2006年湖南高考数学文科卷及答案
大鱼文库2006年高考真题——数学文(全国Ⅰ卷)+Word版含答解析
2006年普通高等学校招生全国统一考试文科数学本试卷分第I 卷(选择题)第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项: 1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、 准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分, 共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径 P (A ·B )=P (A )· P (B )球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径k n k k n n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m =(A )41-(B )-4(C )4 (D )41(5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为 (A )58cm 2 (B )106cm 2(C )553cm 2(D )20cm 22006年普通高等学校招生全国统一考试文科数学第Ⅱ卷注意事项: 1.答题前,考生先在答题卡上用黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2006年高考湖南卷文科数学试题及参考答案
美好的友谊东升小学5.4班王馨叶在我不长的人生经历中有着一段纯洁、美好的友情—那就是和郑璐瑶的友谊。
认识她还是在幼儿园里。
一开始我和她并不认识,还是在游戏的时候,偶然相遇。
我们先做简单的自我介绍,不久便开始玩起来了。
后来,我们才知道我俩是同一个班的,便把对方都列为最好的朋友。
三年后,我们一起上了同一个学校,在同一个班里。
上学后不久,我们因为性格不合常常无端争吵起来。
一次,我一气之下竟提出了“绝交”,但提出后,我马上后悔了。
她听了之后,十分伤心,没有说什么,一个人默默离开了。
那天晚上,我想了好久,终于想通了在第二天要对她说:对不起,那些都是气话不是真的。
因为第二天要向她道歉,所以我早早的来到了学校。
一开始,我一直在等她,后来因为我要收作业就忘了这件事。
当我猛地想起这件事,准备起身去她的座位时,偶然发现她已经站在我的座位前了。
“昨天的事,是我不对,对不起。
”她说道。
“不,昨天提出‘绝交’的是我,所以该我说对不起。
”在几声对不起中,原本已走到尽头的友情又回来了三年级,她奉父母之命转学了。
当我知道这个消息时异常伤心,因为做了这么长时间的朋友居然就这么散了。
当她回学校交作业的时候,我和她聊了好久。
我俩都好伤心,但我和她的友情却更加坚定了,那是用我们的心在慢慢交织着。
转眼又过去两年多了,我们并没有因为不在一起而疏远,因为我们的心是彼此相通的。
和朋友的友谊不需要像彩虹那样绚烂多彩和华丽无比,只要向陈酿的古酒那么醇香便足够了。
更像西伯利亚的蝶那样,经过了一次次寒流的侵袭,依然那么顽强、美丽。
评语:文章详细具体地记叙了自己和好朋友之间由和到不和,再到和的经过,抓住了人物的语言和心理描写,刻画的细腻逼真,真实地反映了同学之间珍贵的友谊,希望你们的友谊地久天长!赠人玫瑰手留余香东升小学5.4班郝佳欣下课了,同学们像一群快乐的小鸟飞奔出教室,只有几人坐在教室看书、做作业。
崔永康正在埋头做一道语文题。
突然,他手中的笔停了下来,原来“拦路虎”出现了,崔永康紧皱着眉,一会儿搔搔头皮,一会儿用手托着下巴,绞劲脑汁地想,可怎么也想不出来,他的脸涨得像一个红透了的苹果。
2006年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)
2006年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)一、选择题: 1。
(2006北京文、理)下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段 ,,AB BCCA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( )(A )123x x x >> (B )132x x x >>(C )231x x x >> (D )321x x x >>1. 解:依题意,有x 1=50+x 3-55=x 3-5,∴x 1<x 3,同理,x 2=30+x 1-20=x 1+10∴x 1<x 2,同理,x 3=30+x 2-35=x 2-5∴x 3<x 2故选C 2、(2006广东)对于任意的两个实数对(a ,b )和(c,d),规定(a ,b )=(c,d)当且仅当a =c,b =d;运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗,运算“⊕”为:),(),(),(d b c a d c b a ++=⊕,设R q p ∈,,若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q p ( ) A. )0,4( B. )0,2( C.)2,0( D.)4,0(-2、解:由)0,5(),()2,1(=⊗q p 得⎩⎨⎧-==⇒⎩⎨⎧=+=-210252q p q p q p , 所以)0,2()2,1()2,1(),()2,1(=-⊕=⊕q p ,故选B.3.(2006江苏)某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( )(A )1 (B )2 (C )3 (D )43【思路点拨】本题考查统计的基本知识,样本平均数与样本方差的概念以及求解方程组的方法【正确解答】由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x 、y ,只要求出y x -,设x=10+t, y=10-t, 24x y t -==,选D【解后反思】4. (2006陕西文、理)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d 对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A.4,6,1,7 B.7,6,1,4 C.6,4,1,7 D.1,6,4,74.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d ,例如,明文1,2,3,4对应密文5,7,18,16。
2006高考文科数学试卷及答案全国1
2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足|a |=1,|b |=4,且ab =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π(2)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=(A )8 (B )7 (C )6(D )5(6)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21(B )53(C )23(D )0(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43(C )42 (D )32(9)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (10)在(x-x21)10的展开式中,x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2 (C )355cm 2(D )20cm 2第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
2006年普通高等学校招生全国统一考试文科数学
2006年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P,那么n 次独立重复试验中恰好发生k 次的概率()()1n kk kn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A.6π B.4π C.3π D.2π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则 A.M N =∅ B.M N M = C.MN M = D.MN R =⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A.()22()x f x e x R =∈ B.()2ln 2ln (0)f x x x => C.()22()x f x e x R =∈ D.()2ln ln 2(0)f x x x =+> ⑷、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A.14-B.4-C.4D.14⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = A.8 B.7 C.6 D.5⑹、函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为A.,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B.()(),1,k k k Z ππ+∈C.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D.3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A.12B.35C.2D.0 ⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c,若a 、b 、c 成等比数列,且2c a =,则cos B =A.14B.34 ⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是 A.16π B.20πC.24πD.32π 抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑽、在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为A.120-B.120C.15-D.15 ⑾、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是A.43B.75C.85D.3 ⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A.2B.2C.2D.220cm2006年普通高等学校招生全国统一考试理科数学第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
2006年高考试题文科数学试题(全国II卷)
2006年高考试题文科数学试题(全国II 卷)一.选择题(1)已知向量a =(4,2),向量b =(x ,3),且a ∥b ,则x=(A )9 (B )6 (C )5 (D )3 (2)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N = (A )∅ (B ){}|03x x <<(C ){}|13x x << (D ){}|23x x <<(3)函数sin 2cos 2y x x =的最小正周期是(A )2π (B )4π (C )4π (D )2π(4)如果函数()y f x =的图像与函数y=3-2x 的图像关于原点对称,则y=()f x 的表达式为(A ) y=2x-3 (B )y=2x+3(C ) y=-2x+3 (D )y=-2x-3(5)已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆另外一个焦点在BC 边上,则ABC ∆的周长是(A) (B )6 (C) (D )12(6)已知等差数列{}n a 中,a 2=7,a 4=15,则前10项和S 10=(A )100 (B )210 (C )380 (D )400 (7)如图,平面α⊥平面β,,,A B AB αβ∈∈与两平面α、β所成的角分别为4π和6π。
