图形的平移与旋转测试题

合集下载

八年级上数学第四章+图形的平移与旋转(题+答案)

八年级上数学第四章+图形的平移与旋转(题+答案)

第四章图形的平移与旋转单元测试卷一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A. 3B. 4C. 5D. 62.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置.若∠CAB′=25°,则∠CAC′的度数为( )A. 25°B. 40°C. 65°D. 70°3.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A. ∠EAB=30°B. ∠EAB=45°C. ∠EAB=60°D. ∠EAB=75°4.在平面直角坐标系中,P点关于原点的对称点为P1(−3,−8),P点关于x轴的对称点为33=( )P2(a,b),则√abA. −2B. 2C. 4D. −45.如图直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=3,将CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A. 1B. 2C. 3D. 不能确定6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2√3,P是BC边上一动点,连接AP,把线段AP绕点A逆时针旋转60°到线段AQ,连接CQ,则线段CQ的最小值为( )A. 1B. 2C. 3D. √37.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O( )A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)9.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 ( )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)10.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 48B. 96C. 84D. 42二、填空题(本大题共8小题,共24分)11.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=√41,则点C的坐标为.12.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是.14.在所示的数轴上,点B与点C关于点A成中心对称,A、B两点对应的实数分别是√3和−1,则点C所对应的实数是.15.如图所示,已知AB=3,AC=1,∠D=90∘,△DEC与△ABC关于点C成中心对称,则AE的长是.16.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是______.17.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG,则下列结论:a2; ③FC平分∠BFG; ①∠FCG=∠CDG; ②△CEF的面积等于14 ④BE2+DF2=EF2.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共66分。

平移与旋转测试题

平移与旋转测试题

平移与旋转测试题一、选择题1. 平移变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置2. 旋转变换不改变图形的:A. 形状B. 大小C. 方向D. 颜色3. 下列哪个图形经过平移后,其形状会发生变化?A. 圆形B. 正方形C. 矩形D. 五角星4. 一个图形绕着某一点旋转90度后,其形状和大小:A. 发生变化B. 不变C. 形状变化,大小不变D. 大小变化,形状不变5. 平移和旋转的共同点是:A. 改变图形的形状B. 改变图形的大小C. 不改变图形的形状和大小D. 改变图形的颜色二、填空题6. 平移是将一个图形沿着直线方向移动一定的________。

7. 旋转是将一个图形绕着某一点或________,按照一定的角度进行转动。

8. 平移后的图形与原图形在形状和大小上是________的。

9. 旋转后的图形与原图形在形状和大小上也是________的。

10. 如果一个图形绕着其中心点旋转180度,那么它将与原图形________(完全/部分)重合。

三、判断题11. 平移可以改变图形的方向。

(对/错)12. 旋转可以改变图形的位置。

(对/错)13. 一个图形经过平移后,其位置会发生变化,但方向不变。

(对/错)14. 一个图形经过旋转后,其位置和方向都可能发生变化。

(对/错)15. 平移和旋转都不会改变图形的大小。

(对/错)四、简答题16. 请简述平移和旋转在几何变换中的区别。

17. 举例说明平移和旋转在日常生活中的应用。

五、应用题18. 一个正方形沿着一条直线平移了5个单位长度,如果原正方形的边长为10厘米,请画出平移后的正方形,并标出平移的方向和距离。

19. 一个时钟的时针在12小时内绕着钟表中心点旋转了多少度?请解释时针旋转的规律。

20. 如果一个图形绕着其中心点顺时针旋转了45度,那么它相对于原位置旋转了多少度?请画出旋转后的图形,并标出旋转的角度。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(有答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(有答案解析)

一、选择题1.如图,根据ABC 的已知条件,按如下步骤作图:(1)以A 圆心,AB 长为半径画弧;(2)以C 为圆心,CB 长为半径画弧,两弧相交于点P ;(3)连接BP ,与AC 交于点O ,连接AP 、CP .以下结论:①BP 垂直平分AC ;②AC 平分BAP ∠;③四边形ABCP 是轴对称图形也是中心对称图形;④ABC APC ≌△△,请你分析一下,其中正确的是( )A .①④B .②③C .①③D .②④2.如图,在平面直角坐标系xOy 中,点P 的坐标为22,⎛⎫ ⎪ ⎪⎝⎭,将线段1OP ,绕点O 按顺时针方向旋转45,再将其长度伸长为1OP 的2倍,得到线段2OP ;又将线段2OP 绕点O 按顺时针方向旋转45,长度伸长为2OP 的2倍,得到线段3OP ;如此下去,得到线段4OP 、5OP 、、2021OP ,则20202021OP P ∆的面积为( )A .4038224B .40392C 403722D .40382 3.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列四个结论:①AC =AD ;②AB ⊥EB ;③BC =EC ;④∠A =∠EBC ;其中一定正确的是( )A .①②B .②③C .③④D .②③④4.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=9,把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙),此时AB 与CD 1交于点O ,则点O 到AD 1的距离为( )A .3B .35C .65D .5 5.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 6.下列图形是我国国产汽车的标识,在这四个汽车标识中,是中心对称图形的是( ) A . B .C .D .7.在线段,直角三角形,平行四边形,长方形,正五角星,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有( )A .3个B .4个C .5个D .6个8.下列图形中,是中心对称图形的有( )A .1个B .2个C .3个D .4个9.关于平移后对应点所连的线段,下列说法正确的是()①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A.①③B.②③C.③④D.①②10.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称B.轴对称和平移C.平移和旋转D.旋转和轴对称11.怀化是一个多民族聚居的地区,民俗文化丰富多彩.下面是几幅具有浓厚民族特色的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.12.把△ABC沿BC方向平移,得到△A′B′C′,随着平移距离的不断增大,△A′CB的面积大小变化情况是()A.增大B.减小C.不变D.不确定二、填空题13.如图,把ABC绕点A顺时针旋转50°得到ADE,点B的对应点是D,则直线BC与DE所夹的锐角是______.14.如图,等边三角形ABC 中,点O 是ABC 的中心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①OD OE =;②ODE BDE S S =;③四边形ODBE 的面积始终等于定值;④当OE BC ⊥时,BDE 周长最小.上述结论中正确的有__________(写出序号).15.如图,将△ABC 绕点A 顺时针旋转一定的角度至△ADE 处,使得点C 恰好在线段DE 上,若∠ACB =75°,则旋转角为________度.16.以A (﹣2,7),B (﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y )(﹣2≤y ≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为_____.17.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点()1,2P 在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,则点P 的坐标为_________.19.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.20.已知等边△ABC 的边长为4,点P 是边BC 上的动点,将△ABP 绕点A 逆时针旋转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是_____.三、解答题21.如图,已知ABC 的三个顶点的坐标分别为(5,0)A -,(2,3)B -,(1,0)C -.(1)画出ABC 关于原点O 成中心对称的图形A B C ''';(2)将ABC 绕原点O 顺时针旋转90︒,画出对应的A B C ''''''△,并写出点B ''的坐标_____________.22.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (1,1)、B (5,1)、C (4,4),按下列要求作图:(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,并写出点B 2的坐标;23.如图,在平面直角坐标系中,已知ABC 的顶点的坐标分别是A (5-,2),B (2-,4),C (1-,1).(1)在图中作出111A B C △,使111A B C △和ABC 关于x 轴对称;(2)画出将ABC 以点O 为旋转中心,顺时针旋转90︒对应的222A B C △; (3)直接写出点B 关于点C 对称点的坐标.24.如图,已知线段MN =4,点A 在线段MN 上,且AM =1,点B 为线段AN 上的一个动点.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,旋转角分别为α和β.若旋转后M 、N 两点重合成一点C (即构成△ABC ),设AB =x .(1)△ABC 的周长为 ;(2)若α+β=270°,求x 的值;(3)试探究△ABC 是否可能为等腰三角形?若可能,求出x 的值;若不可能,请说明理由.25.在如图所示的方格纸中,(1)作出ABC 关于MN 对称的111A B C △;(2)222A B C △是由111A B C △经过怎样的平移得到的?并求出111A B C △在平移过程中所扫过的面积.26.如图,Rt ABC △中,90C ∠=︒,AC BC =,ABC 绕点A 逆时针旋转45°得到ADE (B ,D 两点为对应点).(1)画出旋转后的图形;(2)连接BD ,求BDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由题意得:AB=AP ,CB=CP ,从而可判断①;根据等腰三角形的性质,可判断②;根据轴对称和中心对称图形的定义,可判断③;根据SSS ,可判断④.【详解】由题意得:AB=AP ,CB=CP ,∴点A 、C 在BP 的垂直平分线上,即:AC 垂直平分BP ,故①错误;∵AB=AP ,AC ⊥BP ,∴AC 平分BAP ∠,故②正确;∵AC 垂直平分BP ,∴点B 、P 关于直线AC 对称,即:四边形ABCP 是轴对称图形,但不是中心对称图形,故③错误;∵AB=AP ,CB=CP ,AC=AC ,∴ABC APC ≌△△,故④正确;故选D .【点睛】本题主要考查垂直平分线的判定定理。

