正方形面积,因为,故,所以π4AOM ∠=, 同理π4NOB ∠=,所以π2MON ∠=, 又,∴()212222ππMONS =⨯⨯=扇形. ∴从正方形中任取一点,则该点落在扇形中的概率为8ππ24P ==.故答案为π8.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)平均数60,中位数4557;(2)①详见解析,②35. 【解析】(1)在频率分布直方图中,这100位参赛者年龄的样本平均数300.05400.1500.15x =⨯+⨯+⨯600.35700.2800.1560+⨯+⨯+⨯=.设中位数为m ,由0.050.10.15(55)0.350.5m +++-⨯=,解得4557m =(或答55.57). (2)①每组应各抽取人数如下表:②根据分层抽样的原理,年龄在前三组内分别有1人、2人、3人,设在第一组的是a ,在第二组的是1b ,2b ,在第三组的是1c ,2c ,3c ,列举选出2人的所有可能如下:1(,)a b ,2(,)a b ,1(,)a c ,2(,)a c ,3(,)a c ,12()b b ,,11(,)b c ,12(,)b c ,13(,)b c ,21(,)b c ,22(,)b c ,23(,)b c ,12(,)c c ,13(,)c c ,23(,)c c ,共15种情况.设“这2人至少有一人的年龄在区间[35,45]”为事件A , 则93()155P A ==. 18.【答案】(1)平均值9.77ξ=,百分比62%;(2)0.6. 【解析】(1)根据平均值的定义得92340226681012149.77100100100100100ξ=⨯+⨯+⨯+⨯+⨯=, 因为实心球投掷距离在[)9,13之内时,测试成绩为“良好”,所以40220.6262%100+==. (2)实心球投掷距离在[)5,7,[)13,15之内的男生分别有9,6人,用分层抽样的方法抽取5人,则分别抽取3,2人.从这5人中随机抽取3人参加提高体能的训练的总数为35C 10=,在被抽取的3人中恰有两人的实心球投掷距离在[)5,7的总数为2132C C 6=, 所以在被抽取的3人中恰有两人的实心球投掷距离在[)5,7内的概率为60.610p ==. 19.【答案】(1)ˆ46y x =-;(2)预计当6x =时,该商品的销售额最大为162元.【解析】(1)根据题意,5678 6.54x +++==,15172127204y +++==,41515617721827540i ix y=⨯+⨯+⨯+⨯=∑,42222215678174i x =+++=∑,所以414222145404 6.52041744 6.54i ii x y x yb x x--⨯⨯===-⨯-∑∑,所以204 6.56a y bx =-=-⨯=-, 所以y 关于x 的线性回归方程ˆ46yx =-. (2)依题意,销售额2()(221)(46)896126([2,10])f x x x x x x =-+-=-+-∈. 其对称轴为9662(8)x =-=⨯-,又因为()f x 为开口向下的抛物线,故当6x =时()f x 最大, 最大值()836966126162f x =-⨯+⨯-=. 答:预计当6x =时,该商品的销售额最大为162元.20.【答案】(1)对线下培训满意度更高;(2)①84人,②有把握. 【解析】(1)对线下培训满意度更高.理由如下:①由茎叶图可知:在线上培训中,有72%的学员满意度评分至多79分,在线下培训中,有72%的学员评分至少80分.因此学员对线下培训满意度更高.②由茎叶图可知:线上培训满意度评分的中位数为76分,线下评分的中位数为85分.因此学员对线下培训满意度更高.③由茎叶图可知:线上培训的满意度评分平均分高于80分;线下培训的平均分低于80分,因此学员对线下培训满意度更高.④由茎叶图可知:线上培训的满意度评分在茎7上的最多,关于茎7大致呈对称分布;线下培训的评分分布在茎8上的最多,关于茎8大致呈对称分布,又两种培训方式打分的分布区间相同,故可以认为线下培训评分比线上培训打分更高,因此线下培训的满意度更高. 以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知798079.52m +==. ①参加线上培训满意度调查的25名学员中共有7名对线上培训非常满意,频率为725, 又本次培训共300名学员,所以对线上培训满意的学员约为73008425⨯=人. ②列联表如下:于是2250(181877)9.6825252525k ⨯-⨯==⨯⨯⨯,因为9.687.879>,所以有99.5%的把握认为学员对两种培训方式的满意度有差异. 21.【答案】(1)13;(2)35. 【解析】(1)OD ,OF 在OE 上的投影为cos cos OD OD OE OF OF OE 〈〉=〈〉,,11cos602=⨯︒=, ∴当P 在线段FE (除点F )和线段ED (除点D )上运动时,OP 在OE 上的投影大于12,∴OP 在OE 上的投影大于12的概率2163p ==.(2, 选出的两个点不相邻有9种,(A ,C ),(A ,D ),(A ,E ),(B ,D ),(B ,E ),(B ,F ),(C ,E ), (D ,F ),(C ,F );六个点中随机选取两个点,总共有15种:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F );(93155P x ∴≥==. 22.【答案】(1)0.11235x y e =;(2)见解析. 【解析】(1)对bxy ae =取对数,得ln ln y bx a =+, 设ln u y =,ln c a =,先建立u 关于x 的线性回归方程,()()()10110219.000.10883iii i i x x u u b x x==--==≈-∑∑, 6.050.108 5.5 5.456 5.46c u bx =-≈-⨯=≈,5.46235c a e e =≈≈,∴模型②的回归方程为0.11235x y e =.(2)由表格中的数据,有30407>14607,即101022113040714607()()i i i i y y y y ==>--∑∑,即10102211304071460711()()iii i y y y y ==-<---∑∑,2212R R <,模型①的相关指数21R 小于模型②的22R ,说明回归模型②的拟合效果更好.2021年时,13x =,预测旅游人数为0.1113 1.43235235235 4.2987y e e ⨯==≈⨯=(万人).。

届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

第三节等比数列及其前n项和[最新考纲][考情分析][核心素养]1.理解等比数列的概念。

2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系。

等比数列的基本运算,等比数列的判断与证明,等比数列的性质与应用仍是2021年高考考查的热点,三种题型都有可能出现,分值为5~12分.1.数学运算2.逻辑推理‖知识梳理‖1.等比数列的有关概念(1)定义①文字语言:从错误!第2项起,每一项与它的前一项的错误!比都等于错误!同一个常数.②符号语言:错误!错误!=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么错误!G叫做a 与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G26ab.2.等比数列的有关公式(1)通项公式:a n=错误!a1q n-1.(2)前n项和公式3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*).(2)对任意的正整数m,n,p,q,若m+n=p+q,则错误!a m·a n =错误a p·a q.特别地,若m+n=2p,则a m·a n=a2p.(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)213S m(S3m-S2m)(m∈N*,公比q≠1).(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是错误!等比数列.(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为错误!q k.►常用结论1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a2,n},{a n·b n},错误!仍是等比数列.2.一个等比数列各项的k次幂仍组成一个等比数列,新公比是原公比的k次幂.3.{a n}为等比数列,若a1·a2·…·a n=T n,则T n,错误!,错误!,…成等比数列.4.当q≠0且q≠1时,S n=k-k·q n(k≠0)是{a n}成等比数列的充要条件,这时k=错误!.5.有穷等比数列中,与首末两项等距离的两项的积相等,特别地,若项数为奇数时,还等于中间项的平方.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.()(2)三个数a,b,c成等比数列的充要条件是b2=ac。