过A 、B 分别作两平面交线的垂线,垂足为'A 、',B 若AB=12,则'A 'B = (A )4 (B )6 (C )8 (D )9(8)函数ln 1(0)y x x =+>的反函数为 (A )1()x y e x R +=∈ (B )1()x y e x R -=∈(C )1(1)x y ex +=> (D )1(1)x y e x -=>(9)已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为(A )53 (B )43 (C )54 (D )32(10)若(sin )3cos2,f x x =-则(cos )f x =A'B'A B βα(A )3cos 2x - (B )3sin 2x - (C )3cos 2x + (D )3sin 2x +(11)过点(-1,0)作抛物线y=x 2+x+1的切线,其中一条切线为(A )2x+y+2=0 (B )3x-y+3=0 (C )x+y+1=0 (D )x-y+1=0(12)5名志愿者分到3所学校支教,要求每所学校至少有1名志愿者,则不同的分法共有(A )150种 (B )180种 (C )200种 (D )280种 二.填空题:(13)在4101()x x+的展开式中常数项是_____。
2006年高考文科数学(全国)卷Ⅰ
2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)一.选择题(共12小题,每小题5分, 共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b=2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m=(A )41-(B )-4 (C )4 (D )41 (5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c. 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32(9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为(A )58cm 2(B )106cm 2 (C )553cm 2(D )20cm 2二.填空题:本大题共4小题,每小题4分,共16分. 把答案填在横线上. (13)已知函数.121)(+-=xa x f 若)(x f 为奇函数,则a= . (14)已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成的二面角等于 .(15)设x y z -=2,式中变量x 、y 满足下列条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≥-,1,2323,12y y x y x 则z 的最大值为 .(16)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日. 不同的安排方法共有 种.(用数字作答) 三.解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知}{n a 为等比数列,320,2423=+=a a a . 求}{n a 的通项公式.(18)(本小题满分12分)△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos CB A ++取得最大值,并求出这个最大值.(19)(本小题满分12) A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效. 若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组. 设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.(20)(本小题满分12分)如图,1l 、2l 是相互垂直的异面直线,MN 是它们的公垂线段. 点A 、B 在1l 上,C 在2l 上,AM = MB = MN.(Ⅰ)证明NB AC ⊥;(Ⅱ)若60=∠ACB ,求NB 与平面ABC 所成角的余弦值. (21)(本小题满分14分)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ|的最大值.(22)(本小题满分12分)设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.参考答案一.选择题 (1)C (2)B (3)D (4)A (5)D (6)C (7)B (8)B(9)C(10)C(11)A(12)B二.填空题 (13)21 (14)3π (15)11 (16)2400三.解答题 (17)解:设等比数列||n a 的公比为q ,则q ≠0, ,2,23432q q a a qq a a ====所以 ,32022=+q q解得 .3,3121==q q 当 ,18,311==a q 时所以 .32318)31(18111nn n n a ---⨯==⨯= 当 ,92,31==a q 时所以 .3239231--⨯=⨯=n n n a (18)解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π (19)解:(Ⅰ)设A 1表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i= 0,1,2, B 1表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i= 0,1,2,依题意有.943232)(,9432312)(21=⨯==⨯⨯=A P A P .2121212)(.412121)(10=⨯⨯==⨯=B P B P所求的概率为P = P (B 0·A 1)+ P (B 0·A 2)+ P (B 1·A 2)= 942194419441⨯+⨯+⨯ .94=(Ⅱ)所求的概率为.729604)941(13=--=P (20)解法: (Ⅰ)由已知l 2⊥MN ,l 2⊥l 1,MN l 1 = M ,可得l 2⊥平面ABN.由已知MN ⊥l 1,AM = MB = MN , 可知AN = NB 且AN ⊥NB 又AN 为 AC 在平面ABN 内的射影,∴ AC ⊥NB (Ⅱ)∵ Rt △CAN = Rt △CNB ,∴ AC = BC ,又已知∠ACB = 60°,因此△ABC 为正三角形。
2006年高考文科数学(全国)卷Ⅰ
2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)一.选择题(共12小题,每小题5分, 共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(1)已知向量a 、b 满足| a |=1,| b |=4,且a ·b=2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π (2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则 (A )=N M ∅ (B )M N M =(C )M N M =(D )=N M R(3)已知函数xe y =的图像与函数)(xf y =的图像关于直线x y =对称,则 (A )∈=x e x f x()2(2R ) (B )2ln )2(=x f ·x ln (0>x )(C )∈=x e x f x (2)2(R )(D )+=x x f ln )2(2ln (0>x )(4)双曲线122=+y mx 的虚轴长是实轴长的2倍,则m=(A )41-(B )-4 (C )4 (D )41 (5)设n S 是等差数列}{n a 的前n 项和,若S 7=35,则a 4=(A )8(B )7(C )6(D )5(6)函数)4tan()(π+=x x f 的单调增区间为(A )∈+-k k k ),2,2(ππππZ(B )∈+k k k ),)1(,(ππZ(C )∈+-k k k ),4,43(ππππZ(D )∈+-k k k ),43,4(ππππZ (7)从圆012222=+-+-y y x x 外一点P (3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21 (B )53 (C )23 (D )0(8)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c. 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41(B )43 (C )42 (D )32(9)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是(A )16π(B )20π(C )24π(D )32π(10)在10)21(xx -的展开式中,4x 的系数为(A )-120 (B )120(C )-15 (D )15(11)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为(A )58cm 2(B )106cm 2 (C )553cm 2(D )20cm 2二.填空题:本大题共4小题,每小题4分,共16分. 把答案填在横线上. (13)已知函数.121)(+-=xa x f 若)(x f 为奇函数,则a= . (14)已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成的二面角等于 .(15)设x y z -=2,式中变量x 、y 满足下列条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≥-,1,2323,12y y x y x 则z 的最大值为 .(16)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日. 不同的安排方法共有 种.(用数字作答) 三.解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知}{n a 为等比数列,320,2423=+=a a a . 求}{n a 的通项公式.(18)(本小题满分12分)△ABC 的三个内角为A 、B 、C ,求当A 为何值时,2cos 2cos CB A ++取得最大值,并求出这个最大值.(19)(本小题满分12) A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效. 若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组. 设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.(20)(本小题满分12分)如图,1l 、2l 是相互垂直的异面直线,MN 是它们的公垂线段. 点A 、B 在1l 上,C 在2l 上,AM = MB = MN.(Ⅰ)证明NB AC ⊥;(Ⅱ)若60=∠ACB ,求NB 与平面ABC 所成角的余弦值. (21)(本小题满分14分)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ|的最大值.