图形的平移,对称与旋转的经典测试题含答案

图形的平移,对称与旋转的经典测试题含答案
故选B.
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】

图形的平移和旋转测试题

图形的平移和旋转测试题

《平移与旋转》测试题一、填空题:1、正方形绕中心至少旋转度后能与自身重合。

2、一个五角星绕中心至少旋转度后能与自身重合。

3、如图(1)直角三角形AOB顺时针旋转后与△COD重合,若∠AOD=127°,则旋转角度是。

4、如图(2),已知∠EAD=30°,△ADE绕着点A旋转50°后能与△ABC重合,则∠B A E=度。

5、如图(3),四边形ABCD平移到四边形A'B'C'D'的位置,这时可把四边形A'B'C'D'看作先将四边形ABCD向右平移格,再向下平移2格。

6、如图(4),把大小相等的两个长方形拼成L形图案,则∠FCA=度。

7、如图(5),已知△ABD沿BD平移到了△FCE的位置,BE=10,CD=4,则平移的距离是。

8、如图(6)以左边图案的中心为旋转中心,将图案按顺时针方向旋转度即可得到右边图案。

9、如图(7),△ABC沿AB平移后得到了△DEF,若∠E=40°,∠EDF=110°,则∠C=。

10、如图(8)是一个旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为度。

11、如图(12),将△ABC绕点A旋转后得到△ADE,则旋转方式是( )。

(A)顺时针旋转90°;(B)逆时针旋转90°;(C)顺时针旋转45°;(D)逆时针旋转45°。

12、下列说法正确的是( )。

(7)(8)(9)(1)(2)(3)(4)(5)(6)(A )中心对称图形必是轴对称图形;(B )长方形是中心对称图形也是轴对称图形;(C )线段是轴对称图形,但不是中心对称图形;(D )角是中心对称图形也是轴对称图形。

13、下列图形中,既是轴对称图形,又是中心对称图形的个数是( )。

(A )1个; (B )2个; (C )3个; (D )4个。

14、图(14)中,△ABC 和△BDE 是等边三角形,点A 、B 、D 在一条直线上,并且AB =BD 。

八年级数学上册平移与旋转测试题

八年级数学上册平移与旋转测试题

图形的平移与旋转测试题一、填空题1、在下列给出的五种运动中,其中属于平移的是.(1)急刹车的小汽车在地面上的运动;(2)自行车轮子的运动;(3)时钟的分针的运动;(4)高层建筑内的电梯的运动;(5)小球从高处作自由落体运动.2、将面积为12cm²的等腰直角△ABC向右上方平移20cm,得到△MNP,则△MNP是三角形,它的面积是cm².3、如图2,Rt△AOB绕点O逆时针旋转到△COD位置,∠BOC=127°,则旋转角是4、△ABC经过平移得到△DEF,并且A与D,B与E,C与F是对应点,AD=3cm,则BE= cm,AD与BE之间的关系是,AB与DE之间的关系是.5、如图3,把、三角形△ABC绕着点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数是.6、如图5,绕点O旋转得到的两个图形的对应点M与N到旋转中心O的距离(相等或不相等).7、一顶简易的圆锥形帐篷,帐篷收起来时伞面的长度有4米,撑开后帐篷高2米,则帐篷撑好后的底面直径是。

8、如图(1),以左边图案的中心为旋转中心,将图案按 方向旋转 即可得到左边图案。

9、图(2)绕着中心最小旋转 能与自身重合。

8、△ABC 和△DCE 是等边三角形,则在此图中,△ACE 绕着点 旋转 度可得到△ 。

9、将任意一个三角形绕着其中一边的中点旋转︒180,所得图形与原图形可拼成一个 。

10、如图,当半径为30cm 的转动轮转过120︒角时,传送带上的物体A 平移的距离为 cm 。

11、一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°, 旋转前后所有的图形共同组成的图案是12、平移是由 所决定。