2021届高考一轮复习理科数学综合检测题(全国卷)附答案解析

2021届高考一轮复习理科数学综合检测题(全国卷)附答案解析

2021届高考一轮复习综合检测一(全国卷)数 学(理科)考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2-xx >0,B ={x |x ≥1},则A ∩B 等于( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}2.(2019·湖南省桃江县第一中学模拟)复平面内表示复数z =6+2i2-i 的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.(2019·四川省成都市外国语学校期中)函数f (x )=log121x +1的图象大致是( )4.如图,在△OAB 中, P 为线段AB 上的一点, OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =145.若m =log 312,n =7-0.1,p =log 425,则m ,n ,p 的大小关系为( )A .m >p >nB .p >n >mC .p >m >nD .n >p >m6.阅读如图所示的程序框图,运行相应的程序,则输出的S 的值为( )A .15B .37C .83D .1777.在公比为q 的正项等比数列{a n }中,a 4=1,则当2a 2+a 6取得最小值时,log 2q 等于( ) A.14 B .-14 C.18 D .-188.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为( )A.332πB.33π2C.322πD.3π29.如图,长方体ABCD —A 1B 1C 1D 1中,∠DAD 1=45°,∠CDC 1=30°,那么异面直线AD 1与DC 1所成角的余弦值是( )A.28B.38C.24D.3410.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,且a sin 2B +b sin A =0,若a +c =2,则边b 的最小值为( ) A. 2 B .3 3 C .2 3 D.311.已知直线l 的倾斜角为45°,直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右两支分别交于M ,N 两点,且MF 1,NF 2都垂直于x 轴(其中F 1,F 2分别为双曲线C 的左、右焦点),则该双曲线的离心率为( ) A. 3 B. 5 C.5-1 D.5+1212.(2020·四川省遂宁市射洪县射洪中学月考)已知函数f (x )=x ln x +ax +3,g (x )=x 3-x 2,若∀x 1,x 2∈⎣⎡⎦⎤13,2,f (x 1)-g (x 2)≥0,则实数a 的取值范围为( ) A .[4,+∞) B .[3,+∞) C .[2,+∞) D .[1,+∞)第Ⅱ卷(非选择题 共90分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (a )=-1成立的a 的值是________.14.(2x +x )4的展开式中x 3的系数是________.15.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为________. 16.已知函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且对x ∈R ,f (x )≥f ⎝⎛⎭⎫π3恒成立,若函数y =f (x )在[0,a ]上单调递减,则a 的最大值是________.三、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式;(2)设b n =(-1)n a n ,求数列{b n }前2 020项的和.18.(12分)如图,在五边形ABSCD中,四边形ABCD为长方形,△SBC为边长为2的正三角形,将△SBC沿BC折起,使得点S在平面ABCD上的射影恰好在AD上.(1)当AB=2时,证明:平面SAB⊥平面SCD;(2)若AB=1,求平面SCD与平面SBC所成二面角的余弦值的绝对值.19.(12分)某工厂欲购买软件服务,有如下两种方案:方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.(1)设日收费为y元,每天软件服务的次数为x,试写出两种方案中y与x的函数关系式;(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.20.(12分)(2019·甘青宁联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,焦距为2 3.(1)求C 的方程;(2)若斜率为-12的直线l 与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点.证明:直线OP ,PQ ,OQ 的斜率依次成等比数列.21.(12分)已知函数f (x )=ln x ,g (x )=x -1.(1)当k 为何值时,直线y =g (x )是曲线y =kf (x )的切线; (2)若不等式g (x )≥af (x )在[1,e]上恒成立,求a 的取值范围.请在第22~23题中任选一题作答.22.(10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=6cos θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B ,若点P 的坐标为(2,1),求|P A |+|PB |的最小值.23.(10分)设函数f (x )=|2x -a |+|x +a |(a >0). (1)当a =1时,求f (x )的最小值;(2)若关于x 的不等式f (x )<5x +a 在x ∈[1,2]上有解,求实数a 的取值范围.解析附后答案精析1.C [由集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪2-xx >0,可知A ={x |0<x <2},因为B ={x |x ≥1},所以A ∩B ={}x |1≤x <2,故选C.] 2.A [∵z =6+2i 2-i =(6+2i )(2+i )(2-i )(2+i )=10+10i5=2+2i ,∴z 在复平面内对应的点(2,2)在第一象限.]3.D [函数定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪1x +1>0,即{x |x >-1},所以排除A ,B 选项;因为f (x )=log 12x为单调递减函数,f (x )=1x +1在[-1,+∞)时为单调递减函数,由复合函数单调性可知f (x )=log 121x +1为单调递增函数,所以排除C 选项.综上可知,D 为正确选项.]4.A [由题可知OP →=OB →+BP →, 又BP →=2P A →,所以OP →=OB →+23B A →=OB →+23(OA →-OB →)=23O A →+13 OB →,所以x =23,y =13,故选A.]5.B [log 312∈(-1,0),7-0.1∈(0,1),log 425=log 25∈(2,3),故p >n >m .]6.B [执行程序,可得S =0,i =1,不符合,返回循环;S =2×0+1=1,i =3,不符合,返回循环; S =2×1+3=5,i =5,不符合,返回循环; S =2×5+5=15,i =7,不符合,返回循环; S =2×15+7=37,i =9,符合,输出S =37. 故选B.]7.A [2a 2+a 6≥22a 2a 6=22a 24=22,当且仅当q 4=2时取等号,所以log 2q =log 2214=14,故选A.]8.A [设圆的半径为r ,则圆的面积S 圆=πr 2,正六边形的面积S正六边形=6×12×r 2×sin60°=332r 2,所以向圆中随机投掷一个点,该点落在正六边形内的概率P =S 正六边形S 圆=332r 2πr 2=332π,故选A.]9.C [由长方体∠DAD 1=45°,∠CDC 1=30°, 设AD =DD 1=1,CD = 3.连接BC 1,BD .由AD 1∥BC 1,所以异面直线AD 1与DC 1所成的角等于∠BC 1D . 在△BDC 1中,BC 1=2,BD =2,C 1D =2, 由余弦定理可得cos ∠BC 1D =C 1D 2+BC 21-BD22C 1D ·BC 1=22+2-222×2×2=24,所以异面直线AD 1与DC 1所成角的余弦值是24.] 10.D [根据a sin 2B +b sin A =0,由正弦定理可得sin A sin 2B +sin B sin A =0⇒cos B =-12,∵0<B <π,∴B =2π3, A +C =π3.由余弦定理可得b 2=a 2+c 2-2ac ·cos B =a 2+c 2+ac =(a +c )2-ac =4-ac . ∵a +c =2≥2ac ,当且仅当a =c =1时取等号, ∴ac ≤1 .∴b 2=4-ac ≥3, 即b ≥ 3. 故边b 的最小值为 3.]11.D [∵直线l 与双曲线的左、右两支分别交于M ,N 两点,且MF 1,NF 2都垂直于x 轴, ∴根据双曲线的对称性,设点M (-c ,-y ),N (c ,y )(y >0),则c 2a 2-y 2b 2=1,即|y |=c 2-a 2a ,且|MF 1|=|NF 2|=|y |, 又∵直线l 的倾斜角为45°, ∴直线l 过坐标原点,|y |=c , ∴ c 2-a 2a =c ,整理得c 2-ac -a 2=0,即e 2-e -1=0,解方程得e =5+12,e =1-52(舍).] 12.D [由题意知,对于∀x 1,x 2∈⎣⎡⎦⎤13,2,f (x 1)-g (x 2)≥0,可得f (x )在⎣⎡⎦⎤13,2上的最小值不小于g (x )在⎣⎡⎦⎤13,2上的最大值, 由g (x )=x 3-x 2,则g ′(x )=3x 2-2x =3x ⎝⎛⎭⎫x -23, 可得当x ∈⎣⎡⎭⎫13,23时,g ′(x )<0,g (x )单调递减,当x ∈⎝⎛⎦⎤23,2时,g ′(x )>0,g (x )单调递增,又由g ⎝⎛⎭⎫13=-227,g (2)=4, 即g (x )在区间⎣⎡⎦⎤13,2上的最大值为4, 所以f (x )=x ln x +ax +3≥4在⎣⎡⎦⎤13,2上恒成立, 即a ≥x -x 2ln x 在⎣⎡⎦⎤13,2上恒成立, 令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤13,2, 则h ′(x )=1-2x ln x -x ,令p (x )=1-2x ln x -x ,则p ′(x )=-3-2ln x , 当x ∈⎣⎡⎦⎤13,2时,p ′(x )<0,函数p (x )单调递减, 即h ′(x )在⎣⎡⎦⎤13,2上单调递减,又由h ′(1)=0,所以h ′(x )在⎣⎡⎭⎫13,1上大于0,在(1,2]上小于0, 所以h (x )在⎣⎡⎭⎫13,1上单调递增,在(1,2]上单调递减, 所以h (x )在⎣⎡⎦⎤13,2上的最大值为h (1)=1,所以a ≥1.] 13.-4或2解析 f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0, f (a )=-1,当a ≤0时,f (a )=12a +1=-1,解得a =-4,当a >0 时,f (a )=-(a -1)2=-1,解得a =2. 14.24解析 (2x +x )4的展开式的通项公式为T k +1=C k 4(2x )4-k (x )k =C k 424-k x 4-k 2,令4-k 2=3,解得k =2,故x 3的系数为C 2422=24.15.8π解析 作出圆柱与其外接球的轴截面如图,设圆柱的底面圆半径为r ,则BC =2r ,所以轴截面的面积为S 正方形ABCD =(2r )2=4,解得r =1,因此,该圆柱的外接球的半径 R =BD2=22+222=2,所以球的表面积为S =4π(2)2=8π. 16.π3解析 因为函数f (x )=cos(ωx +φ)的最小正周期为π, 所以ω=2ππ=2,又对任意的x ,都使得f (x )≥f ⎝⎛⎭⎫π3,所以2π3+φ=π+2k π,k ∈Z ,即φ=π3+2k π,k ∈Z ,所以f (x )=cos ⎝⎛⎭⎫2x +π3, 令2k π≤2x +π3≤π+2k π,k ∈Z ,解得-π6+k π≤x ≤π3+k π,k ∈Z ,则函数y =f (x )在⎣⎡⎦⎤0,π3上单调递减, 故a 的最大值是π3.17.解 (1)设等差数列{a n }的公差为d (d ≠0),则⎩⎪⎨⎪⎧a 1=25,a 211=a 1·a 13,即⎩⎪⎨⎪⎧a 1=25,(a 1+10d )2=a 1(a 1+12d ), 解得⎩⎪⎨⎪⎧a 1=25,d =-2,∴{a n }的通项公式为a n =27-2n (n ∈N *). (2){b n }的前2 020项的和S 2 020=b 1+b 2+b 3+b 4+…+b 2 019+b 2 020=(a 2-a 1)+(a 4-a 3)+…+(a 2 018-a 2 017)+ (a 2 020-a 2 019)=(-2)×2 0202=-2 020.18.(1)证明 作SO ⊥AD ,垂足为O ,依题意得SO ⊥平面ABCD , ∴SO ⊥AB ,SO ⊥CD ,又AB ⊥AD ,SO ∩AD =O ,SO ,AD ⊂平面SAD , ∴AB ⊥平面SAD ,∴AB ⊥SA ,AB ⊥SD .利用勾股定理得SA =SB 2-AB 2=4-2=2, 同理可得SD = 2.在△SAD 中,AD =2,SA =SD =2,SA 2+SD 2=AD 2, ∴SA ⊥SD ,又SA ∩AB =A ,SA ,AB ⊂平面SAB ,∴SD ⊥平面SAB , 又SD ⊂平面SCD ,∴平面SAB ⊥平面SCD .(2)解 连接BO ,CO ,∵SB =SC ,∴Rt △SOB ≌Rt △SOC , ∴BO =CO ,又四边形ABCD 为长方形, ∴Rt △AOB ≌Rt △DOC ,∴OA =OD .取BC 中点为E ,连接OE ,得OE ∥AB ,连接SE , ∴SE =3,其中OE =1,OA =OD =1,OS =3-12=2,由以上证明可知OS ,OE ,AD 互相垂直,不妨以直线OA ,OE ,OS 为x ,y ,z 轴建立空间直角坐标系.∴O (0,0,0),D (-1,0,0),C (-1,1,0),S (0,0,2),B (1,1,0), ∴DC →=(0,1,0),SC →=(-1,1,-2), BC →=(-2,0,0),设m =(x 1,y 1,z 1)是平面SCD 的法向量, 则有⎩⎪⎨⎪⎧m ·DC →=0,m ·SC →=0,即⎩⎨⎧y 1=0,-x 1+y 1-2z 1=0,令z 1=1得m =(-2,0,1),设n =(x 2,y 2,z 2)是平面SBC 的法向量, 则有⎩⎪⎨⎪⎧n ·BC →=0,n ·SC →=0,即⎩⎨⎧-2x 2=0,-x 2+y 2-2z 2=0,令z 1=1得n =(0,2,1). 则|cos 〈m ,n 〉|=|m ·n ||m ||n |=13×3=13, 所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13.19.解 (1)由题可知,方案一中的日收费y 与x 的函数关系式为 y =10x +60,x ∈N ,方案二中的日收费y 与x 的函数关系式为y =⎩⎪⎨⎪⎧200,x ≤15,x ∈N ,20x -100,x >15,x ∈N . (2)设方案一中的日收费为X ,由条形图可得X 的分布列为所以E (X )=190×0.1+200×0.4+210×0.1+220×0.2+230×0.2=210. 方案二中的日收费为Y ,由条形图可得Y 的分布列为E (Y )=200×0.6+220×0.2+240×0.2=212. 所以从节约成本的角度考虑,选择方案一.20.(1)解 由题意可得⎩⎪⎨⎪⎧c a =32,2c =23,解得⎩⎨⎧a =2,c =3,又b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明 设直线l 的方程为y =-12x +m ,P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧y =-12x +m ,x24+y 2=1,消去y ,得x 2-2mx +2(m 2-1)=0,则Δ=4m 2-8(m 2-1)=4(2-m 2)>0, 且x 1+x 2=2m >0,x 1x 2=2(m 2-1)>0, 故y 1y 2=⎝⎛⎭⎫-12x 1+m ⎝⎛⎭⎫-12x 2+m =14x 1x 2-12m (x 1+x 2)+m 2=m 2-12,k OP k OQ =y 1y 2x 1x 2=m 2-122(m 2-1)=14=k 2PQ,即直线OP ,PQ ,OQ 的斜率依次成等比数列.21.解 (1)令n (x )=kf (x )=k ln x ,n ′(x )=kx ,设切点为(x 0,y 0),则kx 0=1,x 0-1=k ln x 0,则ln k +1k=1.令F (x )=ln x +1x ,F ′(x )=1x -1x 2=x -1x2,则函数y =F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且F (1)=1,所以k =1. (2)令h (x )=af (x )-g (x )=a ln x -x +1, 则h ′(x )=a x -12x =2a -x 2x ,①当a ≤0时,h ′(x )<0,所以函数h (x )在[1,e]上单调递减, 所以h (x )≤h (1)=0,所以a ≤0满足题意. ②当a >0时,令h ′(x )=0,得x =4a 2, 所以当x ∈(0,4a 2)时,h ′(x )>0, 当x ∈(4a 2,+∞)时,h ′(x )<0.所以函数h (x )在(0,4a 2)上单调递增,在(4a 2,+∞)上单调递减. (ⅰ)当4a 2≥e ,即a ≥e2时,h (x )在[1,e]上单调递增, 所以h (x )≤h (e)=a -e +1≤0, 所以a ≤e -1,此时无解.(ⅱ)当1<4a 2<e ,即12<a <e2时,函数h (x )在(1,4a 2)上单调递增,在(4a 2,e)上单调递减.所以h (x )≤h (4a 2)=a ln(4a 2)-2a +1=2a ln(2a )-2a +1≤0. 设m (x )=2x ln(2x )-2x +1⎝⎛⎭⎫12<x <e2,则m ′(x )=2ln(2x )>0,所以m (x )在⎝⎛⎭⎫12,e2上单调递增,m (x )>m ⎝⎛⎭⎫12=0,不满足题意.(ⅲ)当0<4a 2≤1,即0<a ≤12时,h (x )在[1,e]上单调递减,所以h (x )≤h (1)=0,所以0<a ≤12满足题意.综上所述,a 的取值范围为⎝⎛⎦⎤-∞,12.22.解 (1)由ρ=6cos θ得ρ2=6ρcos θ,化为直角坐标方程为x 2+y 2=6x ,即(x -3)2+y 2=9. (2)将直线l 的参数方程代入圆C 的直角坐标方程, 得t 2+2(sin α-cos α)t -7=0. 由Δ=4(sin α-cos α)2+4×7>0, 故可设t 1,t 2是上述方程的两根, 所以t 1+t 2=2(cos α-sin α),t 1t 2=-7, 又由直线过点(2,1),故结合参数的几何意义得|P A |+|PB |=|t 1|+|t 2|=|t 1-t 2|=4(sin α-cos α)2+28=32-4sin 2α≥27,当sin 2α=1时取等号.所以|P A |+|PB |的最小值为27.23.解 (1)当a =1时,f (x )=|2x -1|+|x +1|=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x -12+|x +1|≥0+⎪⎪⎪⎪⎝⎛⎭⎫x -12-(x +1)=32, 当且仅当x =12时取等号.故f (x )的最小值为12.(2)当x ∈[1,2]时,f (x )<5x+a ,则|2x -a |+x +a <5x +a ,即|a -2x |<5x -x ,即3x -5x <a <x +5x,因为x ∈[1,2]时,3x -5x 的最小值为-2,x +5x 的最大值为6,所以-2<a <6,又因为a >0,所以0<a <6. 所以a 的取值范围为(0,6).。