(22)(本小题满分12分)设a 为实数,函数x a ax x x f )1()(223-+-=在)0,(-∞和),1(+∞都是增函数, 求a 的取值范围.参考答案一.选择题 (1)C (2)B (3)D (4)A (5)D (6)C (7)B (8)B(9)C(10)C(11)A(12)B二.填空题 (13)21 (14)3π (15)11 (16)2400三.解答题 (17)解:设等比数列||n a 的公比为q ,则q ≠0, ,2,23432q q a a qq a a ====所以 ,32022=+q q解得 .3,3121==q q 当 ,18,311==a q 时所以 .32318)31(18111nn n n a ---⨯==⨯= 当 ,92,31==a q 时所以 .3239231--⨯=⨯=n n n a (18)解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π (19)解:(Ⅰ)设A 1表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i= 0,1,2, B 1表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i= 0,1,2,依题意有.943232)(,9432312)(21=⨯==⨯⨯=A P A P .2121212)(.412121)(10=⨯⨯==⨯=B P B P所求的概率为P = P (B 0·A 1)+ P (B 0·A 2)+ P (B 1·A 2)= 942194419441⨯+⨯+⨯ .94=(Ⅱ)所求的概率为.729604)941(13=--=P (20)解法: (Ⅰ)由已知l 2⊥MN ,l 2⊥l 1,MN l 1 = M ,可得l 2⊥平面ABN.由已知MN ⊥l 1,AM = MB = MN , 可知AN = NB 且AN ⊥NB 又AN 为 AC 在平面ABN 内的射影,∴ AC ⊥NB (Ⅱ)∵ Rt △CAN = Rt △CNB ,∴ AC = BC ,又已知∠ACB = 60°,因此△ABC 为正三角形。
2006年高考湖南卷文科数学试题及参考答案[1]
财务管理课程实验实习小结本次维持一周的财务管理课程实验在小组成员共同的努力和相互的配合下完成了,这其中我们也遇到了很多的问题,经过多方面的搜集资料,对解决和发现这些问题提供了很好的帮助。
各小组成员积极的配合,并确定了一致的目标,使本次实习也很好的体现了团队合作的精神。
在课程实验开始,辅导老师给我们讲解了有关做财务分析报告的具体要求,包括课程实验的目的,课程实验设计的组织形式,课程实验设计的内容,其中内容这一部分强调了重点,要求我们对以财务报告分析为主线,设计上市公司三年的财务指标分析,会计政策分析,筹资投资政策的分析,股利分配政策分析,内部控制分析,股权结构分析等一系列内容,是一次综合性极强的实验设计课程。
我们小组在完成这一部分的时候投入了最多的时间和精力,这一部分在整个课程实验阶段也最为重要,通过对网上信息的浏览,我们首先确定了几家比较适合的上市公司进行初步的了解和查询,了解它近三年的业绩,以及各项发展指标,经过小组成员的讨论和最后的表决,选出一个或两个的备选方案,在经过深入的研究,通过对其财务政策的初步了解,选择出近期财务政策有利于企业发展的项目,并最终予以确定,在确定投资的上市公司后,就要对其三年财务报告进行系统的分析,对已搜集好的三年财务报告进行整理,并列出所选上市公司财务相关问题,并进行讨论分析。
问题提出后,就要考虑到小组成员如何安排的问题,按照小组成员自己对各个问题的兴趣度,让小组成员自己发挥出自己对处理和分析哪个板块的能力,小组长统筹后,安排人员调度,让其中一名组员参与对偿债能力分析,营运能力分析,营利能力分析,发展能力分析,后一位小组成员在前一名组员分析的基础上,指出公司可能存在的问题,并提出相应的改进措施,并同时对现金流量表中相关现金流量的数据分析公司偿债能力,收益能力,以及收益质量。
在这一部分进行的同时,负责第三名组员对公司的财务的政策进行分析,包括三件筹资,投资,分配政策的变化及其存在的问题。
2006年全国统一高考数学试卷(文科)(全国卷一)及答案
2006年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量、满足||=1,||=4,且•=2,则与夹角为()A.B.C.D.2.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R3.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)4.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.5.(5分)设S n是等差数列{a n}的前n项和,若S7=35,则a4=()A.8 B.7 C.6 D.56.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.7.(5分)从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.08.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.9.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π10.(5分)在的展开式中,x4的系数为()A.﹣120 B.120 C.﹣15 D.1511.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.312.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知函数f(x)=a﹣,若f(x)为奇函数,则a=.14.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.15.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.16.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).三、解答题(共6小题,满分74分)17.(12分)已知{a n}为等比数列,,求{a n}的通项公式.18.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.19.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.20.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.21.(12分)设P是椭圆=1(a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.22.(14分)设a为实数,函数f(x)=x3﹣ax2+(a2﹣1)x在(﹣∞,0)和(1,+∞)都是增函数,求a的取值范围.2006年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)已知向量、满足||=1,||=4,且•=2,则与夹角为()A.B.C.D.【分析】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,用数量积列出等式,变化出夹角的余弦表示式,代入给出的数值,求出余弦值,注意向量夹角的范围,求出适合的角.【解答】解:∵向量a、b满足,且,设与的夹角为θ,则cosθ==,∵θ∈【0π】,∴θ=,故选C.2.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.3.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=e x 的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.4.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.5.(5分)(2006•全国卷Ⅰ)设S n是等差数列{a n}的前n项和,若S7=35,则a4=()A.8 B.7 C.6 D.5【分析】充分运用等差数列前n项和与某些特殊项之间的关系解题.【解答】解:S n是等差数列{a n}的前n项和,若S7=×7=7a4=35,∴a4=5,故选D.6.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x 的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C7.(5分)(2006•全国卷Ⅰ)从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.0【分析】先求圆心到P的距离,再求两切线夹角一半的三角函数值,然后求出结果.【解答】解:圆x2﹣2x+y2﹣2y+1=0的圆心为M(1,1),半径为1,从外一点P (3,2)向这个圆作两条切线,则点P到圆心M的距离等于,每条切线与PM的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选B.8.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.9.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.10.(5分)(2006•全国卷Ⅰ)在的展开式中,x4的系数为()A.﹣120 B.120 C.﹣15 D.15【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求出x4的系数【解答】解:在的展开式中x4项是=﹣15x4,故选项为C.11.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.12.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知函数f(x)=a﹣,若f(x)为奇函数,则a=.【分析】因为f(x)为奇函数,而在x=0时,f(x)有意义,利用f(0)=0建立方程,求出参数a的值.【解答】解:函数.若f(x)为奇函数,则f(0)=0,即,a=.故答案为14.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°15.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.16.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:2400三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)已知{a n}为等比数列,,求{a n}的通项公式.【分析】首先设出等比数列的公比为q,表示出a2,a4,利用两者之和为,求出公比q的两个值,利用其两个值分别求出对应的首项a1,最后利用等比数列的通项公式得到即可.【解答】解:设等比数列{a n}的公比为q,则q≠0,a2==,a4=a3q=2q所以+2q=,解得q1=,q2=3,当q1=,a1=18.所以a n=18×()n﹣1==2×33﹣n.当q=3时,a1=,所以a n=×3n﹣1=2×3n﹣3.18.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为19.