平移不改变图形的 和 ,只改变图形的 。

二 选择题1、下列说法正确的是.....................................( )A 、平移和旋转不改变图形的形状和大小。

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

北师大八年级下《第3章图形的平移与旋转》单元测试题含答案试卷分析详解

第三章图形的平移与旋转一、选择题1.点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(-3,0)B.(-1,6)C.(-3,-6)D.(-1,0)2..下列说法正确的是()A.平移不改变图形的形状和大小,而旋转改变图形的形状和大小B.平移和旋转都不改变图形的形状和大小C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D.在平移和旋转图形的过程中,对应角相等,对应线段相等且平行3.如图,将边长为4的等边△沿边BC向右平移2个单位得到△,则四边形的周长为()A.12B.16C.20D.244.如图,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在上,则的长是()A.1B.2C.3D.45.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,-1) B.(2,3) C.(0,1) D.(4,1)第5题图第7题图第8题图6.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a,b的值是() A.a=5,b=1 B.a=-5,b=1C.a=5,b=-1 D.a=-5,b=-17.如图,把△ABC绕点C顺时针旋转35°得到△A′B′C,A′B′交AC于点D.若△A′DC=90°,则△A的度数为()A.45° B.55° C.65° D.75°8.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是(B)A.点M B.点N C.点P D.点Q9.如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()A.4个B.3个C.2个D.1个10.如图,在Rt△ABC中,△C=90°,△ABC=30°,AB=8,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为8,则平移距离为()A.2 B.4 C.8 D.1611.如图,Rt△ABC向右翻滚,下列说法正确的有()(1)△→△是旋转;(2)△→△是平移;(3)△→△是平移;(4)△→△是旋转.A.1个B.2个C.3个D.4个12.如图,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=5,BD=4,则下列结论错误的是()A.AE△BCB.△ADE=△BDCC.△BDE是等边三角形D.△ADE的周长是9二、填空题1.将点A(2,1)向左平移3个单位长度得到的点B的坐标是________.2.如图,将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C.若△A=40°,△B′=110°,则△BCA′的度数是________.第2题图第3题图3.如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若△CAB=50°,△ABC=100°,则△CBE的度数为________.4.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转组成的,这四次旋转中旋转角度最小是________度.第4题图第5题图5.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿着CB的方向平移7cm得到线段EF,点E,F分别落在AB,BC上,则△EBF的周长为________cm.6.如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.第6题图第8题图7.在等腰三角形ABC中,△C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为________.8.如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.三、解答题1.如图,经过平移,△ABC的顶点移到了点D,作出平移后的△DEF.2.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF=CE.求证:FD=BE.3.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)画出△AB′C′向左平移4格后的△A′B″C″;(3)计算线段AB在变换到AB′的过程中扫过区域的面积.4.如图,在Rt△ABC中,△ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF△CD,求证:△BDC=90°.5.如图,Rt△ABC中,△ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF.(1)求DB的长;(2)求此时梯形CAEF的面积.6.如图,4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图△中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.7.两块等腰直角三角形纸片AOB和COD按图△所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图△所示.(1)在图△中,求证:AC=BD,且AC△BD;(2)当BD与CD在同一直线上(如图△)时,若AC=7,求CD的长.答案一、选择题ABBCA DBBAA CB二、填空题1.(-1,1)2.80°3.30°4.725.136.-57.25cm8.30三、解答题1.解:如图,△DEF即为所求.(8分)2.证明:△△ABO与△CDO关于O点中心对称,△OB=OD,OA=OC.△AF=CE,△OF =OE.(3分)在△DOF和△BOE中,OD=OB,△DOF=△BOE,OF=OE,△△DOF△△BOE(SAS),(6分)△FD=BE.(8分)3.解:(1)如图所示,△AB ′C ′即为所求.(3分) (2)如图所示,△A ′B ″C ″即为所求.(6分)(3)△AB =42+32=5,(8分)△线段AB 在变换到AB ′的过程中扫过区域的面积为半径为5的圆的面积的14,即14×π×52=254π.(10分)4.(1)解:补全图形,如图所示.(4分)(2)证明:由旋转的性质得△DCF =90°,DC =FC ,△△DCE +△ECF =90°.(5分)△△ACB=90°,△△DCE +△BCD =90°,△△ECF =△BCD .△EF △DC ,△△EFC +△DCF =180°,△△EFC =90°.(6分)在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,△BCD =△ECF ,BC =EC ,△△BDC △△EFC (SAS),△△BDC =△EFC =90°.(8分) 5.解:(1)△将△ABC 沿AB 边所在直线向右平移3个单位到△DEF ,△AD =BE =CF =3.△AB =5,△DB =AB -AD =2.(3分)(2)过点C 作CG △AB 于点G .在△ACB 中,△△ACB =90°,AC =3,AB =5,△由勾股定理得BC =AB 2-AC 2=4.(6分)由三角形的面积公式得12AC ·BC =12CG ·AB ,△3×4=5×CG ,解得CG =125.(8分)△梯形CAEF 的面积为12(CF +AE )×CG =12×(3+5+3)×125=665.(10分)6.解:(1)如图所示.(5分)(2)如图所示.(10分)7.(1)证明:如图,延长BD 交OA 于点G ,交AC 于点E .(1分)△△AOB 和△COD 是等腰直角三角形,△OA =OB ,OC =OD ,△AOB =△COD =90°,△△AOC +△AOD =△DOB +△DOA ,△△AOC =△DOB .(3分)在△AOC 和△BOD 中,⎩⎪⎨⎪⎧OA =OB ,△AOC =△BOD ,OC =OD ,△△AOC △△BOD ,△AC =BD ,△CAO =△DBO .(5分)又△△DBO +△OGB =90°,△OGB =△AGE ,△△CAO +△AGE =90°,△△AEG =90°,△AC △BD .(2)解:由(1)可知AC =BD ,AC △BD .△BD ,CD 在同一直线上,△△ABC 是直角三角形.由勾股定理得BC =AB 2-AC 2=252-72=24.(10分),△CD =BC -BD =BC -AC =17.。

小学三年级数学 第20章平移与旋转测试题及答案

小学三年级数学 第20章平移与旋转测试题及答案

人教版 九年级第20章《平移与旋转》检测试题一、选择题 (每题2分,共20分)1,下列运动属于平移的是( ) A .空中放飞的风筝B .飞机在跑道上滑行到停止的运动C .球运动员投出并进入篮筐的过程D .乒乓球比赛中的高抛发球后,乒乓球的运动方式 2,下列说法正确的是( )A .平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B .平移和旋转的共同点是改变图形的位置C .图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D .在平移和旋转图形中,对应角相等,对应线段相等且平行3,如图1,△DEF 是由△ABC 经过平移后得到的,则平移的距离是( ) A .线段BE 的长度 B .线段EC 的长度 C .线段BC 的长度 D .线段EF 的长度4,将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转的度是( )A .顺时针方向50° B.逆时针方向50° C .顺时针方向190° D.逆时针方向190° 5,如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( ) A .30°B .60°C .90°D .120°6,如图3,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定图2图3BCDE FA 图1 F DC E BA二、填空题(每空2分,共20分)1,如果△ABC 经过平移后得到△DEF ,若∠A =41°,∠C =32°,EF =3cm ,则∠E =__,BC =__cm .2,如果△ABC 沿着北偏东35°的方向移动了6cm ,那么△ABC 的一条角平分线AD 上的中点Q 向_______方向移动了____cm .3,将一图形沿着正北方向平移5cm 后,再沿着正西方向平移5cm ,这时图形在原来位置的____方向上.4,如图4,已知梯形ABCD ,AD ∥BC ,BC =6,AD =3,AB =4,CD =2,AB 平移后到DE 处,则ΔCDE 的周长是___.5,如图5,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得△AB 'C ',则△ABB '是___三角形.6,如图6,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分别平移到EF 和EG 的位置,则△EFG 为___三角形,若AD =2cm ,BC =8cm ,则FG =___.三、解答题1,先画出一个10×10的正方形网格,再根据要求,在画出的方格图中画出图形: ⑴画出四边形ABCD 关于点D 成中心对称的图形A ′B ′C ′D ′,⑵将图形A ′B ′C ′D ′向右平移3格,再向下平移2格后的图形A ″B ″C ″D ″. 2,四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图7所示,如果AF =4,AB =7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?3,在△ABC 中,∠B =10°,∠ACB =20°,AB =4cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 中点,如图8,⑴指出旋转中心,并求出旋转的度数。