2021年高考数学一轮复习 第一章 单元测试卷

2021年高考数学一轮复习 第一章 单元测试卷

2021年高考数学一轮复习第一章单元测试卷一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求) 1.(xx·陕西)设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=( ) A.[0,1] B.[0,1)C.(0,1] D.(0,1)答案B解析∵x2<1,∴-1<x<1,∴M∩N={x|0≤x<1}.故选B.2.(xx·浙江理)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( ) A.∅B.{2}C.{5} D.{2,5}答案 B解析由题意知U={x∈N|x≥2},A={x∈N|x≥5},所以∁U A={x∈N|2≤x<5}={2}.故选B. 3.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)等于( )A.{1,5,7} B.{3,5,7}C.{1,3,9} D.{1,2,3}答案 A解析即在A中把B中有的元素去掉.4.“x>0”是“3x2>0”成立的( )A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件答案 A解析当x>0时,3x2>0成立;但当3x2>0时,得x2>0,则x>0或x<0,此时不能得到x>0.5.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数.则下列命题中为真命题的是( ) A.(綈p)或q B.p且qC.(綈p)且(綈q) D.(綈p)或(綈q)答案 D解析由于命题p是真命题,命题q是假命题,因此,命题綈q是真命题,于是(綈p)或(綈q)是真命题.6.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( ) A .不存在x ∈R ,x 3-x 2+1≤0 B .存在x ∈R ,x 3-x 2+1≤0 C .存在x ∈R ,x 3-x 2+1>0 D .对任意的x ∈R ,x 3-x 2+1>0 答案 C解析 应用命题否定的公式即可.7.原命题:“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”,在原命题以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4答案 C解析 c =0时,原命题为假,逆命题为真,根据命题间的关系应选C. 8.已知∁Z A ={x ∈Z |x <6},∁Z B ={x ∈Z |x ≤2},则A 与B 的关系是( ) A .A ⊆B B .A ⊇B C .A =B D .∁Z A∁Z B答案 A9.设全集为R ,集合M ={y |y =2x +1,-12≤x ≤12},N ={x |y =lg(x 2+3x )},则韦恩图中阴影部分表示的集合为( )答案 C解析 ∵-12≤x ≤12,y =2x +1,∴0≤y ≤2,∴M ={y |0≤y ≤2}.∵x 2+3x >0,∴x >0或x <-3,∴N={x |x >0或x <-3},韦恩图中阴影部分表示的集合为(∁R M )∩N ,又∁R M ={x |x <0或x >2},∴(∁R M )∩N ={x |x <-3或x >2},故选C.10.若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是( ) A .[2,6] B .[-6,-2] C .(2,6) D .(-6,-2)答案 A解析 ∵命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,∴命题“∀x ∈R ,使得x 2+mx +2m -3≥0”为真命题,∴Δ≤0,即m2-4(2m-3)≤0,∴2≤m≤6.11.命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是( )A.a≥4 B.a≤4C.a≥5 D.a≤5答案 C解析命题“∀x∈[1,2],x2-a≤0”为真命题的充要条件是a≥4,故其充分不必要条件是实数a的取值范围是集合[4,+∞)的非空真子集,正确选项为C.12.已知f(x)=ln(x2+1),g(x)=(12)x-m,若对∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是( )A.[14,+∞) B.(-∞,14]C.[12,+∞) D.(-∞,-12]答案 A解析当x∈[0,3]时,[f(x)]min=f(0)=0,当x∈[1,2]时,[g(x)]min=g(2)=14-m,由[f(x)]min≥[g(x)]min,得0≥14-m,所以m≥14,故选A.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知集合A={1,a,5},B={2,a2+1}.若A∩B有且只有一个元素,则实数a的值为________.答案0或-2解析若a=2,则a2+1=5,A∩B={2,5},不合题意舍去.若a2+1=1,则a=0,A∩B={1}.若a2+1=5,则a=±2.而a=-2时,A∩B={5}.若a2+1=a,则a2-a+1=0无解.∴a=0或a=-2.14.已知命题p:α=β是tanα=tanβ的充要条件.命题q:∅⊆A.下列命题中为真命题的有________.①p或q;②p且q;③綈p;④綈q.答案①③15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m+n =________.答案0解析由|x+2|<3,得-3<x+2<3,即-5<x<1.又A∩B=(-1,n),则(x-m)(x-2)<0时必有m<x<2,从而A∩B=(-1,1),∴m=-1,n=1,∴m+n=0.16.由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是________.答案 1解析 ∵“存在x ∈R ,使x 2+2x +m ≤0”是假命题, ∴“任意x ∈R ,使x 2+2x +m >0”是真命题. ∴Δ=4-4m <0,解得m >1,故a 的值是1.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},若A ∪B =A ,求实数a 的值. 答案 a =2或a =3解析 A ={1,2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或{1}或{2}或{1,2}. 当B =∅时,无解;当B ={1}时,⎩⎪⎨⎪⎧1+1=a ,1×1=a -1,得a =2;当B ={2}时,⎩⎪⎨⎪⎧ 2+2=a ,2×2=a -1,无解;当B ={1,2}时,⎩⎪⎨⎪⎧1+2=a ,1×2=a -1,得a =3.综上:a =2或a =3. 18.(本小题满分12分)π为圆周率,a ,b ,c ,d ∈Q ,已知命题p :若a π+b =c π+d ,则a =c 且b =d . (1)写出p 的否定并判断真假;(2)写出p 的逆命题、否命题、逆否命题并判断真假;(3)“a =c 且b =d ”是“a π+b =c π+d ”的什么条件?并证明你的结论. 答案 (1)p 的否定是假命题 (2)都是真命题 (3)充要条件,证明略解析 (1)原命题p 的否定是:“若a π+b =c π+d ,则a ≠c 或b ≠d ”.假命题. (2)逆命题:“若a =c 且b =d ,则a π+b =c π+d ”.真命题. 否命题:若“a π+b ≠c π+d ,则a ≠c 或b ≠d ”.真命题. 逆否命题:“若a ≠c 或b ≠d ,则a π+b ≠c π+d ”真命题. (3)“a =c 且b =d ”是“a π+b =c π+d ”的充要条件. 证明如下:充分性:若a =c ,则a π=c π. ∵b =d ,∴a π+b =c π+d .必要性:∵a π+b =c π+d ,∴a π-c π=d -b . 即(a -c )π=d -b .∵d -b ∈Q ,∴a -c =0且d -b =0. 即a =c 且b =d .∴“a =c 且b =d ”是“a π+b =c π+d ”的充要条件. 19.(本小题满分12分)设关于x 的不等式x (x -a -1)<0(a ∈R )的解集为M ,不等式x 2-2x -3≤0的解集为N . (1)当a =1时,求集合M ; (2)若M ⊆N ,求实数a 的取值范围. 答案 (1){x |0<x <2} (2)[-2,2]解析 (1)当a =1时,由已知得x (x -2)<0,解得0<x <2. 所以M ={x |0<x <2}.(2)由已知得N ={x |-1≤x ≤3}.①当a <-1时,因为a +1<0,所以M ={x |a +1<x <0}. 因为M ⊆N ,所以-1≤a +1<0,所以-2≤a <-1. ②当a =-1时,M =∅,显然有M ⊆N ,所以a =-1成立. ③当a >-1时,因为a +1>0,所以M ={x |0<x <a +1}. 因为M ⊆N ,所以0<a +1≤3,所以-1<a ≤2. 综上所述,a 的取值范围是[-2,2]. 20.(本小题满分12分)已知p :指数函数f (x )=(2a -6)x在R 上是单调减函数;q :关于x 的方程x 2-3ax +2a 2+1=0的两根均大于3,若p 或q 为真,p 且q 为假,求实数a 的取值范围.答案 (52,3]∪[72,+∞)解析 p 真,则指数函数f (x )=(2a -6)x的底数2a -6满足0<2a -6<1,所以3<a <72.q 真,令g (x )=x 2-3ax +2a 2+1,易知其为开口向上的二次函数.因为x 2-3ax +2a 2+1=0的两根均大于3,所以①Δ=(-3a )2-4(2a 2+1)=a 2-4>0,a <-2或a >2;②对称轴x =--3a 2=3a2>3;③g (3)>0,即32-9a +2a 2+1=2a 2-9a +10>0,所以(a -2)(2a -5)>0.所以a <2或a >52.由⎩⎪⎨⎪⎧a <-2或a >2,3a 2>3,a <2或a >52,得a >52.p 真q 假,由3<a <72及a ≤52,得a ∈∅.p 假q 真,由a ≤3或a ≥72及a >52,得52<a ≤3或a ≥72.综上所述,实数a 的取值范围为(52,3]∪[72,+∞).21.(本小题满分12分)我们知道,如果集合A ⊆S ,那么把S 看成全集时,S 的子集A 的补集为∁S A ={x |x ∈S ,且x ∉A }.类似的,对于集合A ,B ,我们把集合{x |x ∈A ,且x ∉B }叫做集合A 与B 的差集,记作A -B .据此回答下列问题:(1)若A ={1,2,3,4},B ={3,4,5,6},求A -B ; (2)在下列各图中用阴影表示出集合A -B ;(3)若集合A ={x |0<ax -1≤5},集合B ={x |-12<x ≤2},有A -B =∅,求实数a 的取值范围.答案 (1){1,2} (2)略 (3){a |a <-12或a ≥3或a =0} 解析 (1)根据题意知A -B ={1,2}. (2)(3)∵A -B =∅,∴A ⊆B .A ={x |0<ax -1≤5},则1<ax ≤6.当a =0时,A =∅,此时A -B =∅,符合题意;当a >0时,A =(1a ,6a ],若A -B =∅,则6a≤2,即a ≥3;当a <0时,A =[6a ,1a ),若A -B =∅,则6a >-12,即a <-12.综上所述,实数a 的取值范围是{a |a <-12或a ≥3或a =0}. 22.(本小题满分12分)已知P ={x |x 2-8x -20≤0},S ={x ||x -1|≤m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件.若存在,求实数m 的取值范围; (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件.若存在,求实数m 的取值范围. 答案 (1)m 不存在 (2)m ≤3 解析 (1)P ={x |-2≤x ≤10},S ={x |1-m ≤x ≤m +1}.若x ∈P 是x ∈S 的充要条件,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴m 不存在.(2)若存在实数m ,使x ∈P 是x ∈S 的必要条件, ∴S ⊆P .若S =∅,即m <0时,满足条件.若S ≠∅,应有⎩⎪⎨⎪⎧m +1≥1-m ,1-m ≥-2,m +1≤10,解之得0≤m ≤3.综上得,m ≤3时,x ∈P 是x ∈S 的必要条件.1.(xx·广东广州测试)已知集合A ={x |x ∈Z 且32-x ∈Z },则集合A 中的元素个数为( )A .2B .3C .4D .5答案 C解析 ∵32-x ∈Z ,x ∈Z ,∴2-x 的取值有-3,-1,1,3,x 值分别为5,3,1,-1,故集合A 中的元素个数为4,故选C.2.设集合M 是R 的子集,如果点x 0∈R 满足:∀a >0,∃x ∈M,0<|x -x 0|<a ,称x 0为集合M 的聚点.则下列集合中以1为聚点的有( )①{n n +1|n ∈N };②{2n|n ∈N *};③Z ;④{y |y =2x}.A .①④B .②③C .①②D .①②④答案 A 解析 ①集合中{nn +1|n ∈N }中的元素是极限为1的数列,1是集合{nn +1|n ∈N }的聚点;②集合{2n |n ∈N *}中的元素是极限为0的数列,最大值为2,即|x -1|≤1,对于a =13,不存在0<|x-1|<13,所以1不是集合{2n|n ∈N *}的聚点;③对于某个a <1,比如a =0.5,此时对任意的x ∈Z ,都有x -1=0或者x -1≥1,也就是说不可能0<|x -1|<0.5,从而1不是整数集Z 的聚点;④该集合为正实数集,从而1是集合{y |y =2x}的聚点.3.对于任意实数x ,[x ]表示不超过x 的最大整数,如[1.1]=1,[-2.1]=-3.定义在R 上的函数f (x )=[2x ]+[4x ]+[8x ],若A ={y |y =f (x ),0<x <1},则A 中元素的最大值与最小值之和为( )A .11B .12C .14D .15答案 A解析 当0<x <18时,[2x ]=0,[4x ]=0,[8x ]=0;当78≤x <1时,[2x ]=1,[4x ]=3,[8x ]=7; ∴A 中元素的最大值与最小值之和为7+3+1=11,选A.4.(xx·朝阳期中)同时满足以下4个条件的集合记作A k :①所有元素都是正整数;②最小元素为1;③最大元素为2 014;④各个元素可以从小到大排成一个公差为k (k ∈N *)的等差数列.那么集合A 33∪A 61中元素的个数是( )A .96B .94C .92D .90答案 B解析 A 33中元素是首项为1,公差为33的等差数列,那么设项数为m ,则有1+33(m -1)=2 014,解得m =62;A 61中元素是首项为1,公差为61的等差数列,那么设项数为n ,则有1+61(n -1)=2 014,解得n =34;A 33∩A 61中元素是首项为1,公差为33×61的等差数列,那么设项数为q ,则有1+33×61(q -1)=2 014,解得q =2.所以设P 表示元素个数,则有:P (A 33∪A 61)=P (A 33)+P (A 61)-P (A 33∩A 61)=34+62-2=94.5.(xx·顺义第一次统练)设非空集合M 同时满足下列两个条件: ①M ⊆{1,2,3,…,n -1};②若a ∈M ,则n -a ∈M (n ≥2,n ∈N *). 则下列结论正确的是( )A .若n 为偶数,则集合M 的个数为2n 2个B .若n 为偶数,则集合M 的个数为2n2-1个C .若n 为奇数,则集合M 的个数为2n -12个 D .若n 为奇数,则集合M 的个数为2n +12个答案 B解析 当n =2时,M ⊆{1},且满足1∈M,2-1∈M ,故集合M 的个数为1个;当n =3时,M ⊆{1,2},且1∈M,3-1=2∈M ,故集合M 的个数为1个;当n =4时,M ⊆{1,2,3},且1∈M,4-1=3∈M,2∈M,4-2=2∈M .故集合M 的个数为3,故可排除A ,C ,D ,选B.6.(xx·湖北天门调研)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N ={x ||2x 1-3i|<1,i 为虚数单位,x ∈R },则M ∩N 等于( )A .(0,1)B .(0,1]C.[0,1) D.[0,1] 答案 C解析M={y|y=|cos2x|,x∈R}=[0,1],N={x||1+3i2x|<1}={x||x|<1}={x|-1<x<1},M∩N=[0,1),故选C.26187 664B 晋v36010 8CAA 貪35563 8AEB 諫31545 7B39 笹,J836903 9027 逧b25825 64E1 擡 21360 5370 印34670 876E 蝮。