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B 有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:ξ0123P∴数学期望Eξ=3×=.20.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH 为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.21.(12分)(2006•全国卷Ⅰ)设P是椭圆=1(a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.【分析】依题意可知|PQ|=,因为Q在椭圆上,所以x2=a2(1﹣y2),|PQ|2=a2(1﹣y2)+y2﹣2y+1=(1﹣a2)y2﹣2y+1+a2=(1﹣a2)(y﹣)2﹣+1+a2.由此分类讨论进行求解.【解答】解:由已知得到P(0,1)或P(0,﹣1)由于对称性,不妨取P(0,1)设Q(x,y)是椭圆上的任一点,则|PQ|=,①又因为Q在椭圆上,所以,x2=a2(1﹣y2),|PQ|2=a2(1﹣y2)+y2﹣2y+1=(1﹣a2)y2﹣2y+1+a2=(1﹣a2)(y﹣)2﹣+1+a2.②因为|y|≤1,a>1,若a≥,则||≤1,所以如果它包括对称轴的x的取值,那么就是顶点上取得最大值,即当﹣1≤<0时,在y=时,|PQ|取最大值;如果对称轴不在y的取值范围内的话,那么根据图象给出的单调性来求解.即当<﹣1时,则当y=﹣1时,|PQ|取最大值2.22.(14分)(2006•全国卷Ⅰ)设a为实数,函数f(x)=x3﹣ax2+(a2﹣1)x在(﹣∞,0)和(1,+∞)都是增函数,求a的取值范围.【分析】先对函数f(x)进行求导得到一个二次函数,根据二次函数的图象和性质令f'(x)≥0在(﹣∞,0)和(1,+∞)成立,解出a的值.【解答】解:f'(x)=3x2﹣2ax+(a2﹣1),其判别式△=4a2﹣12a2+12=12﹣8a2.(ⅰ)若△=12﹣8a2=0,即a=±,当x∈(﹣∞,),或x∈(,+∞)时,f'(x)>0,f(x)在(﹣∞,+∞)为增函数.所以a=±.(ⅱ)若△=12﹣8a2<0,恒有f'(x)>0,f(x)在(﹣∞,+∞)为增函数,所以a2>,即a∈(﹣∞,﹣)∪(,+∞)(ⅲ)若△12﹣8a2>0,即﹣<a<,令f'(x)=0,解得x1=,x2=.当x∈(﹣∞,x1),或x∈(x2,+∞)时,f'(x)>0,f(x)为增函数;当x∈(x1,x2)时,f'(x)<0,f(x)为减函数.依题意x1≥0且x2≤1.由x1≥0得a≥,解得1≤a<由x2≤1得≤3﹣a,解得﹣<a<,从而a∈[1,)综上,a的取值范围为(﹣∞,﹣]∪[,+∞)∪[1,),即a∈(﹣∞,﹣]∪[1,+∞).。
2006年湖南省高考数学试卷(文科)【附答案、word版本,可再编辑;B4纸型两栏】
2006年湖南省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分) 1. 函数y =√2x 的定义域是( ) A.(0, 1]B.(0, +∞)C.[1, +∞)D.(1, +∞)2. 已知向量a →=(2,t),b →=(1,2),若t =t 1时,a → // b →;t =t 2时,a →⊥b →,则( ) A.t 1=−4,t 2=−1 B.t 1=−4,t 2=1 C.t 1=4,t 2=−1D.t 1=4,t 2=13. 若(ax −1)5的展开式中x 3的系数是80,则实数a 的值是( ) A.−2B.2√2C.√43D.24. 过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60∘则该截面的面积是( ) A.πB.2πC.2√3πD.3π5. “a =1”是“函数f(x)=|x −a|在区间[1, +∞)上为增函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6. 在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( ) A.6B.12C.24D.187. 圆x 2+y 2−4x −4y −10=0上的点到直线x +y −14=0的最大距离与最小距离的差是( ) A.36B.18C.5√2D.6√28. 设点P 是函数f(x)=sin ωx 的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值π4,则f(x)的最小正周期是( ) A.2πB.πC.π4D.π29. 过双曲线M:x 2−y 2b 2=1的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B ,C ,且|AB|=|BC|,则双曲线M 的离心率是( ) A.√10B.√5C.√103D.√5210. 如图,OM // AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OP →=xOA →+yOB →,则实数对(x, y)可以是( )A.(14,34)B.(−23,23)C.(−14,34)D.(−15,75)二、填空题(共5小题,每小题4分,满分20分)11. 若数列{a n }满足:a 1=1,a n+1=2a n .n =1,2,3….则a 1+a 2+...+a n =________.12. 某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是________分.13. 已知{x ≥1x −y +1≤02x −y −2≤0,则x 2+y 2的最小值是________.14. 过三棱柱ABC −A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.15. 若f(x)=a sin (x +π4)+3sin (x −π4)是偶函数,则a =________. 三、解答题(共6小题,满分80分) 16. 已知√3sin θ−sin (π2−2θ)cos (π+θ)⋅cos θ=1,θ∈(0, π),求θ的值.17. 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后经复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(1)恰好有两家煤矿必须整改的概率;(2)平均有多少家煤矿必须整改;(3)至少关闭一家煤矿的概率.18. 如图,已知两个正四棱锥P−ABCD与Q−ABCD的高分别为1和2,AB=4.(1)证明PQ⊥平面ABCD;(2)求异面直线AQ与PB所成的角;(3)求点P到平面QAD的距离.19. 已知函数f(x)=ax3−3x2+1−3a.(1)讨论函数f(x)的单调性;(2)若曲线y=f(x)上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.。
2006高考文科数学试卷及答案全国1
2006年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足|a |=1,|b |=4,且ab =2,则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π(2)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N (B )M M N =(C )M N M =(D )R N M =(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=(A )8 (B )7 (C )6(D )5(6)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21(B )53(C )23 (D )0(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=(A )41 (B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (10)在(x-x21)10的展开式中,x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2 (C )355cm 2(D )20cm 2第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。
湖南历年(06-14年)-文科数学高考立体几何真题
湖南历年文科数学高考试卷立体空间几何部分(06-14年) 2006年高考文科数学试卷(湖南卷)4.过半径为12的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°则该截面的面积是()A.π B。
2π C. 3π D. 3214. 过三棱柱ABC-A1B1C1 的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条。
18。
(本小题满分14分)如图2,已知两个正四棱锥P—ABCD与Q—ABCD的高都是2,AB=4。
(Ⅰ)证明PQ⊥平面ABCD;(Ⅱ)求异面直线AQ与PB所成的角;(Ⅲ)求点P到平面QAD的距离.Q BCP AD图22007年普通高等学校招生全国统一考试湖南卷(文)6.如图1,在正四棱柱 1111ABCD A B C D -中,E 、F 分别是11AB C 、B 的中点,A .1EF BB 与垂直 B 。
EF BD 与垂直C 。
EF 与CD异面 D 。
EF 11与A C15。
棱长为1的正方形1111ABCD A B C D -的8个顶点都在球O 的表面上,则球O 的表面积是 ;设E 、F 分别是该正方形的棱11AA 、DD 的中点,则直线EF 被球O 截得的线段长为 。
18.(本小题满分14分)如图,已知直二面角45PQ A PQ B C BAP αβαβ--∈∈∈∠=,,,,,直线CA 和平面α所成的角为30 (Ⅰ)证明BC PQ ⊥;(Ⅱ)求二面角B AC P --的大小.2008高考湖南文科数学试题及全解全析5。
已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则( ).A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n9.长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( )A .42π B .22π C .π2 D .2π2 18.如图所示,四棱锥P ABCD -的底面ABCD 是边长为1的菱形,060=∠BCD ,E 是CD 的中点,PA ⊥底面ABCD,3=PA . (I)证明:平面PBE ⊥平面PAB ; (II)求二面角A-BE —P 和的大小。
2006年高考.全国Ⅰ卷.文科数学试题及解答