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.如图,在Rt ABC ∆中,,AC BC D E =、是斜边AB 上两点,且45DCE ∠=︒,将ACD ∆绕点C 顺时针旋转90︒后,得到BCF ∆,连接EF ,下列结论中:①45ECF ∠=︒;②ACD ∆≌BCE ∆;③CE 平分DCF ∠;④222AD BE DE +=;正确的有( )个A .1个B .2个C .3个D .4个4.如图,在△ABC 中,AB=3,BC=5.2,∠B=60°,将△ABC 绕点A 逆时针旋转△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .0.8B .2C .2.2D .2.85.下列图案中,是中心对称图形的是( )A .B .C .D . 6.下列四个图形是word 软件中的自选图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 7.如图,将ABC 绕点C 逆时针旋转得到DEC ,若点D 刚好落在边AB 上,CB 与DE 交于点F ,120,20ACB E ∠=︒∠=︒,则ADC ∠的度数为( )A .40︒B .50︒C .55︒D .60︒ 8.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( ) A . B . C . D .9.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .5 10.如图,ABC 面积为2,将ABC 沿AC 方向平移至DFE △,且AC=CD ,则四边形AEFB 的面积为( )A .6B .8C .10D .1211.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等12.如图,在ABC 中,70,30B BAC ∠=︒∠=︒,将ABC 绕点C 顺时针旋转得到,EDC 当点B 的对应点D 恰好落在AC 上时,连接,AE 则AED ∠的度数为( )A .40B .35C .25D .20二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.如图,点D 是等腰直角三角形 ABC 内一点,AB =AC ,若将△ABD 绕点A 逆时针旋转到△ACE 的位置,则∠AED 的度数为________________.15.如图,P 是等边△ABC 内一点,PA =4,PB =3PC =2,则ABC 的边长为________.16.在平面直角坐标系xoy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转90°得到OA′, 则点A′的坐标是____________.17.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.18.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD //BC ,则∠BAE =______°.19.如图,将△AOB 绕点O 按逆时针方向旋转50°后得到△COD ,如果∠AOB =15°,那么∠AOD 的度数为_____.20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.如图,在ABC 中,1AB =,45BAC ∠=︒,3AC =.将ABC 绕点B 逆时针旋转一个角α,得到A BC ''△,点A 恰好在A C ''边上.(1)求α的度数;(2)求AC '的长.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.如图,在边长为8的等边ABC 中,点D 是AB 的中点,点E 是平面上一点,且线段2DE =,将线段EB 绕点E 顺时针旋转60°得到线段EF ,连接AF .(1)如图1,当2BE =时,求线段AF 的长;(2)将线段BE 绕点B 旋转得到图2,求证:AF CE =.24.如图,ABC 在平面直角坐标系内,顶点的坐标分别为()4,4A -,()2,5B -,()2,1C -.(1)平移ABC ,使点C 移到点()12,4C --,画出平移后的111A B C △,并写出点1A ,1B 的坐标;(2)画出与ABC 关于原点对称的图形.25.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (-2,1),B (-4,5),C (-5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2;(3)求△A 2B 2C 2的面积.26.在平面直角坐标系中,ABC 的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将ABC 绕着点A 顺时针旋转90°,画出旋转后得到的11AB C △,并直接写出点11,B C 的坐标.(2)在(1)得到的图形中,1∠=BAC ______度,连结1B C ,作1AB C 的高CD ,求CD 长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A 、是中心对称图形,不是轴对称图形,故本选项不合题意;B 、不是中心对称图形,但是轴对称图形,故本选项不合题意;C 、是中心对称图形,又是轴对称图形,故本选项合题意;D 、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C .【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.B解析:B【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A 、是轴对称图形不是中心对称图形,故不符合题意;B 、既是轴对称图形又是中心对称图形,故符合题意;C 、是轴对称图形不是中心对称图形,故不符合题意;D 、是轴对称图形不是中心对称图形,故不符合题意;故选:B .【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.C解析:C【分析】①根据旋转的性质可得出∠BCF=∠ACD ,由∠ACB=90°,∠DCE=45°,可得出∠BCF+∠BCE=∠ECF=45°,即可判断①;②根据旋转的性质可得出△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,即可判断②; ③根据∠DCE=∠ECF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=EF ,求出∠EBF=90°,根据勾股定理推出即可.【详解】解:∵在Rt △ABC 中,BC=AC ,∴∠A=∠CBA=45°,①由旋转,可知:∠BCF=∠ACD ,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°,∴∠BCF+∠BCE=∠ECF=45°,故①正确;②由旋转,可知:△ACD ≌△BCF ,不能推出ACD ∆≌BCE ∆,故②错误;③∵∠DCE=∠ECF=45°,∴CE 平分∠DCF ,故③正确;④由旋转可知:AD=BF ,∠CBF=∠A=45°,∵∠CBA=45°,∴∠EBF=90°,由勾股定理得:BF 2+BE 2=EF 2,即AD 2+BE 2=EF 2,在△CDE 和△CFE 中,CE CE DCE ECF CD CF =⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CFE (SAS ),∴DE=EF ,∴AD 2+BE 2=DE 2,故选:C .【点睛】本题考查了全等三角形的判定、相似三角形的判定、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.4.C解析:C【分析】根据旋转的性质得到△ABD 为等边三角形,得到BD=AB=3,再根据线段和差计算得到答案即可.【详解】∵△ABC 绕点A 逆时针旋转△ADE ,∴AB=AD ,∵∠B=60°,∴△ABD 为等边三角形,即BD=AB=3,∴CD=BC-BD=5.2-3=2.2;故选:C .【点睛】此题考查旋转的性质,等边三角形的判定及性质,线段的和差计算,掌握旋转的性质证得△ABD 为等边三角形是解题的关键.5.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不合题意;B 、是轴对称图形,不是中心对称图形,故此选项不合题意;C 、既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.A解析:A【分析】先根据旋转的性质可得,20AC CD B E =∠=∠=︒,再根据三角形的内角和定理可得40A ∠=︒,然后根据等腰三角形的性质即可得.