2021版高考数学一轮总复习第六章数列题组训练34数列的基本概念理20210515482

2021版高考数学一轮总复习第六章数列题组训练34数列的基本概念理20210515482

2021版高考数学一轮总复习第六章数列题组训练34数列的基本概念理202105154821.在数列1,1,2,3,5,8,13,x ,34,55,…中,x 应取( ) A .19 B .20 C .21 D .22答案 C解析 a 1=1,a 2=1,a 3=2,∴a n +2=a n +1+a n ,∴x =8+13=21,故选C. 2.数列13,18,115,124,…的一个通项公式为( )A .a n =12n +1B .a n =1n +2C .a n =1n (n +2)D .a n =12n -1答案 C解析 观看知a n =1(n +1)2-1=1n (n +2). 3.(2020·济宁模拟)若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5等于( )A.56 B.65 C.130 D .30 答案 D解析 ∵当n≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),∴1a 5=5×(5+1)=30.4.若数列{a n }满足a 1=2,a n +1a n =a n -1,则a 2 017的值为( ) A .-1 B.12 C .2 D .3 答案 C解析 因为数列{a n }满足a 1=2,a n +1a n =a n -1,因此a n +1=1-1a n ,因此a 2=12,a 3=1-2=-1,a 4=1+1=2,可知数列的周期为3.而2 017 =3×672+1,因此a 2 017=a 1=2.故选C. 5.(2020·辽宁省实验中学月考)设数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a n =( )A .2nB .2n -1C .2nD .2n-1答案 C解析 当n =1时,a 1=S 1=2(a 1-1),可得a 1=2;当n≥2时,a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1,∴数列{a n }为等比数列,公比为2,首项为2,∴通项公式为a n =2n.故选C. 6.(2020·辽宁)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( ) A .d<0 B .d>0 C .a 1d<0 D .a 1d>0答案 C解析 ∵数列{2a 1a n }为递减数列,∴2a 1a n >2a 1a n +1,n ∈N *,∴a 1a n >a 1a n +1,∴a 1(a n +1-a n )<0.∵{a n }为公差为d 的等差数列,∴a 1d<0.故选C.7.若数列{a n }的前n 项和S n =n 2-10n(n∈N *),则数列{na n }中数值最小的项是( ) A .第2项 B .第3项 C .第4项 D .第5项答案 B解析 ∵S n =n 2-10n ,∴当n≥2时,a n =S n -S n -1=2n -11;当n =1时,a 1=S 1=-9也适合上式.∴a n =2n -11(n∈N *).记f(n)=na n =n(2n -11)=2n 2-11n ,此函数图像的对称轴为直线n =114,但n∈N *,∴当n =3时,f(n)取最小值.因此,数列{na n }中数值最小的项是第3项. 8.数列53,108,17a +b ,a -b 24,…中,有序实数对(a ,b)能够是( ) A .(21,-5) B .(16,-1) C .(-412,112)D .(412,-112)答案 D解析 由数列中的项可观看规律,5-3=10-8=17-(a +b)=(a -b)-24=2,⎩⎪⎨⎪⎧a +b =15,a -b =26,解得a =412,b =-112.故选D.9.(2021·山东荷泽重点高中联考)观看下列的图形中小正方形的个数,则第n 个图中的小正方形的个数f(n)为( )A.(n +1)(n +2)2B.(n +2)(n +3)2C.n 2D.n 2+n 2答案 A解析 由题意可得f(1)=2+1;f(2)=3+2+1;f(3)=4+3+2+1;f(4)=5+4+3+2+1;f(5)=6+5+4+3+2+1;…;∴f(n)=(n +1)+n +(n -1)+…+1=(n +1)(n +2)2.10.(2020·郑州第二次质量推测)已知数列{a n }满足a n +1=a n -a n -1(n≥2),a 1=m ,a 2=n ,S n 为数列{a n }的前n 项和,则S 2 017的值为( ) A .2 017n -m B .n -2 017m C .m D .n答案 C解析 依照题意运算可得a 3=n -m ,a 4=-m ,a 5=-n ,a 6=m -n ,a 7=m ,a 8=n ,…,因此数列{a n }是以6为周期的周期数列,且a 1+a 2+…+a 6=0,因此S 2 017=S 336×6+1=a 1=m.故选C.11.(2020·湖南长沙模拟)已知S n 是各项均为正数的数列{a n }的前n 项和,S n >1且S n =(a n +3)(a n +1)8(n∈N *),则a n =( )A .4n -1B .4n -3C .4n -3或4n -1D .n +2 答案 A解析 当n =1时,a 1=S 1=(a 1+3)(a 1+1)8,解得a 1=1或a 1=3,∵S n >1,∴a 1=3,当n≥2时,a n =S n -S n -1=(a n +3)(a n +1)8-(a n -1+3)(a n -1+1)8,即(a n +a n -1)(a n -a n-1-4)=0,∵a n >0,故a n -a n -1=4,∴{a n }是首项为3,公差为4的等差数列,∴a n =3+4(n-1)=4n -1.12.(2020·湖北宜昌一中月考)定义a n =5n+(15)n ,其中n∈{110,15,12,1},则a n 取最小值时,n 的值为( ) A.110 B.15 C.12 D .1答案 A解析 令5n=t>0,考虑函数y =t +1t (t>0),易知其中(0,1]上单调递减,在[1,+∞)上单调递增,且当t =1时,y 的值最小.再考虑函数t =5n,当0<n≤1时,t ∈(1,5],可知当n =110时,a n 取得最小值.故选A.13.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式能够是________. 答案 a n =2n +114.(2020·课标全国Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n≥2时,S n -1=23a n -1+13,∴当n≥2时,a n =-2a n -1.又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1.15.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 013=________;a 2 014=________. 答案 1,0解析 a 2 013=a 504×4-3=1,a 2 014=a 2×1 007=a 1 007=a 4×252-1=0.16.(2020·广东梅州质量检测)已知数列2 016,2 017,1,-2 016,-2 017,…,那个数列的特点是从第二项起,每一项都等于它的前后两项之和,则那个数列的前2 017项之和S 2 017等于________. 答案 2 016解析 依照题意可将该数列多写几项出来,以便观看:2 016,2 017,1,-2 016,-2 017,-1,2 016,2 017,1,….观看发觉该数列是周期为6的周期数列,且前6项的和为0.而要求的2 017=6×336+1,则S 2 017=0×336+a 2 017=0+a 1=2 016.17.(2020·广州一模)设数列{a n }的各项差不多上正数,且对任意n∈N *,都有4S n =a n 2+2a n ,其中S n 为数列{a n }的前n 项和,则数列{a n }的通项公式为a n =________. 答案 2n解析 当n =1时,由4S 1=a 12+2a 1,a 1>0,得a 1=2; 当n≥2时,由4a n =4S n -4S n -1=(a n 2+2a n )-(a n -12+2a n -1), 得(a n +a n -1)(a n -a n -1-2)=0.因为a n +a n -1>0, 因此a n -a n -1=2,则数列{a n }是首项为2,公差为2的等差数列, 故a n =2+(n -1)×2=2n.18.(2020·北京海淀区一模)数列{a n }的通项为a n =⎩⎪⎨⎪⎧2n-1,n ≤4,-n 2+(a -1)n ,n ≥5,(n∈N *),若a 5是{a n }中的最大值,则a 的取值范畴是________. 答案 [9,12]解析 当n≤4时,a n =2n-1单调递增,因此n =4时取最大值,a 4=24-1=15. 当n≥5时,a n =-n 2+(a -1)n =-(n -a -12)2+(a -1)24.∵a 5是{a n }中的最大值,∴⎩⎪⎨⎪⎧a -12≤5.5,-52+5(a -1)≥15,解得9≤a≤12.∴a 的取值范畴是[9,12].19.已知在数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3; (2)求{a n }的通项公式.答案 (1)a 2=3,a 3=6 (2)a n =n (n +1)2解析 (1)由S 2=43a 2,得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n>1时,有a n =S n -S n -1=n +23a n -n +13a n -1, 整理,得a n =n +1n -1a n -1.因此a 1=1,a 2=31a 1,a 3=42a 2,…,a n -1=n n -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘,整理,得a n =n (n +1)2.综上,{a n }的通项公式a n =n (n +1)2.1.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的有( ) A .1个 B .2个 C .3个 D .4个答案 C2.关于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件答案 B解析 当a n +1>|a n |(n =1,2,…)时,∵|a n |≥a n ,∴a n +1>a n ,∴{a n }为递增数列.当{a n }为递增数列时,若该数列为-2,0,1,则a 2>|a 1|不成立,即a n +1>|a n |(n =1,2,…)不一定成立.故综上知,“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的充分不必要条件. 3.已知数列2,5,22,…,则25是该数列的( ) A .第5项 B .第6项 C .第7项 D .第8项答案 C解析 由数列2,5,22,…的前三项2,5,8可知,数列的通项公式为a n =2+3(n -1)=3n -1,由3n -1=25,可得n =7.4.已知数列{a n }满足a 0=1,a n =a 0+a 1+…+a n -1(n≥1),则当n≥1时,a n 等于( ) A .2nB.12n(n +1) C .2n -1D .2n-1答案 C解析 由题设可知a 1=a 0=1,a 2=a 0+a 1=2. 代入四个选项检验可知a n =2n -1.故选C.5.(2021·上海松江一模)在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把如此的操作叫做该数列的一次“H 扩展”.已知数列1,2.第一次“H 扩展”后得到1,3,2;第二次“H 扩展”,后得到1,4,3,5,2.那么第10次“H 扩展”后得到的数列的项数为( ) A .1 023 B .1 025 C .513 D .511答案 B解析 设第n 次“H 扩展”后得到的数列的项数为a n ,则第n +1次“H 扩展”后得到的数列的项数为a n +1=2a n -1,∴a n +1-1=2(a n -1).∴a n +1-1a n -1=2.又∵a 1-1=3-1=2,∴{a n -1}是以2为首项,2为公比的等比数列,∴a n -1=2·2n -1,∴a n =2n +1,∴a 10=210+1=1 025.故选B.6.(2020·辽宁沈阳二中月考)数列{a n }中,a n =n - 2 016n - 2 017,则该数列前100项中的最大项与最小项分别是( ) A .a 1,a 50 B .a 1,a 44 C .a 45,a 44 D .a 45,a 50答案 C 解析 a n =1+2 017- 2 016n - 2 017,∴a 44<0,a 45>0,且从a 1到a 44递减,从a 45到a 100递减.7.(2020·河北省衡水中学模拟)数列{a n }满足a 1=2,a n +1=a n 2(a n >0,n ∈N *),则a n =( ) A .10n -2B .10n -1C .102n -1D .22n -1答案 D解析 因为数列{a n }满足a 1=2,a n +1=a n 2(a n >0,n ∈N *), 因此log 2a n +1=2log 2a n ,即log 2a n +1log 2a n =2.又a 1=2,因此log 2a 1=log 22=1.故数列{log 2a n }是首项为1,公比为2的等比数列. 因此log 2a n =2n -1,即a n =22n -1.故选D.8.设数列{a n }的前n 项和S n =n 2,则a 7+a 8的值为________. 答案 28解析 a 7+a 8=S 8-S 6=82-62=28.9.(2021·广东广州5月月考)已知数列{a n }满足a 1=1,a n +1=a n 2+a n ,用[x]表示不超过x 的最大整数,则[1a 1+1+1a 2+1+…+1a 2 017+1]=________.答案 0解析 因为a n +1=a n 2+a n ,因此1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1,因此1a 1+1+1a 2+1+…+1a 2021+1=(1a 1-1a 2)+(1a 2-1a 3)+…+(1a 2 017-1a 2 018)=1a 1-1a 2 018.因为a 1=1,a 2=2>1,a 3=6>1,…,可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),因此[1a 1-1a 2 018]=0.10.(2020·安徽屯溪一中月考)已知函数f(x)=2x -2-x,数列{a n }满足f(log 2a n )=-2n(n∈N *).(1)求数列{a n }的通项公式;(2)讨论数列{a n }的单调性,并证明你的结论. 答案 (1)a n =n 2+1-n (2)略解析 (1)因为f(x)=2x-2-x,f(log 2a n )=-2n , 因此2log 2a n -2-log 2a n =-2n ,即a n -1a n =-2n ,因此a n 2+2na n -1=0, 解得a n =-n±n 2+1. 因为a n >0,因此a n =n 2+1-n. (2)数列{a n }是递减数列.证明如下: 因为a n +1a n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1)<1, 又a n >0,因此a n +1<a n ,即数列{a n }是递减数列.11.(2020·河南洛阳第二次统一考试)已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n∈N *). (1)求数列{a n }的通项公式;(2)记b n =3n-λa n 2,若数列{b n }为递增数列,求λ的取值范畴. 答案 (1)a n =n(n∈N *) (2)(-∞,2)解析 (1)∵2S n =(n +1)a n ,∴2S n +1=(n +2)a n +1, ∴2a n +1=(n +2)a n +1-(n +1)a n , 即na n +1=(n +1)a n ,∴a n +1n +1=a nn ,∴a n n =a n -1n -1=…=a 11=1, ∴a n =n(n∈N *). (2)b n =3n-λn 2. b n +1-b n =3n +1-λ(n+1)2-(3n -λn 2)=2·3n-λ(2n+1).∵数列{b n }为递增数列,∴2·3n-λ(2n+1)>0,即λ<2·3n2n +1.令c n =2·3n2n +1,则c n +1c n =2·3n +12n +3·2n +12·3n =6n +32n +3>1.∴{c n}为递增数列,∴λ<c1=2,即λ的取值范畴为(-∞,2).。