2006年普通高等学校招生全国统一考试文科数学全国Ⅰ卷 (广西、河南等地区)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率()()1n kkkn n P k C P P -=-球的表面积公式24S R π=,其中R 表示球的半径 球的体积公式343V R π=,其中R 表示球的半径 一、选择题⑴、已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A .6π B .4π C .3π D .2π ⑵、设集合{}20M x x x =-<,{}2N x x =<,则 A .M N =∅ B .M N M = C .MN M = D .MN R =⑶、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln 2(0)f x x x =+> ⑷、双曲线221mx y +=的虚轴长是实轴长的2倍,则m =A .14-B .4-C .4D .14⑸、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =A .8B .7C .6D .5⑹、函数()tan 4f x x π⎛⎫=+ ⎪⎝⎭的单调增区间为A .,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ B .()(),1,k k k Z ππ+∈C .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭⑺、从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线,则两切线夹角的余弦值为A .12B .35C .2D .0⑻、ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且2c a =,则cos B =A .14 B .34C .4D .3⑼、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A .16πB .20πC .24πD .32π抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 A .43 B .75C .85D .3⑽、在1012x x ⎛⎫- ⎪⎝⎭的展开式中,4x 的系数为A .120-B .120C .15-D .15 ⑾、抛物线2y x =-上的点到直线4380x y +-=距离的最小值是 A .43 B .75C .85D .3⑿、用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为A .2B .2C .2D .220cm2006年普通高等学校招生全国统一考试理科数学 第Ⅱ卷注意事项:1.答题前,考生在答题卡上务必用黑色签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
2006年高考湖南卷文科数学试题及参考答案
绝密★启用前2006年高考文科数学试卷(湖南卷)本试题卷他选择题和非选择题(包括填空题和解答题)两部分. 选择题部分1至2页. 非选择题部分3至5页. 时量120分钟. 满分150分. 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么)()()(B P A P AB P ⋅=如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率是()(1)k k n k n n P k C P P -=- 球的体积公式 343V R π=,球的表面积公式24S R π=,其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数x y 2log=的定义域是A .(0,1] B. (0,+∞) C. (1,+∞) D. [1,+∞)2.已知向量),2,1(),,2(==b t a若1t t =时,a ∥b ;2t t =时,b a ⊥,则 A .1,421-=-=t t B. 1,421=-=t t C. 1,421-==t t D. 1,421==t t 3. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是A .-2 B. 22 C. 34 D. 24.过半径为12的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是A .π B. 2π C. 3π D. π32 5.“a =1”是“函数a x x f -=)(在区间[1,+∞)上为增函数”的 A .充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6 B. 12 C. 18 D. 24 7.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36 B. 18 C. 26 D. 258.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,则)(x f 的最小正周期是A .2π B. π C. 2πD.4π9.过双曲线M :1222=-hy x的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且BC AB =,则双曲线M 的离心率是A .25 B.310 C. 5 D. 1010. 如图1:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OBy OA x OP +=,则实数对(x ,y )可以是 A .)43,41(B. )32,32(-C. )43,41(-D. )57,51(-二.填空题:本大题共5小题,每小题4分,共20分,把答案填在答题上部 对应题号的横上.11. 若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 . 12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.13. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是 .14. 过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有 条. 15. 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a = .A图1三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值.17.(本小题满分12分)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率; (Ⅱ)某煤矿不被关闭的概率; (Ⅲ)至少关闭一家煤矿的概率.18.(本小题满分14分) 如图2,已知两个正四棱锥P -ABCD 与Q -ABCD 的高都是2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.19.(本小题满分14分) 已知函数axaxx f 313)(23-+-=.(I)讨论函数)(x f 的单调性;(Ⅱ)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,Q BCPAD图2求实数a 的取值范围.20.(本小题满分14分)在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (Ⅰ)求a 4、a 5,并写出a n 的表达式; (Ⅱ)令nn n n n a a a a b 11+++=,证明32221+<++<n b b b n n ,n =1,2,….21.(本小题满分14分)已知椭圆C 1:13422=+yx,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当x AB ⊥轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.2006年高考文科数学参考答案(湖南卷)1-10:DCDAABCBCDC 11.12-n, 12. 85, 13. 5 ,14. 6 ,15. -3 .16. 解 由已知条件得1cos cos 2cos sin 3=⋅--θθθθ.即0sin 2sin 32=-θθ. 解得0sin 23sin ==θθ或. 由0<θ<π知23sin =θ,从而323πθπθ==或.17. 解 (Ⅰ)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的. 所以恰好有两家煤矿必须整改的概率是31.01655.0)5.01(32251==⨯-⨯=C P .(Ⅱ)解法一 某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是1.0)8.01()5.01(2=-⨯-=P ,从而煤矿不被关闭的概率是0.90.解法二 某煤矿不被关闭包括两种情况:(i )该煤矿第一次安检合格;(ii )该煤矿第一次安检不合格,但整改后合格.所以该煤矿不被关闭的概率是90.08.0)5.01(5.02=⨯-+=P .(Ⅲ)由题设(Ⅱ)可知,每家煤矿不被关闭的概率是0.9,且每家煤矿是否被关闭是相互独立的,所以到少关闭一家煤矿的概率是41.09.0153=-=P . 18. 解法一 (Ⅰ)连结AC 、BD ,设OBD AC= .由P -ABCD 与Q -ABCD 都是正四棱锥,所以PO ⊥平面ABCD ,QO ⊥平面ABCD . 从而P 、O 、Q 三点在一条直线上,所以PQ ⊥平面ABCD . (Ⅱ)由题设知,ABCD 是正方形,所以AC ⊥BD .由(Ⅰ),QO ⊥平面ABCD . 故可分别以直线CA 、DB 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系(如图),由题条件,相关各点的坐标分别是P (0,0,2),A (22,0,0),Q(0,0,-2),B (0,22,0).所以)2,0,22(--=AQ)2,22,0(-=PB于是3132324,cos=⨯=>=<PB AQ .从而异面直线AQ 与PB 所成的角是31arccos .(Ⅲ)由(Ⅱ),点D 的坐标是(0,-22,0),)0,22,22(--=AD,)4,0,0(-=PQ ,设),,(z y x n =是平面QAD 的一个法向量,由⎪⎩⎪⎨⎧=⋅=⋅00AD n AQ n 得⎪⎩⎪⎨⎧=+=+002y x z x .取x =1,得)2,1,1(--=n.所以点P 到平面QAD的距离22==d.解法二 (Ⅰ)取AD 的中点,连结PM ,QM . 因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM . 从而AD ⊥平面PQM . 又⊂PQ 平面PQM ,所以PQ ⊥AD .同理PQ ⊥AB ,所以PQ ⊥平面ABCD .(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.因为OA =OC ,OP =OQ ,所以PAQC 为平行四边形,AQ ∥PC .从而∠BPC (或其补角)是异面直线AQ 与PB 所成的角. 因为322)22(2222=+=+==OP OC PC PB ,所以31323221612122cos 222=⨯⨯-+=⋅-∠PCPB BCPCPB BPC +=.从而异面直线AQ 与PB 所成的角是31arccos .(Ⅲ)连结OM ,则PQAB OM21221===.所以∠PMQ =90°,即PM ⊥MQ .由(Ⅰ)知AD ⊥PM ,所以PM ⊥平面QAD . 从而PM 的长是点P 到平面QAD 的距离. 在直角△PMO 中,22222222=+=+=OMPOPM.即点P 到平面QAD 的距离是22.19. 解 (Ⅰ)由题设知)2(363)(,02ax ax x ax x f a-=-='≠.令ax x x f 2,00)(21==='得.当(i )a >0时,BCPADOM若)0,(-∞∈x ,则0)(>'x f ,所以)(x f 在区间)2,(a-∞上是增函数;若)2,0(a x ∈,则0)(<'x f ,所以)(x f 在区间)2,0(a 上是减函数;若),2(+∞∈a x ,则0)(>'x f ,所以)(x f 在区间),2(+∞a上是增函数;(i i )当a <0时, 若)2,(ax -∞∈,则0)(<'x f ,所以)(x f 在区间)2,(a-∞上是减函数;若)2,0(a x ∈,则0)(<'x f ,所以)(x f 在区间)2,0(a上是减函数; 若)0,2(a x ∈,则0)(>'x f ,所以)(x f 在区间)0,2(a上是增函数;若),0(+∞∈x ,则0)(<'x f ,所以)(x f 在区间),0(+∞上是减函数.