【详解】由旋转的性质得:,AC CD B E =∠=∠,120,20ACB E ∠=︒∠=︒,12041801800ACB B AC A B E ∠-∠=︒∠-∠∴∠==︒-=︒-︒,又AC CD =,40A ADC ∠∴=∠=︒,故选:A .【点睛】本题考查了旋转的性质、三角形的内角和定理、等腰三角形的性质,熟练掌握旋转的性质是解题关键.8.B解析:B【分析】据中心对称图形的概念,结合图形特征即可求解.【详解】A 、不是中心对称图形,故此选项错误;B 、是中心对称图形,故此选项正确;C 、不是中心对称图形,故此选项错误;D 、不是中心对称图形,故此选项成文;故选:B .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.10.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.11.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.12.D解析:D【分析】由三角形内角和定理可得∠ACB =80°,由旋转的性质可得∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,由等腰三角形的性质得到∠AEC =50°,由角的和差即可求解.【详解】解:∵∠B =70°,∠BAC =30°,∴∠ACB =80°,∵将△ABC 绕点C 顺时针旋转得△EDC ,∴∠ACE =∠ACB =80°,AC =CE ,∠BAC =∠CED =30°,∴∠CEA =50°,∴∠AED =∠AEC -∠CED =20°,故选:D .【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.【详解】设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.45°【分析】如图由题意可以判断为等腰直角三角形即可解决问题【详解】解:由旋转变换的性质知:;为直角三角形∴∴为等腰直角三角形故答案为【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换 解析:45°【分析】如图,由题意可以判断ADE 为等腰直角三角形,即可解决问题.【详解】解:由旋转变换的性质知:EAD CAB ∠=∠,AE AD =; ABC 为直角三角形,90CAB ∴∠=︒,∴90EAD ∠=︒,∴ADE 为等腰直角三角形,45AED ∴∠=︒,故答案为45︒.【点睛】该题考查了旋转变换的性质及其应用问题;应牢固掌握旋转变换的性质.15.2【分析】作BH ⊥PC 于H 如图把△ABP 绕点B 顺时针旋转60°得到△CBD 连接PD 可判断△PBD 为等边三角形利用勾股定理的逆定理可证明△PCD 为直角三角形∠CPD=90°易得∠BPC=150°利用平解析:27【分析】作BH ⊥PC 于H ,如图,把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,可判断△PBD 为等边三角形,利用勾股定理的逆定理可证明△PCD 为直角三角形,∠CPD=90°,易得∠BPC=150°,利用平角等于有∠BPH=30°,在Rt △PBH 中,根据含30度的直角三角形三边的关系可计算出BH 和PH 的长,在Rt △BCH 中,根据勾股定理即可求解.【详解】解:作BH ⊥PC 于H ,如图,∵△ABC 为等边三角形,∴BA=BC ,∠ABC=60°,∴把△ABP 绕点B 顺时针旋转60°得到△CBD ,连接PD ,如图,∴CD=AP=4,BD=BP=3∠PBD=60°,∴△PBD 为等边三角形,∴PD=PB=3∠BPD=60°,在△PDC 中,∵PC=2,PD=3CD=4,∴PC 2+PD 2=CD 2,∴△PCD 为直角三角形,∠CPD=90°,∴∠BPC=∠BPD+∠CPD=150°,∴∠BPH=30°,在Rt △PBH 中,∵∠BPH=30°,PB=23, ∴BH=12PB=3,PH=3BH=3, ∴CH=PC+PH=2+3=5, 在Rt △BCH 中,BC 2=BH 2+CH 2= (3)2+52=28,∴BC=27,∴ABC 的边长为27.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质与勾股定理的逆定理.16.【分析】先作出图形然后写出坐标即可【详解】解:如图:则A′的坐标是故答案是【点睛】本题主要考查了坐标与图形的旋转变换根据题意正确画出图形成为解答本题的关键解析:()3,2-【分析】先作出图形,然后写出坐标即可.【详解】解:如图:则A′的坐标是()3,2-.故答案是()3,2-.【点睛】本题主要考查了坐标与图形的旋转变换,根据题意正确画出图形成为解答本题的关键. 17.4【分析】观察图象发现平移前后BE 对应CF 对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.18.38【分析】由旋转的性质可得∠DAB=∠EAC=26°由平行线的性质可得∠B=∠DAB=26°由直角三角形的性质可得∠BAC=64°即可求解【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED解析:38【分析】由旋转的性质可得∠DAB=∠EAC=26°,由平行线的性质可得∠B=∠DAB=26°,由直角三角形的性质可得∠BAC=64°,即可求解.【详解】解:∵ABC绕点A按顺时针方向旋转26°得到AED,∴∠DAB=∠EAC=26°,∵AD//BC,∴∠B=∠DAB=26°,∵∠C=90°,∴∠BAC=64°,∴∠BAE=∠BAC-∠EAC=64°-26°=38°,故答案为:38°.【点睛】本题考查了旋转的性质,平行线的性质,直角三角形,灵活运用这些性质进行推理是本题的关键.19.65°【分析】首先根据旋转变换的性质求出∠AOC的度数结合∠AOB=15°即可解决问题【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°∵∠AOB=15°∴∠AOD=50°+15°=6解析:65°【分析】首先根据旋转变换的性质求出∠AOC的度数,结合∠AOB=15°,即可解决问题.【详解】解:由题意及旋转变换的性质得:∠AOC=∠BOD=50°,∵∠AOB=15°,∴∠AOD=50°+15°=65°,故答案为:65°.【点睛】本题主要考查了旋转变换的性质及其应用问题,熟练掌握旋转的性质是解题的关键. 20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键. 三、解答题21.(1)90°;(2)3【分析】(1)由旋转的性质求解即可;(2)根据勾股定理求出A A '【详解】解:(1)由旋转得到:ABC A BC ''∆≅∆∴45BA C BAC ''∠=∠=︒ ,1A B AB '==,3A C AC ''==∴45BAA BA A ''∠=∠=︒∴90ABA '∠=︒,即=90α︒(2)在Rt ABA '∆中,AA '===∴AC '=3A C A A '''-=【点睛】本题主要考查了旋转的性质及勾股定理,掌握旋转的性质是解答此题的关键.22.(1)-3,-2;(2)作图见解析;3,-1;(3)点P 的位置见解析;2AB =.【分析】(1)由与点A 关于点O 中心对称点的特征是横纵坐标符号改变点,(3,2)A ,,可得点A 关于点O 中心对称点的坐标为(-3,-2);(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,由点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,由()1,3B ,点B 1在第四象限,可得点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,由 ()1,3B .可求(1,3)B '-, 由PB=PB′可知PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短由勾股定理AB '==【详解】解:(1)∵与点A 关于点O 中心对称点的特征是横纵坐标符号改变,∵点(3,2)A ,∴点A 关于点O 中心对称点的坐标为(-3,-2),故答案为:-3,-2;(2)把点A 、B 顺时针旋转90°对应点分别为A 1、B 1,连结OA 1、OB 1、A 1B 1,则11AOB 为所求如图,点B 1到y 轴距离=点B 到x 轴的距离,点B 1到x 轴距离=点B 到y 轴的距离,∵()1,3B ,点B 1在第四象限,∴点B 1坐标为(3,-1);(3)作点B 关于y 轴的对称点B ',连接AB '交y 轴于点P ,B 的坐标是()1,3B .则(1,3)B '-,PB=PB′,PA PB +=PA+PB′≤AB′,当点A 、P 、B′在同一直线时最短,∵(3,2)A ,(1,3)B '-,∴AB '==【点睛】本题考查中心对称,三角形旋转,轴对称以及两点之间线段最短,掌握中心对称,三角形旋转,轴对称以及两点之间线段最短,关键是利用轴对称作点B关于y轴对称,两B′P。