2021高考数学人教版一轮复习练习:第五章 第1节 数列的概念与简单表示法

2021高考数学人教版一轮复习练习:第五章 第1节 数列的概念与简单表示法

多维层次练28[A级基础巩固]1.已知数列5,11,17,23,29,…,则55是它的() A.第19项B.第20项C.第21项D.第22项解析:数列5,11,17,23,29,…中的各项可变形为5,5+6,5+2×6,5+3×6,5+4×6,…,所以通项公式为a n=5+6(n-1)=6n-1,令6n-1=55,得n=21.答案:C2.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为“a n>0”⇒“数列{S n}是递增数列”,所以“a n>0”是“数列{S n}是递增数列”的充分条件.如数列{a n}为-1,1,3,5,7,9,…,显然数列{S n}是递增数列,但是a n不一定大于零,还有可能小于零,所以“数列{S n}是递增数列”不能推出“a n>0”,所以“a n>0”不是“数列{S n}是递增数列”的必要条件.所以“a n>0”是“数列{S n}是递增数列”的充分不必要条件.答案:A3.已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N *),则S 5=( )A .31B .42C .37D .47解析:由题意,得S n +1-S n =S n +1(n ∈N *),所以S n +1+1=2(S n+1)(n ∈N *),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47.答案:D4.在数列{a n }中,a 1=2,a n +1n +1=a n n+ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A .2+n ln nB .2n +(n -1)ln nC .2n +n ln nD .1+n +n ln n解析:由题意得a n +1n +1-a nn =ln(n +1)-ln n ,n 分别用1,2,3,…,(n -1)取代,累加得a n n -a 11=ln n -ln 1=ln n ,a nn =2+ln n ,所以a n =2n +n ln n .答案:C5.(2020·广东广雅中学模拟)在数列{a n }中,已知a 1=2,a n +1=a n3a n +1(n ∈N *),则a n 的表达式为( ) A .a n =24n -3B .a n =26n -5C .a n =24n +3D .a n =22n -1解析:(1)数列{a n }中,由a 1=2,a n +1=a n3a n +1(n ∈N *),可得1a n +1=3+1a n ,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公差为3的等差数列,所以1a n =12+3(n -1)=6n -52.可得a n =26n -5(n ∈N *).答案:B6.(2019·上海卷)已知数列{a n }前n 项和为S n ,且满足S n +a n =2,则S 5=________.解析:n =1时,S 1+a 1=2,所以a 1=1. n ≥2时,由S n +a n =2得S n -1+a n -1=2, 两式相减得a n =12a n -1(n ≥2),所以{a n }是以1为首项,12为公比的等比数列,所以S 5=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:31167.(2020·河北省级示范性高中联考)数列{a n }满足a 1=3,且对于任意的n ∈N *都有a n +1-a n =n +2,则a 39=________.解析:因为a n +1-a n =n +2,所以a 2-a 1=3,a 3-a 2=4,a 4-a 3=5,…, a n -a n -1=n +1(n ≥2),上面(n -1)个式子左右两边分别相加得a n -a 1=(n +4)(n -1)2(n ≥2),即a n =(n +1)(n +2)2(n ≥2),当n =1时,a 1=3适合上式,所以a n =(n +1)(n +2)2,n ∈N *,所以a 39=40×412=820.答案:8208.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解析:由题意可知,a 1·a 2·a 3·…·a n -1=(n -1)2, 所以a n =n 2(n -1)2(n ≥2), 所以a 3+a 5=3222+5242=6116.答案:61169.(2020·天河模拟)已知S n 为数列{a n }的前n 项和,且a 1<2,a n >0,6S n =a 2n +3a n +2,n ∈N *.(1)求数列{a n }的通项公式;(2)若∀n ∈N *,b n =(-1)n a 2n ,求数列{b n }的前2n 项的和T 2n . 解:(1)当n =1时,6a 1=a 21+3a 1+2,且a 1<2,解得a 1=1.当n ≥2时,6a n =6S n -6S n -1=a 2n +3a n +2-(a 2n -1+3a n -1+2).化简得(a n +a n -1)(a n -a n -1-3)=0, 因为a n >0,所以a n -a n -1=3,所以数列{a n }是首项为1,公差为3的等差数列, 所以a n =1+3(n -1)=3n -2.(2)b n =(-1)n a 2n =(-1)n (3n -2)2.所以b 2n -1+b 2n =-(6n -5)2+(6n -2)2=36n -21. 所以数列{b n }的前2n 项的和T 2n =36(1+2+…+n )-21n =36×n (n +1)2-21n =18n 2-3n .10.已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式. 解:(1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[B 级 能力提升]11.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( ) A.9998 B .2 C.9950D.99100解析:由a n +1=1+a n +n ,得a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2,则1a n =2n (n +1)=2n -2n +1, 则1a 1+1a 2+…+1a 99=2×[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫199-1100]=2×⎝⎛⎭⎪⎫1-1100=9950. 答案:C12.(一题多解)(2020·湛江二模)一元线性同余方程组问题最早可见于中国南北朝时期(约公元5世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为a ,当a ∈[2,2 019]时,符合条件的a 共有________个.解析:法一由题设a=3m+2=5n+3,m,n∈N,则3m=5n +1,m,n∈N,当m=5k时,n不存在;当m=5k+1时,n不存在;当m=5k+2时,n=3k+1,满足题意;当m=5k+3时,n不存在;当m=5k+4时,n不存在,其中k∈N.故2≤a=15k+8≤2 019,解得-615≤k≤2 01115,故k=0,1,2,…,134,共135个,即符合条件的a共有135个.故答案为135.法二一个整数除以三余二,这个整数可以为2,5,8,11,14,17,20,23,26,29,32,35,38,…,一个整数除以五余三,这个整数可以为3,8,13,18,23,28,33,38,…,则同时除以三余二、除以五余三的整数为8,23,38,…,构成首项为8,公差为15的等差数列,通项公式为a n=8+15(n-1)=15n-7,由15n-7≤2 019得15n≤2 026,n≤135115,因为n∈N*,所以n=1,2,3,…,135,共有135个.答案:13513.(一题多解)已知数列{a n}中,a1=3,且n(n+1)(a n-a n+1)=2.(1)求数列{a n}的通项公式;(2)设b n=a1·a2·…·a n(n+1)·2n,求数列{b n}的前n项和S n.解:(1)法一 由题意知,a n -a n +1=2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, 所以n ≥2时,a n -1-a n =2⎝ ⎛⎭⎪⎪⎫1n -1-1n ,a n -2-a n -1= 2⎝ ⎛⎭⎪⎪⎫1n -2-1n -1,…,a 1-a 2=2⎝ ⎛⎭⎪⎫11-12, 以上(n -1)个式子左右两边分别相加得a 1-a n =2⎝⎛⎭⎪⎫1-1n , 又a 1=3,所以a n =1+2n (n ≥2).又a 1=3符合上式,故a n =1+2n(n ∈N *).法二 由题意知,a n -a n +1=2n (n +1)=2⎝ ⎛⎭⎪⎪⎫1n -1n +1, 所以a n +1-2n +1=a n -2n ,所以a n -2n =a n -1-2n -1=…=a 1-21=3-2=1,所以a n =1+2n.(2)法一 由(1)知,a n =1+2n =n +2n,所以a 1a 2…a n =31×42×…×n +1n -1×n +2n =(n +1)(n +2)2,所以b n =a 1·a 2·…·a n(n +1)·2n=n +22n +1,所以S n =322+423+524+…+n +12n +n +22n +1,12S n =323+424+525+…+n +12n +1+n +22n +2, 两式相减得12S n =322+⎝ ⎛⎭⎪⎪⎫123+124+…+12n +1-n +22n +2=34+123⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-n +22n +2=1-12n +1-n +22n +2=1-n +42n +2, 故S n =2-n +42n +1.法二 由(1)知a n =1+2n =n +2n,所以a 1·a 2·…·a n =31×42×…×n +1n -1×n +2n =(n +1)(n +2)2,所以b n =a 1·a 2·…·a n(n +1)·2n =n +22n +1=n +32n -n +42n +1, 所以S n =⎝ ⎛⎭⎪⎫421-522+⎝ ⎛⎭⎪⎫522-623+…+⎝⎛⎭⎪⎫n +32n -n +42n +1=2-n +42n +1.[C 级 素养升华]14.(多选题)已知数列{a n }满足12a 1+122a 2+123a 3+…+12n a n =2n +5,则下列数字在数列{a n }中的是( )A .14B .18C .20D .32解析:由题意知,数列{a n }满足12a 1+122a 2+123a 3+…+12n a n =2n +5,则12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n >1, 两式相减得,a n2n =2n +5-2(n -1)-5=2,所以a n =2n +1,n >1,n ∈N *. 当n =1时,a 12=7,所以a 1=14.综上可知,数列{a n }的通项公式为a n =⎩⎨⎧14,n =1,2n +1,n ≥2.答案:AD。