(Ⅱ)由(Ⅰ)的讨论及题设知,曲线)(x f y =上的两点A 、B 的纵坐标为函数的极值,且函数)(x f y =在ax x2,0==处分别是取得极值af 31)0(-=,134)2(2+--=a aa f .因为线段AB 与x 轴有公共点,所以0)2()0(≤⋅af f . 即0)31)(134(2≤-+--aaa.所以)4)(3)(1(2≤--+aa a a .故0,0)4)(3)(1(≠≤--+a a a a 且.解得 -1≤a <0或3≤a ≤4.即所求实数a 的取值范围是[-1,0)∪[3,4]. 20. 解 (Ⅰ)由已知得15,1054==a a ,2)1(12)1(+=+++-+=n n n n a n .(Ⅱ)因为,2,1,22222211==+⋅+>+++=+=++n nn n n nn n n a a a a b nn n n n ,所以n b b b n 221>+++ . 又因为,2,1,222222=+-+=+++=n n n nn n n b n ,所以)]211()4121()3111[(2221+-++-+-+=+++n n n b b b n=32221232+<+-+-+n n n n .综上, ,2,1,32221=+<++<n n b b b n n .21. 解 (Ⅰ)当AB ⊥x 轴时,点A 、B 关于x 轴对称,所以m =0,直线AB 的方程为 x =1,从而点A 的坐标为(1,23)或(1,-23).因为点A 在抛物线上,所以p249=,即89=p.此时C 2的焦点坐标为(169,0),该焦点不在直线AB 上.(Ⅱ)解法一 当C 2的焦点在AB 时,由(Ⅰ)知直线AB 的斜率存在,设直线AB 的方程为)1(-=x k y .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 消去y 得01248)43(2222=-+-+kx k x k . ……①设A 、B 的坐标分别为(x 1,y 1), (x 2,y 2), 则x 1,x 2是方程①的两根,x 1+x 2=22438kk+.因为AB 既是过C 1的右焦点的弦,又是过C 2所以)(214)212()212(2121x x x x AB +-=-+-=,且34)2()2(212121++=++=+++=x x p x x p x p x AB .从而)(214342121x x x x +-=++.所以91621=+x x ,即91643822=+kk.解得6,62±==k k 即. 因为C 2的焦点),32(m F '在直线)1(-=x k y 上,所以km31-=.即3636-==m m 或.当36=m 时,直线AB 的方程为)1(6--=x y; 当36-=m时,直线AB 的方程为)1(6-=x y.解法二 当C 2的焦点在AB 时,由(Ⅰ)知直线AB 的斜率存在,设直线AB 的方程 为)1(-=x k y .由⎪⎩⎪⎨⎧-==-)1(38)(2x k y x m y 消去y 得xm kkx 38)(2=--. ……①因为C 2的焦点),32(m F '在直线)1(-=x k y 上,所以)132(-=k m ,即km 31-=.代入①有xk kx 38)32(2=-.即094)2(342222=++-k x k xk. ……②设A 、B 的坐标分别为(x 1,y 1), (x 2,y 2), 则x 1,x 2是方程②的两根,x 1+x 2=223)2(4kk+.由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 消去y 得01248)43(2222=-+-+kx k x k . ……③由于x 1,x 2也是方程③的两根,所以x 1+x 2=22438kk+.从而223)2(4k k+=22438kk+. 解得6,62±==k k 即. 因为C 2的焦点),32(m F '在直线)1(-=x k y 上,所以km31-=.即3636-==m m 或.当36=m 时,直线AB 的方程为)1(6--=x y; 当36-=m时,直线AB 的方程为)1(6-=x y.解法三 设A 、B 的坐标分别为(x 1,y 1), (x 2,y 2), 因为AB 既过C 1的右焦点)0,1(F ,又是过C 2的焦点),32(m F ',所以)212()212()2()2(212121x x p x x p x p x AB -+-=++=+++=.即916)4(3221=-=+p x x . ……①由(Ⅰ)知21x x ≠,于是直线AB 的斜率mm x x y y k 313201212=--=--=, ……②且直线AB 的方程是)1(3--=x m y , 所以32)2(32121m x x m y y =-+-=+. ……③又因为⎪⎩⎪⎨⎧=+=+1243124322222121y x y x ,所以0)(4)(312122121=--⋅+++x x y y y y x x . ……④将①、②、③代入④得322=m ,即3636-==m m或.当36=m 时,直线AB 的方程为)1(6--=x y; 当36-=m 时,直线AB 的方程为)1(6-=x y.。
2006年全国统一高考数学试卷(文科)(全国卷ⅰ)
2006年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知向量、满足||=1,||=4,且•=2,则与夹角为()A.B.C.D.2.(5分)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R3.(5分)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)4.(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.5.(5分)设S n是等差数列{a n}的前n项和,若S7=35,则a4=()A.8 B.7 C.6 D.56.(5分)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.7.(5分)从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.08.(5分)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.9.(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π10.(5分)在的展开式中,x4的系数为()A.﹣120 B.120 C.﹣15 D.1511.(5分)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.312.(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2二、填空题(共4小题,每小题4分,满分16分)13.(4分)已知函数f(x)=a﹣,若f(x)为奇函数,则a=.14.(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于°.15.(4分)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为.16.(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有种(用数字作答).三、解答题(共6小题,满分74分)17.(12分)已知{a n}为等比数列,,求{a n}的通项公式.18.(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.19.(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.20.(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.21.(12分)设P是椭圆=1(a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.22.(14分)设a为实数,函数f(x)=x3﹣ax2+(a2﹣1)x在(﹣∞,0)和(1,+∞)都是增函数,求a的取值范围.2006年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2006•全国卷Ⅰ)已知向量、满足||=1,||=4,且•=2,则与夹角为()A.B.C.D.【分析】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,用数量积列出等式,变化出夹角的余弦表示式,代入给出的数值,求出余弦值,注意向量夹角的范围,求出适合的角.【解答】解:∵向量a、b满足,且,设与的夹角为θ,则cosθ==,∵θ∈【0π】,∴θ=,故选C.2.(5分)(2006•全国卷Ⅰ)设集合M={x|x2﹣x<0},N={x||x|<2},则()A.M∩N=∅ B.M∩N=M C.M∪N=M D.M∪N=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集.【解答】解:集合M={x|x2﹣x<0}={x|0<x<1},N={x||x|<2}={x|﹣2<x<2},∴M∩N=M,故选:B.3.(5分)(2006•全国卷Ⅰ)已知函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则()A.f(2x)=e2x(x∈R)B.f(2x)=ln2•lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=lnx+ln2(x>0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法.根据函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=e x 的反函数,由此可得f(x)的解析式,进而获得f(2x).【解答】解:函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=e x的反函数,即f(x)=lnx,∴f(2x)=ln2x=lnx+ln2(x>0),选D.4.(5分)(2006•全国卷Ⅰ)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()A.B.﹣4 C.4 D.【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值.【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,∴m<0,且双曲线方程为,∴m=,故选:A.5.(5分)(2006•全国卷Ⅰ)设S n是等差数列{a n}的前n项和,若S7=35,则a4=()A.8 B.7 C.6 D.5【分析】充分运用等差数列前n项和与某些特殊项之间的关系解题.【解答】解:S n是等差数列{a n}的前n项和,若S7=×7=7a4=35,∴a4=5,故选D.6.(5分)(2006•全国卷Ⅰ)函数的单调增区间为()A.B.(kπ,(k+1)π),k∈ZC.D.【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x 的范围.【解答】解:函数的单调增区间满足,∴单调增区间为,故选C7.(5分)(2006•全国卷Ⅰ)从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.0【分析】先求圆心到P的距离,再求两切线夹角一半的三角函数值,然后求出结果.