五年级数学上册第二单元《图形的平移、旋转与对称》测试题

五年级数学上册第二单元《图形的平移、旋转与对称》测试题

第二单元《图形的平移、旋转与对称》测试题一、填空。

(41分)1、下面的现象中是平移的画“△”,是旋转的画“□”。

(12分)(1)索道上运行的观光缆车。

()(2)推拉窗的移动。

()(3)钟面上的分针。

()(4)飞机的螺旋桨。

()(5)工作中的电风扇。

()(6)拉动抽屉。

()2、看右图填空。

(12分)(1)指针从“12”绕点A顺时针旋转600到“2”;(2)指针从“12”绕点A顺时针旋转(0)到“3”;(3)指针从“1”绕点A顺时针旋转(0)到“6”;(4)指针从“3”绕点A顺时针旋转300到“()”;(5)指针从“5”绕点A顺时针旋转600到“()”;(6)指针从“7”绕点A顺时针旋转(0)到“12”。

3、先观察右图,再填空。

(12分)(1)图1绕点“O”逆时针旋转900到达图()的位置;(2)图1绕点“O”逆时针旋转1800到达图()的位置;(3)图1绕点“O”顺时针旋转(0)到达图4的位置;(4)图2绕点“O”顺时针旋转(0)到达图4的位置;(5)图2绕点“O”顺时针旋转900到达图()的位置;AO4321(6)图4绕点“O” 逆时针旋转900到达图()的位置;4、想好了再填。

(5分)①、封闭的电梯的上上下下属于()现象。

②、正在拧动水龙头开关属于()现象。

③、开动汽车时方向盘的转动,属于()现象。

④、飞机降落到机场跑道到机身静止这一过程,对于整个机身而言,属于()现象,而对于滚动的轮胎而言,它是()现象。

二、判断题。

正确的在题后的括号里画“√”,错的画“×”。

(4分)(1)正方形是轴对称图形,它有4条对称轴。

…………………………………()(2)圆不是轴对称图形。

…………………………………………………………()(3)利用平移、对称和旋转变换可以设计许多美丽的镶嵌图案。

……………()(4)风吹动的小风车是旋转现象。

………………………………………………()三、画出下列轴对称图形的一条对称轴。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.等边三角形C.正五边形D.角'''关于原点O成中心对称的是()4.在平面直角坐标系xOy中,ABC与A B CA.B.C.D .5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .57.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 8.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 9.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行10.将ABC ∆沿BC 方向平移3个单位得DEF ∆,若ABC ∆的周长等于20,则四边形ABFD 的周长为( )A .28B .26C .24D .2011.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 412.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .60二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.如图,在平面直角坐标系中,第1次将边长为1的正方形OABC 绕点O 逆时针旋转45°后,得到正方形OA 1B 1C 1;第2次将正方形OA 1B 1C 1绕点O 逆时针旋转45°后,得到正方形OA 2B 2C 2;.....按此规律,绕点O 旋转得到正方形OA 2020B 2020C 2020,则点B 2020的坐标为______.17.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.20.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm三、解答题21.如图,点E 是等边△ABC 内一点,3EA =,2EC =,1EB .求BEC ∠的度数.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.ABC 在平面直角坐标系中的位置如图所示.(1)请作出ABC 关于y 轴对称的111A B C △,并写出111,,A B C 三点的坐标:1A _______,1B ________,1C _________;(2)将ABC 向右平移6个单位长度,作出作出平移后的222A B C △;(3)观察111A B C △与222A B C △,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长;②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.25.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不合题意;B、不是中心对称图形,但是轴对称图形,故本选项不合题意;C、是中心对称图形,又是轴对称图形,故本选项合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A、此图形既是中心对称图形,也是轴对称图形故此选项正确;B、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A.【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=,∴()2,23A '-.故选:D .【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质. 8.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.9.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B错误;由对顶角的性质知A正确;由平移的性质知C正确;由垂直的性质知D正确.故选B.【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.10.B解析:B【分析】先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=20,通过等线段代换计算四边形ABFD的周长.【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于20,∴AB+BC+AC=20,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=20+3+3=26.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.11.A解析:A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.12.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出P的坐标.点2021【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,÷=,∵202163365∴点P的坐标与点P5的坐标相同,即为(-2,0),2021故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.(-1-1)【分析】根据图形可知:点B在以O为圆心以OB为半径的圆上运动由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OABC相当于将线段OB绕点O逆时针旋转45°可得对应点B的坐标解析:(-1,-1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形O A1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=1,∴B(1,1);连接OB,由勾股定理得:OB= 2,由旋转得:OB= OB1= OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O=∠B1O B2=…=45°,逆时针旋转45°,依次得到∠AOB=∠BO B1∴B(0,2),B2(-1,1),B3(-2,0),B4(-1,-1),…,发现是8次一循1环,所以2020÷8=252 (4)∴点B的坐标为(-1,1).2020故答案为(-1,-1).【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。

图形的平移,对称与旋转的经典测试题含答案解析

图形的平移,对称与旋转的经典测试题含答案解析
下列说法中错误的是( )
A.勒洛三角形是轴对称图形
B.图1中,点A到 上任意一点的距离都相等
C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心 的距离都相等
D.图2中,勒洛三角形的周长与圆的周长相等
【答案】C
【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴.鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.
A. B. C. D.
【答案】D
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选:D.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
D.等腰直角三角形是轴对称图形,不符合题意.
故选C.
19.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()
A.3个B.4个C.5个D.2个
【答案】A
【解析】等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,是轴对称图形的有3个.
故选:A.
20.如图,将 绕点 逆时针旋转 得到 点 的对应点分别为 则 的长为()
A. B. C. D.【答案】C【解Fra bibliotek】【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.

()数学八年级下《-图形的平移与旋转》单元检测题(含答案解析)

()数学八年级下《-图形的平移与旋转》单元检测题(含答案解析)