2021高考数学一轮复习统考第11章概率第2讲古典概型课时作业含解析北师大版

2021高考数学一轮复习统考第11章概率第2讲古典概型课时作业含解析北师大版

古典概型课时作业1.(2019·新疆乌鲁木齐第三次质检)从1,2,3,4,5,6中任意取出两个不同的数,其和为7的概率为( )A.215B.15C.415D.13答案 B解析 从1,2,3,4,5,6中任意取出两个不同的数,共有15种不同的取法,它们分别是{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15种.从1,2,3,4,5,6中任意取出两个不同的数,它们的和为7,则不同的取法为{1,6},{2,5},{3,4},共3种,故所求的概率为15,故选B.2.(2019·安徽江淮十校最后一卷)《易经》是我国古代预测未来的著作.其中有同时抛掷三枚古钱币观察正反面来预测未知,则抛掷一次时出现两枚正面一枚反面的概率为( )A.18B.14C.38D.12答案 C解析 抛掷三枚古钱币出现的基本事件共有{正正正},{正正反},{正反正},{反正正},{正反反},{反正反},{反反正},{反反反},共8种,其中出现两正一反的基本事件共3种,故概率为38.故选C.3.(2019·山东潍坊三模)五行学说是华夏民族创造的哲学思想,是华夏文明重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成.如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为( )A.12B.13C.14D.15答案 A解析 从金、木、水、火、土中任取2类,包含的基本事件为金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共10种,其中2类元素相生的基本事件包含木火、火土、水木、金水、土金,共5种,所以2类元素相生的概率为510=12,故选A.4.(2019·湖南六校联考)某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是( )A.23B.12C.14D.16答案 B解析 从黄、白、蓝、红4种颜色中任意选2种颜色的所有基本事件有{黄白},{黄蓝},{黄红},{白蓝},{白红},{蓝红},共6种.其中包含白色的基本事件有3种,所以选中的颜色中含有白色的概率为12,故选B.5.(2019·湖南雅礼中学模拟二)甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( )A.12B.13C.14D.15 答案 C解析 甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人共有4种情况,包含(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁).其中甲、乙将贺年卡都送给丁的情况只有一种,其概率是14,故选C.6.(2019·辽宁大连二模)一个口袋中装有5个球,其中有3个红球,其余为白球,这些球除颜色外完全相同,若一次从中摸出2个球,则至少有1个红球的概率为( )A.910B.35C.310D.110 答案 A解析 由题意知白球有5-3=2个,记三个红球为A ,B ,C ,两个白球为a ,b .一次摸出2个球所有可能的结果为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab ,共10种,至少有一个红球的结果为AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,共9种.∴所求概率P =910.7.(2019·江西景德镇第二次质检)袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件A ,用随机模拟的方法估计事件A 发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:A.19B.29C.518D.718答案 C解析 事件A 包含“瓷”“都”两字,即包含数字0和1,随机产生的18组数中,包含0,1的有021,001,130,031,103,共5组,故所求概率为P =518,故选C.8.(2019·湖北4月联考)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,若抽得的第一张卡片上的数小于第二张卡片上的数的概率为p 1,抽得的第一张卡片上的数大于第二张卡片上的数的概率为p 2,抽得的第一张卡片上的数等于第二张卡片上的数的概率为p 3,则( )A.p 1+p 2=1 B .p 2<p 1,C.p 1>p 3D .p 1=p 2=答案 C解析 从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n =25,抽得的第一张卡片上的数小于第二张卡片上的数包含的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10个,抽得的第一张卡片上的数等于第二张卡片上的数包含的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),共5个,∴p 1=p 2=1025=25,p 3=525=15,故选C.9.(2019·四川宜宾二检)一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为( )A.45B.710C.35D.12答案 B解析 记3张红桃,1张黑桃,1张梅花分别为红1,红2,红3,黑1,梅1.所有可能情况有(红1,黑1),(红1,梅1),(红2,黑1),(红2,梅1),(红3,黑1),(红3,梅1),(红1,红2),(红1,红3),(红2,红3),(黑1,梅1),共10种.其中符合花色不同的情况有(红1,黑1),(红1,梅1),(红2,黑1),(红2,梅1),(红3,黑1),(红3,梅1),(黑1,梅1),共7种,根据古典概型的概率公式得P =710,故选B.10.(2019·甘肃兰州模拟)双曲线C :x 2a 2-y 2b2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14B.38C.12D.58答案 B解析 直线l :y =x 与双曲线C 的左、右支各有一个交点,则b a>1,总基本事件数为16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为38. 11.(2019·新疆阿克苏三诊)将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,恰好是两面涂色的概率是( )A.29B.827C.49D.1627答案 C解析 由题可得大正方体的最上层、中间一层及最底层都有4个恰好是两面涂色的小正方体,所以恰好是两面涂色的小正方体个数为4×3=12,所以从这些小正方体中任取一个,恰好是两面涂色的概率是P =1227=49,故选C.12.(2019·湖南长郡中学第六次月考)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率是( )A.13B.23C.14D.34答案 B解析 此人从小区A 前往小区H 的所有最短路径有A →G →O →H ,A →E →O →H ,A →E →D →H ,共3条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件有A →G →O →H ,A →E→O →H ,共2条.所以他经过市中心的概率为P (M )=23,故选B.13.(2019·合肥模拟)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排1名男生、星期日安排1名女生的概率为________.答案 13解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动的情况有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,共12种,而星期六安排1名男生、星期日安排1名女生的情况有A 1B 1,A 1B 2,A 2B 1,A 2B 2,共4种,则所求的概率为P =412=13.14.(2019·四川绵阳模拟)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.答案 16解析 从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16.15.某人在微信群中发了一个7元“拼手气”红包,被甲、乙、丙三人抢完,若三人均领到整数元,且每人至少领到1元,则甲领取的钱数不少于其他任何人的概率是________.答案 25解析 由题意,得基本事件有(1,1,5),(1,5,1),(5,1,1),(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1),(1,3,3),(3,1,3),(3,3,1),(2,2,3),(2,3,2),(3,2,2),共15种,其中甲领取的钱数不少于其他任何人的基本事件有(5,1,1),(4,1,2),(4,2,1),(3,1,3),(3,3,1),(3,2,2),共6种,所以所求概率为615=25.16.(2019·黑龙江哈尔滨六中二模)从装有3双不同鞋子的柜子里,随机取出2只鞋子,则取出的2只鞋子不成对的概率为________.答案 45解析 设3双鞋子分别为A 1,A 2、B 1,B 2、C 1,C 2,则取出2只鞋子的情况有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),(C 1,C 2)共15种,其中,不成对的情况有(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 2,C 2),(B 1,C 1),(B 1,C 2),(B 2,C 1),(B 2,C 2),共12种,由古典概型的公式得,所求概率为1215=45.17.(2019·成都市高三一诊)某部门为了解某企业在生产过程中的用水量情况,对日用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的日用水量的数据作为样本,得到的统计结果如下表:(2)已知样本中日用水量在[80,90)内的这6个数据分别为83,85,86,87,88,89,从这6个数据中随机抽取2个,求抽取的2个数据中至少有一个大于86的概率.解 (1)∵3+6+m =12,∴m =3,∴n =312=14,p =m 12=312=14,,∴m =3,n =p =14.(2)从这6个数据中随机抽取2个数据的情况有{83,85},{83,86},{83,87},{83,88},{83,89},{85,86},{85,87},{85,88},{85,89},{86,87},{86,88},{86,89},{87,88},{87,89},{88,89},共15种.其中2个数据都小于或等于86的情况有{83,85},{83,86},{85,86},共3种. 故抽取的2个数据中至少有一个大于86的概率P =1-315=45.18.(2019·西安模拟)某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过9站的地铁票价如下表:他们各自在每个站下车的可能性是相同的.(1)若甲、乙两人共付费2元,则甲、乙下车的方案共有多少种? (2)若甲、乙两人共付费4元,求甲比乙先到达目的地的概率.解 (1)由题意,得甲、乙两人乘坐地铁均不超过3站,前3站设为A 1,B 1,C 1.,甲、乙两人下车方案有(A 1,A 1),(A 1,B 1),(A 1,C 1),(B 1,A 1),(B 1,B 1),(B 1,C 1),(C 1,A 1),(C 1,B 1),(C 1,C 1),共9种.(2)设9站分别为A 1,B 1,C 1,A 2,B 2,C 2,A 3,B 3,C 3.因为甲、乙两人共付费4元,所以可能有甲付1元,乙付3元;甲付3元,乙付1元;甲付2元,乙付2元,共三类情况.由(1)可知每类情况中有9种方案,所以甲、乙两人共付费4元共有27种方案.而甲比乙先到达目的地的方案有(A 1,A 3),(A 1,B 3),(A 1,C 3),(B 1,A 3),(B 1,B 3),(B 1,C 3),(C 1,A 3),(C 1,B 3),(C 1,C 3),(A 2,B 2),(A 2,C 2),(B 2,C 2),共12种,故所求概率为1227=49.所以甲比乙先到达目的地的概率为49.19.(2019·河南八市重点高中联盟压轴)某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,处罚时,得到如下数据:(1)当处罚金定为100元时,员工迟到的概率会比不进行处罚时降低多少?(2)将选取的200人中会迟到的员工分为A ,B 两类:A 类员工在处罚金不超过100元时就会改正行为;B 类是其他员工.现对A 类与B 类员工按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B 类员工的概率是多少?解 (1)∵当处罚金定为100元时,员工迟到的概率为40200=15,不处罚时,迟到的概率为80200=25.∴当处罚金定为100元时,比不制定处罚,员工迟到的概率会降低15.(2)由题意知,A 类员工和B 类员工各有40人,分别从A 类员工和B 类员工中各抽出两人,从A 类员工中抽出的两人分别记为A 1,A 2,从B 类员工中抽出的两人分别记为B 1,B 2,设“从A 类与B 类员工中按分层抽样的方法抽取4人依次进行深度问卷”为事件M ,则事件M 中首先抽出A 1的事件有(A 1,A 2,B 1,B 2),(A 1,A 2,B 2,B 1),(A 1,B 1,A 2,B 2),(A 1,B 1,B 2,A 2),(A 1,B 2,A 2,B 1),(A 1,B 2,B 1,A 2),共6种,,同理首先抽出A 2,B 1,B 2的事件也各有6种,故事件M 共有4×6=24种,设“抽取4人中前两位均为B 类员工”为事件N ,则事件N 有(B 1,B 2,A 1,A 2),(B 1,B 2,A 2,A 1),(B 2,B 1,A 1,A 2),(B 2,B 1,A 2,A 1),共4种,∴P (N )=424=16,∴抽取4人中前两位均为B 类员工的概率是16.20.(2019·山东淄博模拟)为响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男、女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.解 (1)根据阅读用时频数分布表知,该市市民每天阅读用时的平均值为0+0.52×10200+0.5+12×20200+1+1.52×50200+1.5+22×60200+2+2.52×40200+2.5+32×20200=1.65,故该市市民每天阅读用时的平均值为1.65.(2)设参加交流会的男代表为A 1,A 2,a ,其中A 1,A 2喜欢古典文学,则男代表参加交流会的方式有A 1A 2,A 1a ,A 2a ,共3种.参加交流会的女代表为B ,b 1,b 2,其中B 喜欢古典文学,则女代表参加交流会的方式有Bb 1,Bb 2,b 1b 2,共3种,所以参加交流会代表的组成方式有{Bb 1,A 1A 2},{Bb 1,A 1a },{Bb 1,A 2a },{Bb 2,A 1A 2},{Bb 2,A 1a },{Bb 2,A 2a },{b 1b 2,A 1A 2},{b 1b 2,A 1a },{b 1b 2,A 2a },共9种,其中喜欢古典文学的男代表多于喜欢古典文学的女代表的是{Bb 1,A 1A 2},{Bb 2,A 1A 2},{b 1b 2,A 1A 2},{b 1b 2,A 1a },{b 1b 2,A 2a },共5种,所以喜欢古典文学的男代表多于喜欢古典文学的女代表的概率是P =59.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

2021年高考数学一轮复习 大题练习一(含答案)

2021年高考数学一轮复习 大题练习一(含答案)

2021年高考数学一轮复习大题练习一1.已知函数.(1)求f(x)的单调递增区间;(2)求f(x)在区间上的值域.2.已知{a}是公差为正数的等差数列,首项a1=3,前n项和为S n,数列{b n}是等比数列,首n项b1=1,且a2b2=12,S3+b2=20.(1)求{a n},{b n}的通项公式.(2)令c n=nb n(n∈N*),求{c n}的n项和T n.3.在△ABC中,角A,B,C的对边分别为a,b,c,且(a+b)(sin A-sin B)=c(sin C-sin B).(1)求A;(2)若a=4,求b2+c2的取值范围.4.已知等差数列{a n}的首项为a(a∈R,a≠0).(1)求数列{a n}的通项公式及S n;(2)是否存在正整数n和k,使得S n,S n+1,S n+k成等比数列?若存在,求出n和k的值;若不存在,请说明理由.5.已知椭圆C :x 2a 2+y2b2=1(a>b>0)的右焦点F(3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B(0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标.6.在锐角△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 所对的边,且错误!未找到引用源。