【解答】解:圆x2﹣2x+y2﹣2y+1=0的圆心为M(1,1),半径为1,从外一点P (3,2)向这个圆作两条切线,则点P到圆心M的距离等于,每条切线与PM的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选B.8.(5分)(2006•全国卷Ⅰ)△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案.【解答】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.9.(5分)(2006•全国卷Ⅰ)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,∴球的半径为,球的表面积是24π,故选C.10.(5分)(2006•全国卷Ⅰ)在的展开式中,x4的系数为()A.﹣120 B.120 C.﹣15 D.15【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求出x4的系数【解答】解:在的展开式中x4项是=﹣15x4,故选项为C.11.(5分)(2006•全国卷Ⅰ)抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【分析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,由此能够得到所求距离的最小值.【解答】解:设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.12.(5分)(2006•全国卷Ⅰ)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()A.B.C.D.20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10.海伦公式S=≤=故排除C,D,由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案.【解答】解:设三角形的三边分别为a,b,c,令p=,则p=10.由海伦公式S=知S=≤=<20<3由于等号成立的条件为10﹣a=10﹣b=10﹣c,故“=”不成立,∴S<20<3.排除C,D.由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2006•全国卷Ⅰ)已知函数f(x)=a﹣,若f(x)为奇函数,则a=.【分析】因为f(x)为奇函数,而在x=0时,f(x)有意义,利用f(0)=0建立方程,求出参数a的值.【解答】解:函数.若f(x)为奇函数,则f(0)=0,即,a=.故答案为14.(4分)(2006•全国卷Ⅰ)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60°.【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可.【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tanα=,∴二面角等于60°,故答案为60°15.(4分)(2006•全国卷Ⅰ)设z=2y﹣x,式中变量x、y满足下列条件:,则z的最大值为11.【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y﹣x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:,在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y﹣x的最大值是点C,代入得最大值等于11.故填:11.16.(4分)(2006•全国卷Ⅰ)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日.不同的安排方法共有2400种(用数字作答).【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,∴根据分步计数原理知共有20×120=2400种安排方法.故答案为:2400三、解答题(共6小题,满分74分)17.(12分)(2006•全国卷Ⅰ)已知{a n}为等比数列,,求{a n}的通项公式.【分析】首先设出等比数列的公比为q,表示出a2,a4,利用两者之和为,求出公比q的两个值,利用其两个值分别求出对应的首项a1,最后利用等比数列的通项公式得到即可.【解答】解:设等比数列{a n}的公比为q,则q≠0,a2==,a4=a3q=2q所以+2q=,解得q1=,q2=3,当q1=,a1=18.所以a n=18×()n﹣1==2×33﹣n.当q=3时,a1=,所以a n=×3n﹣1=2×3n﹣3.18.(12分)(2006•全国卷Ⅰ)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值.【分析】利用三角形中内角和为π,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=π,得=﹣,所以有cos=sin.cosA+2cos=cosA+2sin=1﹣2sin2+2sin=﹣2(sin﹣)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为19.(12分)(2006•全国卷Ⅰ)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B 有效的概率为.(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率.(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望.【解答】解:(1)设A i表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,B i表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2××=,P(A2)=×=.P(B0)=×=,P(B1)=2××=,所求概率为:P=P(B0•A1)+P(B0•A2)+P(B1•A2)=×+×+×=(Ⅱ)ξ的可能值为0,1,2,3且ξ~B(3,).P(ξ=0)=()3=,P(ξ=1)=C31××()2=,P(ξ=2)=C32×()2×=,P(ξ=3)=()3=∴ξ的分布列为:ξ0123P∴数学期望Eξ=3×=.20.(12分)(2006•全国卷Ⅰ)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(Ⅰ)证明AC⊥NB;(Ⅱ)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【分析】(1)欲证AC⊥NB,可先证BN⊥面ACN,根据线面垂直的判定定理只需证AN⊥BN,CN⊥BN即可;(2)易证N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH 为NB与平面ABC所成的角,在Rt△NHB中求出此角即可.【解答】解:(Ⅰ)由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN.由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(Ⅱ)∵AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,∴Rt△CAN≌Rt△CNB,∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.∵Rt△ANB≌Rt△CNB,∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,∠NBH为NB与平面ABC所成的角.在Rt△NHB中,cos∠NBH===.21.(12分)(2006•全国卷Ⅰ)设P是椭圆=1(a>1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值.【分析】依题意可知|PQ|=,因为Q在椭圆上,所以x2=a2(1﹣y2),|PQ|2=a2(1﹣y2)+y2﹣2y+1=(1﹣a2)y2﹣2y+1+a2=(1﹣a2)(y﹣)2﹣+1+a2.由此分类讨论进行求解.【解答】解:由已知得到P(0,1)或P(0,﹣1)由于对称性,不妨取P(0,1)设Q(x,y)是椭圆上的任一点,则|PQ|=,①又因为Q在椭圆上,所以,x2=a2(1﹣y2),|PQ|2=a2(1﹣y2)+y2﹣2y+1=(1﹣a2)y2﹣2y+1+a2=(1﹣a2)(y﹣)2﹣+1+a2.②因为|y|≤1,a>1,若a≥,则||≤1,所以如果它包括对称轴的x的取值,那么就是顶点上取得最大值,即当﹣1≤<0时,在y=时,|PQ|取最大值;如果对称轴不在y的取值范围内的话,那么根据图象给出的单调性来求解.即当<﹣1时,则当y=﹣1时,|PQ|取最大值2.22.(14分)(2006•全国卷Ⅰ)设a为实数,函数f(x)=x3﹣ax2+(a2﹣1)x在(﹣∞,0)和(1,+∞)都是增函数,求a的取值范围.【分析】先对函数f(x)进行求导得到一个二次函数,根据二次函数的图象和性质令f'(x)≥0在(﹣∞,0)和(1,+∞)成立,解出a的值.【解答】解:f'(x)=3x2﹣2ax+(a2﹣1),其判别式△=4a2﹣12a2+12=12﹣8a2.(ⅰ)若△=12﹣8a2=0,即a=±,当x∈(﹣∞,),或x∈(,+∞)时,f'(x)>0,f(x)在(﹣∞,+∞)为增函数.所以a=±.(ⅱ)若△=12﹣8a2<0,恒有f'(x)>0,f(x)在(﹣∞,+∞)为增函数,所以a2>,即a∈(﹣∞,﹣)∪(,+∞)(ⅲ)若△12﹣8a2>0,即﹣<a<,令f'(x)=0,解得x1=,x2=.当x∈(﹣∞,x1),或x∈(x2,+∞)时,f'(x)>0,f(x)为增函数;当x∈(x1,x2)时,f'(x)<0,f(x)为减函数.依题意x1≥0且x2≤1.由x1≥0得a≥,解得1≤a<由x2≤1得≤3﹣a,解得﹣<a<,从而a∈[1,)综上,a的取值范围为(﹣∞,﹣]∪[,+∞)∪[1,),即a∈(﹣∞,﹣]∪[1,+∞).。
2006年湖南省高考文科数学大题训练.doc
大题训练(2006年)1、已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值。