八下数学《第3章图形的平移与旋转》单元测试卷一.选择题(共10小题)1.将图中所示的图案平移后得到的图案是()A.B.C.D.2.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动·C.投篮时的篮球运动D.随风飘动的树叶在空中的运动3.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A.20cm B.22cm C.24cm D.26cm-5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度D.向下平移1个单位长度6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.7.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()[A.35°B.45°C.55°D.65°8.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′]C.BC=B′C′D.∠ABC=∠A′C′B′10.下列图形是中心对称图形的是()A.B.C.D.二.填空题(共5小题)11.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.12.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=°.》13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.14.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了.15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=°.三.解答题(共6小题)16.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC =84m,AE=100m,则这条小路的面积是多少【17.如图,已知直线AB∥CD,∠A=∠C=100°,E,F在CD上,且满足∠DBF =∠ABD,BE平分∠CBF.(1)求证:AD∥BC;(2)求∠DBE的度数;(3)若平行移动AD,在平行移动AD的过程中,是否存在某种情况,使∠BEC =∠ADB若存在,求出其度数;若不存在,请说明理由.18.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),把△ABO 向下平移3个单位再向右平2个单位后得△DEF.(1)直接写出A、B、O三个对应点D、E、F的坐标;,(2)求△DEF的面积.19.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.20.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.—21.如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合参考答案与试题解析一.选择题(共10小题)…1.将图中所示的图案平移后得到的图案是()A.B.C.D.【解析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案平移得到.故选:C.【点评】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.`2.下列运动属于平移的是()A.冷水加热过程中小气泡上升成为大气泡B.急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动【解析】根据平移的定义,对选项进行一一解析,排除错误答案.解:A、冷水加热过程中小气泡上升成为大气泡,有大小变化,不符合平移定义,故错误;B、急刹车时汽车在地面上的滑动是平移,故正确;[C、投篮时的篮球不沿直线运动,故错误;D、随风飘动的树叶在空中不沿直线运动,故错误.故选:B.【点评】把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.3.下列图形中,可以由其中一个图形通过平移得到的是()A.B.C.D.【解析】根据平移的性质,结合图形对小题进行一一解析,选出正确答案.》解:∵只有B的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:B.【点评】本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.4.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD的周长为()A.20cm B.22cm C.24cm D.26cm【解析】先根据平移的性质得DF=AC,AD=CF=3cm,再由△ABC的周长为20cm得到AB+BC+AC=20cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD =26(cm),于是得到四边形ABFD的周长为26cm.解:∵△ABC沿BC方向平移3cm得到△DEF,)∴DF=AC,AD=CF=3cm,∵△ABC的周长为20cm,即AB+BC+AC=20cm,∴AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=20+3+3=26(cm),即四边形ABFD的周长为26cm.故选:D.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.5.如图,图1与图2中的三角形相比,图2中的三角形发生的变化是()*A.向左平移3个单位长度B.向左平移1个单位长度C.向上平移3个单位长度D.向下平移1个单位长度【解析】直接利用平移中点的变化规律求解即可.解:观察图形可得:图1与图2对应点所连的线段平行且相等,且长度是3;故发生的变化是向左平移3个单位长度.故选:A.【点评】本题考查点坐标的平移变换.关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移中,对应点的对应坐标的差相等.6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()*A.B.C.D.【解析】此题是一组复合图形,根据平移、旋转的性质解答.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.【点评】本题考查平移、旋转的性质:①平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.②旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.)7.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.35°B.45°C.55°D.65°【解析】根据旋转的性质即可求出答案.解:由题意可知:∠DOB=85°,∵△DCO≌△BAO,∴∠D=∠B=40°,∴∠AOB=180°﹣40°﹣110°=30°、∴∠α=85°﹣30°=55°故选:C.【点评】本题考查旋转的性质,解题的关键是正确理解旋转的性质,本题属于基础题型.8.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°【解析】分清基本图形,判断旋转中心,旋转次数,旋转一周为360°.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.《【点评】本题考查旋转的性质.旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.9.如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′【解析】根据中心对称的性质即可判断.解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.~故选:D.【点评】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.10.下列图形是中心对称图形的是()A.B.C.D.【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行解析即可.解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;¥C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.二.填空题(共5小题)11.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为(ab﹣a﹣2b+2)米2.【解析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.{解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).故答案为(ab﹣a﹣2b+2).【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.12.如图,∠1=70°,直线a平移后得到直线b,则∠2﹣∠3=110°.【解析】延长直线后根据平行线的性质和三角形的外角性质解答即可.解:延长直线,如图:,[∵直线a平移后得到直线b,∴a∥b,∴∠5=180°﹣∠1=180°﹣70°=110°,∵∠2=∠4+∠5,∵∠3=∠4,∴∠2﹣∠3=∠5=110°,故答案为:110.【点评】此题考查平移问题,关键是根据平行线的性质和三角形的外角性质解答.;13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为(3,2).【解析】根据平移的性质即可得到结论.解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)、【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.14.钟表的分针匀速旋转一周需要60min,经过20min,分针旋转了120°.【解析】钟表的分针匀速旋转一周需要60分,分针旋转了360°;求经过20分,分针的旋转度数,列出算式,解答出即可.解:根据题意得,×360°=120°.故答案为:120°.【点评】本题考查了生活中的旋转现象,明确分针旋转一周,分针旋转了360°是解答本题的关键.15.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=55°.—【解析】根据旋转的性质,可得知∠ACA′=35°,从而求得∠A′的度数,又因为∠A的对应角是∠A′,即可求出∠A的度数.解:∵三角形△ABC绕着点C时针旋转35°,得到△AB′C′∴∠ACA′=35°,∠A'DC=90°∴∠A′=55°,∵∠A的对应角是∠A′,即∠A=∠A′,∴∠A=55°;故答案为:55°.【点评】此题考查了旋转地性质;图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.解题的关键是正确确定对应角.。

图形的平移,对称与旋转的经典测试题及解析

图形的平移,对称与旋转的经典测试题及解析
3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()

图形的平移与旋转练习题及答案全套

图形的平移与旋转练习题及答案全套

情景再现:你对以上图片熟悉吗?请你答复以下几个问题:〔1〕汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?〔2〕传送带上的物品,比方带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?〔3〕以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,〔2〕〔3〕〔4〕〔5〕〔6〕中的图案_________可以通过平移图案〔1〕得到的.图2“小鱼〞向左平移5格.图34.请欣赏下面的图形4,它是由假设干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§图形的平移与旋转一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,那么平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,那么线段AC与BC的关系为〔〕3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.〔在两个三角形的内角中找〕4、如下左图,四边形ABCD平移后得到四边形EFGH,那么:①画出平移方向,平移距离是_______;〔准确到0.1cm〕②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,〔1〕假设∠A=28º,∠E=72º,BC=2,那么∠1=____º,∠F=____º,EF=____º;〔2〕在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,假设把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,那么以下说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有〔〕8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,那么△AFE经过平移可以得到〔〕A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如以下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,那么草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如以下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在以下四张图中不能看成由一个平面图形旋转而产生的是〔〕4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,假设△ABC经旋转后能与△BDE重合,那么旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:〔1〕旋转中心是哪一点?〔2〕旋转角是什么?〔3〕如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察以下图形,它可以看作是什么“根本图形〞通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?§图形的平移与旋转一、选择题1.平面图形的旋转一般情况下改变图形的〔 〕° ° ° °ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,以下结论错误的选项是〔 〕A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',那么四边形D C B A ''''是________. 6.△ABC 绕一点旋转到△A ′B ′C ′,那么△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.以下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?△ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,〔1〕试作出Rt △ABC 旋转后的三角形; 〔2〕将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转以下角度后的图形: 〔1〕90°;〔2〕180°;〔3〕270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.§图形的平移与旋转看一看:以下三幅图案分别是由什么“根本图形〞经过平移或旋转而得到的?1.2.3.试一试:怎样将以下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , 〔1〕△ABE ≌△ADF .吗?说明理由。