a=2csinA .(1)确定∠C 的大小;(2)若c=错误!未找到引用源。

,求△ABC 周长的取值范围.7.如图,椭圆C :x 2a 2+y2b 2=1(a>b>0)的左顶点与上顶点分别为A ,B ,右焦点为F ,点P 在椭圆C 上,且PF ⊥x 轴,若AB ∥OP ,且|AB|=2 3.(1)求椭圆C 的方程;(2)已知Q 是C 上不同于长轴端点的任意一点,在x 轴上是否存在一点D ,使得直线QA与QD 的斜率乘积恒为-12,若存在,求出点D 的坐标,若不存在,说明理由.8.已知函数f(x)=kx -ln x -1(k>0).(1)若函数f(x)有且只有一个零点,求实数k 的值;(2)证明:当n ∈N *时,1+12+13+ (1)>ln(n +1).答案解析1.解:(1)令,得,的单调递增区间为;(2)由得,故而.2.解:(1)设公差为d,公比为q,则ab2=(3+d)q=12①2S3+b2=3a2+b2=3(3+d)+q=20②联立①②可得,(3d+7)(d﹣3)=0∵{a n}的公差d>0.则d=3,q=2,∴a n=3+(n﹣1)×3=3n,b n=2n﹣1;(2)b n=2n﹣1,c n=n2n﹣1,∴T n=c1+c2+…+c n=120+221+322+…+n2n﹣1,2T n=121+222+…+(n﹣1)2n﹣1+n2n,两式相减可得,﹣T n=120+121+122+…+12n﹣1﹣n2n,∴﹣T n=﹣n2n=2n﹣1﹣n2n,∴T n=(n﹣1)2n+1.3.解:(1)根据正弦定理得(a+b)(a-b)=c(c-b),即a2-b2=c2-bc,则=,即cos A=,由于0<A<π,所以A=.(2)根据余弦定理,a2=b2+c2-2bccos =b2+c2-bc,所以b2+c2=16+bc≤16+,当且仅当b=c时取等号,则有b2+c2≤32,又b2+c2=16+bc>16,所以b2+c2的取值范围是(16,32].4.解:5.解:(1)由题意得,c=3,a b=2,a 2=b 2+c 2,∴a=2,b=1,∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:当直线l 的斜率存在时,设直线l 的方程为y=kx +m(m≠1),M(x 1,y 1),N(x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,消去y 可得(4k 2+1)x 2+8kmx +4m 2-4=0. ∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k(m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k(m -1)-8km 4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m=-35或m=1(舍去).∴直线l 的方程为y=kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎝⎛⎭⎪⎫0,-35.6.解:(1)由a=2csinA 变形得: =,又正弦定理得:=,∴=,∵sinA ≠0,∴sinC= ,∵△ABC 是锐角三角形,∴∠C=(2)解:∵c= ,sinC= , ∴由正弦定理得:=2,即a=2sinA ,b=2sinB ,又A+B=π﹣C= ,即B= ﹣A , ∴a+b+c=2(sinA+sinB )+ =2[sinA+sin ( ﹣A )]+=2(sinA+sin cosA ﹣cos sinA )+=3sinA+ cosA+=2(sinAcos +cosAsin )+ =2sin (A+ )+ ,∵△ABC 是锐角三角形,∴ <∠A < ,∴ <sin (A+ )≤1, 则△ABC 周长的取值范围是(3+ , 3 ] 7.解:(1)由题意得A(-a,0),B(0,b),可设P(c ,t)(t>0),∴c 2a 2+t 2b 2=1,得t=b 2a ,即P ⎝ ⎛⎭⎪⎫c ,b 2a ,由AB ∥OP 得b a =b 2a c,即b=c ,∴a 2=b 2+c 2=2b 2,①又|AB|=23,∴a 2+b 2=12,②由①②得a 2=8,b 2=4,∴椭圆C 的方程为x 28+y24=1.(2)假设存在D(m,0),使得直线QA 与QD 的斜率乘积恒为-12,设Q(x 0,y 0)(y 0≠0),则x 208+y 204=1,③∵k QA ·k QD =-12,A(-22,0),∴y 0x 0+22·y 0x 0-m =-12(x 0≠m),④由③④得(m -22)x 0+22m -8=0,即⎩⎨⎧m -22=0,22m -8=0,解得m=22,∴存在点D(22,0),使得k QA ·k QD =-12.8.解:(1)法一:f(x)=kx -ln x -1,f ′(x)=k -1x =kx -1x(x>0,k>0),当x=1k 时,f ′(x)=0;当0<x<1k 时,f ′(x)<0;当x>1k时,f ′(x)>0.∴f(x)在⎝ ⎛⎭⎪⎫0,1k 上单调递减,在⎝ ⎛⎭⎪⎫1k ,+∞上单调递增, ∴f(x)min =f ⎝ ⎛⎭⎪⎫1k =ln k , ∵f(x)有且只有一个零点,∴ln k=0,∴k=1.法二:由题意知方程kx -ln x -1=0仅有一个实根,由kx -ln x -1=0得k=ln x +1x(x>0),令g(x)=ln x +1x (x>0),g ′(x)=-ln xx2, 当x=1时,g ′(x)=0;当0<x<1时,g ′(x)>0;当x>1时,g ′(x)<0. ∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, ∴g(x)max =g(1)=1,当x →+∞时,g(x)→0,∴要使f(x)仅有一个零点,则k=1.法三:函数f(x)有且只有一个零点,即直线y=kx 与曲线y=ln x +1相切,设切点为(x 0,y 0),由y=ln x +1得y ′=1x ,∴⎩⎪⎨⎪⎧k =1x 0,y 0=kx 0,y 0=ln x 0+1,∴k=x 0=y 0=1,∴实数k 的值为1.(2)证明:由(1)知x -ln x -1≥0,即x -1≥ln x ,当且仅当x=1时取等号,∵n ∈N *,令x=n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).。

2023年新高考数学一轮复习1-2 全称量词与存在量词、充要条件(真题测试)解析版

2023年新高考数学一轮复习1-2  全称量词与存在量词、充要条件(真题测试)解析版

专题1.1集合(真题测试)一、单选题1.(2021·天津·高考真题)已知a ∈R ,则“6a >”是“236a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】由充分条件、必要条件的定义判断即可得解.【详解】由题意,若6a >,则236a >,故充分性成立;若236a >,则6a >或6a <-,推不出6a >,故必要性不成立;所以“6a >”是“236a >”的充分不必要条件.故选:A.2.(2021·北京·高考真题)已知()f x 是定义在上[0,1]的函数,那么“函数()f x 在[0,1]上单调递增”是“函数()f x 在[0,1]上的最大值为(1)f ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】【分析】利用两者之间的推出关系可判断两者之间的条件关系.【详解】若函数()f x 在[]0,1上单调递增,则()f x 在[]0,1上的最大值为()1f ,若()f x 在[]0,1上的最大值为()1f , 比如()213f x x ⎛⎫=- ⎪⎝⎭, 但()213f x x ⎛⎫=- ⎪⎝⎭在10,3⎡⎤⎢⎥⎣⎦为减函数,在1,13⎡⎤⎢⎥⎣⎦为增函数, 故()f x 在[]0,1上的最大值为()1f 推不出()f x 在[]0,1上单调递增,故“函数()f x 在[]0,1上单调递增”是“()f x 在[]0,1上的最大值为()1f ”的充分不必要条件,故选:A.3.(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【解析】【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件 故选:B.4.(2021·全国·高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,---时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .5.(2021·全国·高考真题(理))已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨【答案】A【解析】【分析】由正弦函数的有界性确定命题p 的真假性,由指数函数的知识确定命题q 的真假性,由此确定正确选项.【详解】由于sin0=0,所以命题p 为真命题;由于x y e =在R 上为增函数,0x ≥,所以||01x e e ≥=,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .6.(2020·天津·高考真题)设a ∈R ,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选:A.7.(2020·北京·高考真题)已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时,若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12k k k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件.故选:C.8.(2018·北京·高考真题(理))设向量,a b 均为单位向量,则“|3||3|a b a b -=+”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【答案】C 【解析】【分析】根据向量数量积的应用,结合充分条件和必要条件的定义进行判断即可.【详解】因为向量,a b 均为单位向量所以|3||3|a b a b -=+⇔()()2233a b a b -=+ ⇔22226996a a b b a a b b -⋅+=+⋅+⇔169961a b a b -⋅+=+⋅+⇔0a b ⋅=⇔a b ⊥所以“|3||3|a b a b -=+”是“a b ⊥”的充要条件故选:C9.(2019·北京·高考真题(文))设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断.【详解】 0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.10.(2019·浙江·高考真题)若0,0a b >>,则“4a b +≤”是 “4ab ≤”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 11.(2019·北京·高考真题(理))设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】【分析】 由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可.【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.12.(2007·山东·高考真题(理))命题“对任意的x ∈R ,3210x x -+≤”的否定是A .不存在x ∈R ,3210x x -+≤B .存在x ∈R ,3210x x -+≤C .存在x ∈R ,3210x x -+>D .对任意的x ∈R ,3210x x -+> 【答案】C【解析】【详解】注意两点:1)全称命题变为特称命题;2)只对结论进行否定.“对任意的x ∈R ,3210x x -+≤”的否定是:存在x ∈R ,3210x x -+>选C.13.(2018·北京·高考真题(理))设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 【答案】D【解析】【详解】分析:求出(2,1)A ∈及(2,1)A ∉所对应的集合,利用集合之间的包含关系进行求解.详解:若(2,1)A ∈,则32a >且0a ≥,即若(2,1)A ∈,则32a >,此命题的逆否命题为:若32a ≤,则有(2,1)A ∉,故选D. 点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据,p q 成立时对应的集合之间的包含关系进行判断. 设{|()},{|()}A x p x B x q x ==,若A B ⊆,则p q ⇒;若A B =,则p q =,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式. 14.(2018·浙江·高考真题)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】【详解】 m α⊄,n ⊂α,所以当//m n 时,//m α成立,即充分性成立;当//m α时, //m n 不一定成立,可能是异面直线,故必要性不成立;所以//m n 是//m α的充分不必要条件,故选:A15.(2018·天津·高考真题(理))设R x ∈,则“11||22x -<”是“31x <”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【详解】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系. 详解:绝对值不等式1122x -<⇔111222x -<-<⇔01x <<, 由31x <⇔1x <. 据此可知1122x -<是31x <的充分而不必要条件. 本题选择A 选项.二、填空题16.(2022·江苏省天一中学高二期中)下列命题正确的是( )A .命题“2R,10x x x ∃∈++≥”的否定是“2R,10x x x ∀∈++<”B .0a b +=的充要条件是1b a=- C .2R,0x x ∀∈> D .11a b >>,是1ab >的充分条件 【答案】AD【解析】【分析】根据含量词的命题的否定方法判断A ,根据充分条件和必要条件的定义判断B ,D ,根据全称量词命题的真假的判断方法判断C.【详解】命题“2R,10x x x ∃∈++≥”的否定是“2R,10x x x ∀∈++<”,A 对,当0a b 时,0a b +=但b a 不存在,所以0a b +=不是1b a=-的充分条件,B 错, 当0x =时,20x =,C 错,由11a b >>,可得1ab >,所以11a b >>,是1ab >的充分条件,D 对, 故选:AD.17.(2022·湖北·鄂南高中模拟预测)给定命题:p x m ∀>,都有28x >.若命题p 为假命题,则实数m 可以是( )A .1B .2C .3D .4【答案】AB【解析】【分析】命题p 的否定:x m ∃>,28x ≤是真命题. 再把选项取值代入检验即得解.【详解】解:由于命题p 为假命题,所以命题p 的否定:x m ∃>,28x ≤是真命题.当1m =时,则1x >,令22,28x =<,所以选项A 正确;当2m =时,则2x >,令22.5,2.58x =<,所以选项B 正确;当3m =时,则3x >,29x >,28x ≤不成立,所以选项C 错误;当4m =时,则4x >,216x >,28x ≤不成立,所以选项D 错误.故选:AB18.(2022·山东省实验中学模拟预测)已知直线l ⊄平面α,直线m ⊂平面α,则( )A .若l 与m 不垂直,则l 与α一定不垂直B .若l 与m 所成的角为30,则l 与α所成的角也为30C .//l m 是//l α的充分不必要条件D .若l 与α相交,则l 与m 一定是异面直线【答案】AC【解析】【分析】利用反证法可判断A 选项;利用线面角的定义可判断B 选项;利用线面平行的判定定理和性质可判断C 选项;根据已知条件直接判断l 与m 的位置关系,可判断D 选项.【详解】对于A ,当l 与m 不垂直时,假设l α⊥,因为m α⊂,则l m ⊥,这与已知条件矛盾,因此l 与α一定不垂直,A 正确;对于B 选项,由线面角的定义可知,l 与α所成的角是直线l 与平面α内所有直线所成角中最小的角, 若l 与m 所成的角为30,则l 与α所成的角θ满足030θ≤≤,B 错;对于C 选项,若//l m ,m α⊂,l α⊄,则//l α,即l m l α⇒////,若//l α,因为m α⊂,则l 与m 平行或异面,即l m l α⇐/////.所以,//l m 是//l α的充分不必要条件,C 对; 对于D 选项, 若l 与α相交,则l 与m 相交或异面,D 错.故选:AC.三、填空题19.(2021·江西·丰城九中高二阶段练习)命题“1x ∀>,20x x ->”的否定是_______【答案】1x ∃>,20x x -≤,【解析】【分析】根据全称量词命题的否定即可求解.【详解】“1x ∀>,20x x ->”的否定是:1x ∃>,20x x -≤,故答案为:1x ∃>,20x x -≤,20.(2022·北京·人大附中三模)能够说明“若,,a b m 均为正数,则b m b a m a+>+”是真命题的充分必要条件为___________.【答案】a b >【解析】【分析】利用充分必要条件的定义判断.【详解】 解:()()0a b m b m b a m a a a m -+-=>++, 因为,,a b m 均为正数,所以a b >,反之也成立,故“若,,a b m 均为正数,则b m b a m a +>+”是真命题的充分必要条件为a b >, 故答案为:a b >21.(2022·上海市奉贤中学高二阶段练习)已知n 为平面α的一个法向量,l 为一条直线,则“l n ⊥”是“l α∥”的________条件(填充分性和必要性)【答案】必要性【解析】【分析】根据l n l α⊥⇒∥或l α⊂,l l n α→⇒⊥∥得出结果.【详解】 n 为平面α的一个法向量,l 为一条直线, l n l α∴⊥⇒∥或l α⊂,l l n α→⇒⊥∥, ∴“l n ⊥”是“l α∥”的必要性.故答案为:必要性四、双空题22.(2021·江苏省天一中学高一期中)已知命题p :01,22x ⎡⎤∃∈⎢⎥⎣⎦,200210x x λ-+<,则命题p 的否定为___________;若命题p 为真命题,则λ的取值范围为___________.【答案】 1,22x ⎡⎤∀∈⎢⎥⎣⎦,2210x x λ-+≥ ()+∞【解析】【分析】利用特称命题的否定为全称命题可写出命题p的否定;命题p为真,将已知变形为1,22x⎡⎤∃∈⎢⎥⎣⎦,使得12xxλ>+成立,即min12xxλ⎛⎫+⎪⎝⎭>,利用基本不等式求得最小值即可得解.【详解】命题p:01 ,2 2x ⎡⎤∃∈⎢⎥⎣⎦,200210x xλ-+<为特称命题,特称命题的否定为全称命题,所以命题p的否定为1,22x⎡⎤∀∈⎢⎥⎣⎦,2210x xλ-+≥命题p为真,即01 ,2 2x ⎡⎤∃∈⎢⎥⎣⎦,200210x xλ-+<成立,则1,22x⎡⎤∃∈⎢⎥⎣⎦,使得12xxλ>+成立,所以min12xxλ⎛⎫+⎪⎝⎭>又12xx+≥=12xx=,即x=min12xx⎛⎫∴+=⎪⎝⎭λ>所以λ的取值范围为()+∞故答案为:1,22x⎡⎤∀∈⎢⎥⎣⎦,2210x xλ-+≥;λ>。