解: 由已知条件得1cos cos 2cos sin 3=⋅--θθθθ. 即0sin 2sin 32=-θθ. 解得0sin 23sin ==θθ或. 由0<θ<π知23sin =θ,从而323πθπθ==或.2、如图2,已知两个正四棱锥P-ABCD 与Q-ABCD 的高都是2,AB=4.(Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角;(Ⅲ)求点P 到平面QAD 的距离.解:(Ⅰ)取AD 的中点,连结PM ,QM.因为P -ABCD 与Q -ABCD 都是正四棱锥, 所以AD ⊥PM ,AD ⊥QM. 从而AD ⊥平面PQM.又⊂PQ 平面PQM ,所以PQ ⊥AD.同理PQ ⊥AB ,所以PQ ⊥平面ABCD.(Ⅱ)连结AC 、BD 设O BD AC = ,由PQ ⊥平面ABCD 及正四棱锥的性质可知O 在PQ 上,从而P 、A 、Q 、C 四点共面.因为OA =OC ,OP =OQ ,所以PAQC 为平行四边形,AQ ∥PC.从而∠BPC (或其补角)是异面直线AQ 与PB 所成的角. 因为322)22(2222=+=+==OP OC PC PB , 所以31323221612122cos 222=⨯⨯-+=⋅-∠PC PB BC PC PB BPC +=. 从而异面直线AQ 与PB 所成的角是31arccos . (Ⅲ)连结OM ,则PQ AB OM 21221===. 所以∠PMQ =90°,即PM ⊥MQ.由(Ⅰ)知AD ⊥PM ,所以PM ⊥平面QAD. 从而PM 的长是点P 到平面QAD 的距离. 在直角△PMO 中,22222222=+=+=OM PO PM .即点P 到平面QAD 的距离是22.Q B C P AD 图2 QB CP A D O M3、某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率;(Ⅱ)某煤矿不被关闭的概率;(Ⅲ)至少关闭一家煤矿的概率.解:(Ⅰ)每家煤矿必须整改的概率是1-0.5,且每家煤矿是否整改是相互独立的.所以恰好有两家煤矿必须整改的概率是31.01655.0)5.01(32251==⨯-⨯=C P . (Ⅱ)解法一 某煤矿被关闭,即该煤矿第一次安检不合格,整改后经复查仍不合格,所以该煤矿被关闭的概率是1.0)8.01()5.01(2=-⨯-=P ,从而煤矿不被关闭的概率是0.90.解法二 某煤矿不被关闭包括两种情况:(i )该煤矿第一次安检合格;(ii )该煤矿第一次安检不合格,但整改后合格.所以该煤矿不被关闭的概率是90.08.0)5.01(5.02=⨯-+=P . (Ⅲ) 由题设(Ⅱ)可知,每家煤矿不被关闭的概率是0.9,且每家煤矿是否被关闭是相互独立的,所以至少关闭一家煤矿的概率是41.09.0153=-=P .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年湖南高考试卷科目:数学(文史类)(试题卷)注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码上的姓名、准考证号和科目。
2.考生作答时,选择题和非选择题均须作在答题卡上,在草稿纸和本试卷上答题无效。
考生在答题卡上按如下要求答题:(1)选择题部分请用2B铅笔把应题目的答案标号所在方框涂黑,修改时用橡皮擦干净,不留痕迹。
(2)非选择题部分(包括填空题和解答题)请按题号用0.5毫米黑色墨水签字笔书写,否则作答无效。
(3)保持字体工整、笔迹清晰、卡面清洁、不折叠。
3.考试结束后,将本试题卷和答题卡一并交回。
4. 本试卷共5页。
如缺页,考生须声明,否则后果自负。
姓名准考证号绝密★启用前数 学(文史类)本试题卷他选择题和非选择题(包括填空题和解答题)两部分. 选择题部分1至2页. 非选择题部分3至5页. 时量120分钟. 满分150分. 参考公式: 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么)()()(B P A P AB P ⋅=如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率是()(1)k k n kn n P k C P P -=-球的体积公式 343V R π=,球的表面积公式24S R π=,其中R 表示球的半径一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数x y 2log =的定义域是A .(0,1]B . (0,+∞) C. (1,+∞) D . [1,+∞)2.已知向量),2,1(),,2(==b t a 若1t t =时,a ∥b;2t t =时,b a ⊥,则A .1,421-=-=t tB . 1,421=-=t t C. 1,421-==t t D . 1,421==t t 3. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是A .-2B . 22 C. 34 D . 24.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是A .πB . 2π C. 3π D . π32 5.“a =1”是“函数a x x f -=)(在区间[1,+∞)上为增函数”的A .充分不必要条件B . 必要不充分条件C. 充要条件 D . 既不充分也不必要条件6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是A .6B . 12 C. 18 D . 24 7.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36B . 18 C. 26 D . 25 8.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,则)(x f 的最小正周期是 A .2π B . π C. 2π D . 4π 9.过双曲线M :1222=-hy x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且BC AB =,则双曲线M 的离心率是A .25 B . 310C. 5 D . 10 10. 如图1:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,则实数对(x ,y )可以是A .)43,41(B . )32,32(-C. )43,41(- D . )57,51(-二.填空题:本大题共5小题,每小题4分,共20分,把答案填在答题上部 对应题号的横上.11. 若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 . 12. 某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.13. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是 .14. 过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有 条.15. 若)4sin(3)4sin()(ππ-++=x x a x f 是偶函数,则a = .A图1三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知),,0(,1cos )cos()22sin(sin 3πθθθπθπθ∈=⋅+--求θ的值.17.(本小题满分12分) 某安全生产监督部门对5家小型煤矿进行安全检查(简称安检). 若安检不合格,则必须整改. 若整改后经复查仍不合格,则强制关闭. 设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):(Ⅰ)恰好有两家煤矿必须整改的概率; (Ⅱ)某煤矿不被关闭的概率; (Ⅲ)至少关闭一家煤矿的概率.18.(本小题满分14分) 如图2,已知两个正四棱锥P -ABCD 与Q -ABCD 的高都是2,AB =4. (Ⅰ)证明PQ ⊥平面ABCD ;(Ⅱ)求异面直线AQ 与PB 所成的角; (Ⅲ)求点P 到平面QAD 的距离.Q BCPAD图219.(本小题满分14分) 已知函数ax ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性;(Ⅱ)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.20.(本小题满分14分) 在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (Ⅰ)求a 4、a 5,并写出a n 的表达式;(Ⅱ)令n n n n n a aa ab 11+++=,证明32221+<++<n b b b n n ,n =1,2,….21.(本小题满分14分)已知椭圆C 1:13422=+y x ,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当x AB ⊥轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若34=p 且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.参考答案:1-10:DCDAABCBCDC11.12-n , 12. 85, 13. 5 ,14. 6 ,15. -3 .1.函数x y 2log =的定义域是2log x ≥0,解得x ≥1,选D.2.向量),2,1(),,2(==b t a 若1t t =时,a ∥b,∴ 14t =;2t t =时,b a ⊥,21t =-,选C.3.5)1-ax (的展开式中3x 的系数332335()(1)10C ax a x ⋅-=80x 3, 则实数a 的值是2,选D 4.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则截面圆的半径是21R=1,该截面的面积是π,选A. 5.若“1=a ”,则函数||)(a x x f -==|1|x -在区间),1[+∞上为增函数;而若||)(a x x f -=在区间),1[+∞上为增函数,则0≤a ≤1,所以“1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的充分不必要条件,选A.6.在数字1,2,3与符号“+”,“-”五个元素的所有全排列中,先排列1,2,3,有336A =种排法,再将“+”,“-”两个符号插入,有222A =种方法,共有12种方法,选B.7.圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到到直线014=-+y x 的距=2,圆上的点到直线的最大距离与最小距离的差是2R =62,选C.8.设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,∴ 最小正周期为π,选B. 9.过双曲线1:222=-b y x M 的左顶点A (1,0)作斜率为1的直线l :y=x -1, 若l 与双曲线M的两条渐近线2220y x b-=分别相交于点1122(,),(,)B x y C x y , 联立方程组代入消元得22(1)210b x x -+-=,∴ 1221222111x x b x x b ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,x 1+x 2=2x 1x 2,又||||BC AB =,则B 为AC 中点,2x 1=1+x 2,代入解得121412x x ⎧=⎪⎪⎨⎪=-⎪⎩,∴ b 2=9,双曲线M 的离心率e=10c a =,选D.10.如图,OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且OB y OA x OP +=,由图知,x<0,当x=-41时,即OC =-41OA ,P 点在线段DE 上,CD =41OB ,CE =45OB ,而41<43<45,∴ 选C.二.填空题:11.12-n ; 12. 85; 13. 5 ; 14. 6 ; 15. -3 .11.数列{}n a 满足:111,2, 1n n a a a n +===,2,3…,该数列为公比为2的等比数列,∴=+++n a a a 21212121n n -=--. 12.某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是409050818590⨯+⨯=分.13.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x ,如图画出可行域,得交点A(1,2),B(3,4),则22y x +的最小值是5.14.过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有6条。
15.2222()sin()3sin()(sin cos )3(sin cos )442222f x a x x a x x x x ππ=++-=++-是偶函数,取a =-3,可得()32cos f x x =-为偶函数。