《图形的平移与旋转》——北师大版数学八年级上册单元测试题

《图形的平移与旋转》——北师大版数学八年级上册单元测试题

A C ′B ′ BC B'C'ABC 第三单元《图形的平移与旋转》一、填空题(每空4分,共28分)1.如图,△ABC 平移后得到△A ′B ′C ′,线段AB 与线段A ′B ′的位置关系是 . A ′2.如图,△ABC 旋转60°后得到△AB ′C ′,与∠BAB ′相等的角是 . 3.将一图形沿着正北方向平移5cm 后,再沿着正西方向平移5cm ,这时图形在原来位置的 ____方向上.4.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转600,得△AB C ⅱ,则△ABB '是__________三角形.5.如图把正方形绕着点O 旋转,至少要旋转 度后与原来的图形重合.6.如图,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若 ∠A 'DC=900,则∠A 的度数是__________. 7.△ABC 到△DEF 的位置变换叫 .二、选择题(每小题4分,共40分)1.下列运动属于平移的是( )A.空中蝴蝶的飞翔B.飞机在跑道上滑行到停止的运动 C.篮球运动员投出并进入篮筐的过程D.乒乓球比赛中发球后,乒乓球的运动方式2.下列图形属于平移位置变换的是( ) .3.下列图案中,含有旋转变换的有( ) .4.下列图形中,绕某个点旋转180°能与自身重合的有( ) ①正方形 ②长方形 ③等边三角形 ④线段 ⑤角 ⑥平行四边形 A. 5个 B. 2个 C. 3个 D. 4个 5.关于轴对称位置变换,说法正确的有( ) ①对应线段平行且相等;②对应点的连线被对称轴垂直平分; ③对应角相等;④轴对称得到的图形与原图形全等.A .1个 B.2个 C .3个 D .4个6..对图案的形成过程叙述正确的是( ).A.它可以看作是一只小狗绕图案的中心位置旋转90°、180°、270°形成的B.它可以看作是相邻两只小狗绕图案的中心位置旋转180°形成的C.它可以看作是相邻两只小狗绕图案的恰当的对称轴翻折而成的D.它可以看作是左侧、上面的小狗分别向右侧、下方平移得到的A .B .C .D .(4题图) O A B ′ C ′ BC ′(2题图) (1题图) (5题图) ABCB'A'D(6题图)(7题图)A B CD FEDCBAA .4个B .3个C .2个D .1个(选6图)7.如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )8.下列图形中,是由(1)仅通过平移得到的是( )9. 如图,两个边长相等的两个正方形ABCD 和OEFG ,若将正方形OEFG 绕点O 按逆时针方向旋转150°,两个正方形的重叠部分四边形OMCN 的面积( ) A .不变 B .先增大再减小C .先减小再增大D .不断增大 10.如图,面积为12cm 2的△ABC 沿BC 方向平移至△DEF的位置,平移的距离是边BC 长的两倍,则图中的四边形 ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定 三、解答题(每小题8 分,共32分)1.四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF =4,AB =7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?2.将图中的图形,向右平移5格,再向下平移2格.3.画出下图中的图形绕点A 顺时针旋转60°后的图形.4.请画一个圆,画出圆的直径AB ,分析直径AB 两侧的两个半圆可以怎样相互得到?MADB C O EFGNA(1) A B C DACDBFE。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级上册第三章图形的平移与旋转测试卷
平移和旋转是在不改变形状大小的时候改变一个图像位置的两个办法。

图形可以向某方向平移一定距离,也可以向某方向旋转一定度数。

旋转的过程就是点移动的过程,只不过移动之后和原图形重合了所以才会看上去没变,特别是
圆。

平移的移动方向就是一条直线,而旋转的移动方向是在以旋转中心为圆心的圆上移动。

旋转后每个点的位置都发生了变化,且移动距离都不一样。

班级:姓名:
一、选择题(每题3分,共30分)
1、下列现象是数学中的平移的是( B )
A.冰化成水
B.电梯由一楼升到二楼
C.导弹击中目标后爆炸
D.卫星绕地球运动
2、.将图形平移,下列结论错误的是( C )
A.对应线段相等
B.对应角相等
C.对应点所连的线段互相平分
D.对应点所连的线段相等
3、国旗上的四个小五角星,通过怎样的移动可以相互得到(D )
A.轴对称B.平移 C.旋转 D.平移和旋转
因为指向不同,所以有旋转
形状相同,但位置不一样,所以有平移
4、将长度为5cm 的线段向上平移10cm所得线段长度是(B)
A、10cm
B、5cm
C、0cm
D、无法确定
5、下列运动是属于旋转的是( B )
A.滾动过程中篮球的滚动
B.钟表的钟摆的摆动
C.气球升空的运动
D.一个图形沿某直线对折过程
在平面内,把一个图形绕一个固定点旋转一个角度的图形变换叫做旋转
6、.下列图形中,是由(1)仅通过平移得到的是
( C )
7、下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小(×)
B.平移和旋转的共同点是改变图形的位置
(√平移和旋转是在不改变形状大小的时候改变一个图像位置的两个办法)
C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离(×度数)
D.由平移得到的图形也一定可由旋转得到(×)
8、如图7,四边形EF GH是由四边形ABCD平移得到的,已知AD=5,∠B=70°,则(B)
A.FG=5,∠G=70°B.EH=5,∠F=70°C.EF=5,∠F=70°D.EF=5,∠E=70°
9、将图形
900后的图形是( D )
A B C D
10、如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE
绕点C顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的度数为( B )
A、100
B、150
C、200
D、250
二、填空题(每题3分,共30分)
1、图形的平移、旋转、轴对称中,其相同的性质是_________.
2、经过平移,对应点所连的线段______________.
3、经过旋转,对应点到旋转中心的距离___________.
4、.图形的旋转只改变图形的_______,而不改变图形的_______.
5、9点30分,时钟的时针和分针的夹角是______.
6、等边三角形绕着它的三边中线的交点旋转至少______度,能够与本身重合.
7、边长为4 cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为______cm.
8、甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向______平移______个单位可以得到甲图.
9、如图,当半径为30cm的转动轮转过120 角时,传送带上的物体A平移的距离为 cm。

(第9题图)(第10题图)
10、△ABC和△DCE是等边三角形,则在此图中,△ACE绕着点旋转度可得到△。

三、解答题(第1、2、3小题各8分,第4、5小题各12分,共48分)
1、经过平移,△ABC的边AB移到了EF,作出平移后的三角形.
2、如图所示,在边长为1的网格中作出△ABC 绕点A按逆时针方向旋转90º,再向下平移2格后的图形△A¹B¹C¹
3、请你指出△BDA通过怎样的移动得到△CAE.
4、①如图,将一个矩形ABCD绕BC边的中点O旋转900后得到矩形EFGH.已知AB=5cm,BC=10cm,求图中阴影部分面积.
②将RtΔABC沿斜边AB向右平移5cm,得到RtΔDEF.已知AB=10cm,BC=8cm,求图中阴影部分三角形的周长
A
D
C
F
C
G
A
D
E
F
5、在四边形ABCD 中,∠ADC=∠B=900
,DE ⊥AB,垂足为E,且DE=EB=5,请用
旋转图形的方法求四边形ABCD 的面积.
D C
A E B
四、(14分)四边形ABCD 是正方形,△ADF 旋转一四定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?
五、(14分)如图所示,在边长为1的正方形ABCD 中,E 、F 分别是AB 、AD 上的
点,且AE+EF+FA=2,求∠ECF 的度数。

六、(14分)阅读下列材料:如图②,把△ABC 沿直线平移线段BC 的长度,可以变到△ECD 的位置;如图③,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图④,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状大小的图形变换,
叫做三角形的全等变换.
图① 图② 图③ 图④
请回答下列问题:
(1)在图①中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置? (2)指出图①中线段BE 与DF 之间的关系.
┌。

相关文档
最新文档