2021版高考数学一轮复习第十二章计数原理、概率、随机变量及其分布12.2排列、组合与二项式定理练习理北师大

2021版高考数学一轮复习第十二章计数原理、概率、随机变量及其分布12.2排列、组合与二项式定理练习理北师大

12.2 排列、组合与二项式定理核心考点·精准研析考点一排列、组合的基本问题1.某校根据2017版新课程标准开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种C.42种D.48种2.在由数字1、2、3、4、5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有( )A.56个B.57个C.58个D.60个3.八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有________________种安排办法.4.(2018·浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________________个没有重复数字的四位【解析】1.选A.按照所选的3门课程中A类的情形分两类:第一类,2门A类选修课,1门B类选修课,有种方法;第二类,1门A类选修课,2门B类选修课,有种方法,所以由分类加法计数原理得不同的选法共有+=12+18=30(种).2.选C.按照首位的大小分类:(1)开头为231的,有一个.(2)开头为23的,第三位从4,5中选一个,有种,余下的后两位,有种,共有=4个.(3)开头为2,第2位从4,5中选一个,有种,余下的后3位,有种,共有=12个.(4)开头为3,后四位由1,2,4,5全排列,有4!=24个.(5)开头为4,第二位为1,2中的一个,有2种方法,后三位有3!=6种方法,共有2×6=12个.(6)开头为43,第三位从1,2中选一个,有2种方法,后两位有2!种方法,共有2×2=4个.(7)开头为435的,只有1个,所以由分类加法计数原理得所求的数共有1+4+12+24+12+4+1=58(个).3.方法一:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用分类加法计数原理,在每类情况下,划分“乙、丙坐下”“甲坐下”“其他五人坐下”三个步骤,又要用到分步乘法计数原理,这样可有如下算法:··+··=8 640(种).方法二:采取“总方法数减去不符合题意的所有方法数”的算法.把“甲坐在前排的八人坐法数”看成“总方法数”,这个数目是·.在这种前提下,不合题意的方法是“甲坐在前排,且乙、丙坐两排的八人坐法,”这个数目是····.其中第一个因数表示甲坐在前排的方法数,表示从乙、丙中任选出一人的方法数,表示把选出的这个人安排在前排的方法数,下一个则表示乙、丙中未安排的那个人坐在后排的方法数,就是其他五人的坐法数,于是总的方法数为·-····=8 640(种).答案:8 6404.分类讨论:第一类:不含0的,按照分步乘法计数原理:=10×3×24=720;第二类:包含0的,按照分步乘法计数原理:=10×3×3×6=540,所以一共有1 260个没有重复数字的四位数.答案:1 2601.求解有限制条件的排列问题的主要方法直接法分类法选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由分类加法计数原理得出总数分步法选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数原理得出总数捆绑法相邻问题捆绑处理,即可以把相邻几个元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空中除法对于定序问题,可先不考虑顺序限制,排列后,再除以已定元素的全排列间接法对于分类过多的问题,按正难则反,等价转化的方法2.两类含有附加条件的组合问题的方法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.考点二排列、组合的综合问题【典例】1.从A,B,C,D,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )A.24B.48C.72D.1202.把20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的方法种数为________________.3.对于任意正整数n,定义“n的双阶乘n!!”如下:当n为偶数时,n!!=n··……6·4·2,当n为奇数时,n!!=n··……5·3·1,现有四个结论:①(2018!!)·(2019!!)=2019!,②(2n)!!=2n,③2018!!的个位数字是8,④<,则四个结论中正确的是________________.【解题导思】序号联想解题1 由“A不参加物理、化学竞赛”联想到分类:A参加,A不参加.由题意知小球没有区别,及盒子内球数不小于编号数,联想到先在2,3号盒子里分别放上1,2个2球,变成了挡板问题.3 看到双阶乘,联想到阶乘.【解析】1.选C.因为A参加时参赛方案有=48(种);A不参加时参赛方案有=24(种),所以不同的参赛方案共72种.2.先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中,即可共有C=120种方法.答案:1203.因为(2018!!)·(2019!!)=(2018×2016×…×6×4×2)×(2019×2017×…×5×3×1)=2019×2018×2017×…×5×4×3×2×1=2019!所以①是正确的.因为(2n)!!=··……6·4·2=2n··……3·2·1=2n, 所以②是正确的.因为由②知道2018!!中有因数5,也有因数2,所以个位数字是0,所以③是错误的.因为对任意正整数n,都有<,所以=,<,=,<,…,=,<,把上面的2n个式子作乘法,得<,所以两边开方得<,所以④是正确的.答案:①②④解决排列、组合的综合问题的关键点(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理作最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.(4)熟记排列数、组合数公式及其变形,准确计算.1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 ( )A.24B.48C.60D.72【解析】选D.分两步:第一步,先排个位,有种选择;第二步,排前4位,有种选择.由分步乘法计数原理,知有·=72个.2.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为( )A.1 860B.1 320C.1 140D.1 020【解析】选C.当A,B节目中只选一个时,共有=960种演出顺序;当A,B节目都被选中时,由插空法得共有=180种演出顺序.所以一共有960+180=1140种演出顺序.3.已知i,m,n是正整数,且1<i≤m<n,求证:.【证明】(用分析法)原不等式等价于<,左边==···…·,于是只要证明<即可,联想到“糖水不等式:若0<a<b,m>0,则0<<<1”及不等式的可乘性,所以···…·<··…=,所以原不等式成立.考点三二项式定理命题精解读1.考什么:(1)考查二项展开式的通项及由通项求某一项的系数或常数项.(2)考查应用赋值法求某些数列的和.2.怎么考:求二项展开式的通项或某指定项的系数或常数项,或知道某项系数或二项式系数,反求参数的值,考查二项展开式中组合思想的应用.3.新趋势:结合二项展开式的特征,与数列求和或不等式等知识交汇考查二项式定理.学霸好方法1.求解二项式定理问题的关键:(1)熟记二项式定理,会用组合思想解决展开式的通项,或某些指定项.(2)熟悉二项展开式的特征,掌握赋值法解某项数列求和问题.2.交汇问题:解决与数列、不等式等知识交汇问题时,先用赋值法构造求和模型,再转化为熟悉的问题.二项展开式的通项及其应用【典例】1.(2018·全国卷Ⅲ)的展开式中x4的系数为( ) A.10 B.20 C.40 D.802.的展开式中常数项为( )A. B.160 C.- D.-160 【解析】1.选C.展开式的通项公式为T r+1=(x2)5-r=2r x10-3r,令10-3r=4可得r=2,则x4的系数为22=40.2.选A.的展开式的通项为T r+1=x6-r=x6-2r,令6-2r=0,得r=3,所以展开式中的常数项是T4==.如何解决与二项展开式的通项有关的问题?提示:(1)求展开式中的特定项或其系数.可依据条件写出第k+1项,再由特定项的特点求出k值即可. (2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k+1项,由特定项得出k 值,最后求出其参数.二项式系数的性质与各项的和【典例】1.(2019·郑州模拟)若二项式的展开式的二项式系数之和为8,则该展开式所有项的系数之和为( )A.-1B.1C.27D.-272.(2019·鄂尔多斯模拟)在的展开式中,x3的系数等于-5,则该展开式的各项的系数中最大值为( )A.5B.10C.15D.203.(2019·襄阳模拟)设(x2+1)(2x+1)8=a0+a1(x+2)+a2(x+2)2+…+a10(x+2)10,则a0+a1+a2+…+a10的值为________________.【解析】1.选A.依题意得2n=8,解得n=3,取x=1,得该二项展开式每一项的系数之和为(1-2)3=-1.2.选B.的展开式的通项为T r+1=x5-r·=(-a)r x5-2r,令5-2r=3,则r=1,所以-a×5=-5,即a=1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为=10.3.在所给的多项式中,令x=-1可得(1+1)×(-2+1)8=a0+a1+a2+…+a10,即a0+a1+a2+…+a10=2.答案:2如何求解二项式系数或展开式系数的最值问题?提示:求解二项式系数或展开式系数的最值问题一般分两步:第一步,要弄清所求问题是“展开式系数最大”、“二项式系数最大”两者中的哪一个.第二步,若是求二项式系数的最大值,则依据(a+b)n中n的奇偶及二次项系数的性质求解.若是求展开式系数的最大值则在系数均为正值的前提下,求最大值只需解不等式组即可求得答案.二项式定理的综合应用【典例】1.(x+y)(2x-y)6的展开式中x4y3的系数为( )A.-80B.-40C.40D.802.(2019·枣阳模拟)(x2+x+y)5的展开式中x5y2的系数为 ( )A.10B.20C.30D.60【解析】1.选D.(2x-y)6的展开式的通项公式为T r+1=(2x)6-r(-y)r,当r=2时,T3=240x4y2,当r=3时,T4=-160x3y3,故x4y3的系数为240-160=80.2.选C.(x2+x+y)5的展开式的通项为=(x2+x·y r,令r=2,则T3=(x2+x)3y2,又(x2+x)3的展开式的通项为(x2·x k=,令6-k=5,则k=1,所以(x2+x+y)5的展开式中,x5y2的系数为=30.如何求解(a+b)m(c+d)n或(a+b+c)n展开式的某一项的系数?提示:(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)若三项能用完全平方公式,那当然比较简单;若三项不能用完全平方公式,只需根据题目特点,把“三项”当成“两项”看,再利用二项展开式的通项公式去求特定项的系数.(3)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2.(4)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.1.将多项式a6x6+a5x5+…+a1x+a0分解因式得,m为常数,若a5=-7,则a0=( )A.-2B.-1C.1D.2【解析】选D.因为(x+m)5的通项公式为T r+1=x5-r m r,a5x5=x·x5-1m1+(-2)x5=(5m-2)x5,所以a5=5m-2,又因为a5=-7,所以5m-2=-7,所以m=-1,所以常数项a0=(-2)×(-1)5=2.2.在的展开式中,含x5项的系数为( )A.6B.-6C.24D.-24【解析】选B.由=-+-…-+,可知只有-的展开式中含有x5,所以的展开式中含x5项的系数为-=-6.3.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________________.【解析】设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②得16(a+1)=2(a1+a3+a5)=2×32,所以a=3.答案:31.(2019·湘潭模拟)若(1-3x)2 020=a0+a1x+…+a2 020x2 020,x∈R,则a1·3+a2·32+…+a2 020·32 020的值为( )A.22 020-1B.82 020-1C.22 020D.82 020【解析】选B.由已知,令x=0,得a0=1,令x=3,得a0+a1·3+a2·32+…+a2 020·32 020=(1-9)2 020=82 020,所以a1·3+a2·32+…+a2 020·32 020=82 020-a0=82 020-1.2.的展开式中常数项为( )A.-30B.30C.-25D.25【解析】选C.=x2-3x+,的展开式的通项为T r+1=(-1)r,易知当r=4或r=2时原式有常数项,令r=4,T5=(-1)4,令r=2,T3=(-1)2·,故所求常数项为-3×=5-30=-25.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档