一种高速图像数据采集板的设计方案

合集下载

基于JEDS204B的高速数据采集电路设计

基于JEDS204B的高速数据采集电路设计

基于JEDS204B的高速数据采集电路设计作者:张奕来源:《数字技术与应用》2017年第06期摘要:相比于常用的LVDS,JEDS204B是一种更高速度的串行接口。

本文以AD9680为例,设计了一套基于JEDS204B接口的高速数据采集板,详细阐述设计要点。

实验结果显示电路性能指标良好,已成功应用于多个雷达系统中。

关键词:JEDS204B;高速数据采集;电路设计中图分类号:TN911.73 文献标识码:A 文章编号:1007-9416(2017)06-0165-01在当前多数高速电路设计中,通常选用LVDS作为数据转换器和FPGA之间的接口。

LVDS的差分传输特性可有效抑制共模噪声,增大抗干扰能力。

但是由于它采用多路数据线并行传输方式,易受码间同步及串扰影响,难以满足多通道、高宽带、小型化数传需求[1]。

JESD204B标准提供一种将数据转换器与数字信号处理器件接口的方法,相比于常用的并行数据传输,是一种更高传输速度的串行接口。

它使用帧串行数据链路及嵌入式时钟和对齐字符,速度最高可达12.5Gbps/通道[2]。

并且,它减少了器件之间的走线数量,并消除了建立与保持时序约束问题,从而简化了电路设计。

本文以AD9680为例,设计了一套基于JEDS204B接口的高速数据采集板,从原理电路及高速PCB设计两方面,详细介绍设计中需要注意的问题。

1 原理电路设计本设计采用高速ADC+FPGA的方案。

ADC完成高速数据采集,数据通过204B协议输出到接收端FPGA,FPGA完成高速serdes信号的接收、204B协议解析及数据调理,将数据按照系统要求的模式打包通过光模块发送给后续系统。

ADC选用ADI公司的AD9680,它是两通道14bit最高采样率1Gsps的数模转换器,采用JEDS204B协议接口;FPGA选用带有高速串行接口的Xilinx V系列芯片,主要功能框图如图1所示。

(1)信号传输:由于AD9680的模拟输入带宽可达2GHz,因此根据实际输入信号频率及带宽需进行相应的电路匹配,如图2所示。

一种有效的高速数据采集方式

一种有效的高速数据采集方式

一种有效的高速数据采集方式郑利君【摘要】随着电子技术的发展,在智能化系统中要求传送的数据量愈来愈大,速度愈来愈快,所以设计性能优良的高速数据采集电路一直是电子设计中的一个关键技术.给出了利用FPGA实现DMA方式的高速数据采集电路的设计思想,工作原理和实施方案.把FPGA用作DMA控制器、采集控制器和总线控制器.该设计有效地解决了单片机应用领域中速度较慢的CPU和高速的A/D转换器之间的速度配合问题,具有电路设计简单、可靠性高、传输速度快等特点,而且特别适用于采集大量数据的情况.时序仿真和实际应用都证明了设计的正确性,从而解决了在单片机系统中较难解决的问题.【期刊名称】《现代电子技术》【年(卷),期】2006(029)016【总页数】3页(P139-140,144)【关键词】高速数据采集;FPGA;DMA;自动化系统【作者】郑利君【作者单位】浙江工业大学,之江学院,浙江,杭州,310024;浙江理工大学,机控学院,浙江,杭州,310017【正文语种】中文【中图分类】TP272随着电子技术的发展,设计性能优良的高速数据采集电路是电子设计中的一个关键技术。

在高速数据采集系统中,采用指令方式控制A/D转换,或采用直接存储器存取,即DMA(Direct Memory Access)传送方式,或用可编程逻辑阵件FPGA(Field Programmable Gate Array)作为高速数据采集控制器,并将采集的数据存入FPGA内的RAM中,他们都不能解决大量数据的高速数据采集问题。

本文给出一种设计方案,也是利用FPGA作为DMA控制器,采集控制器和总线控制器。

该设计方案不仅在单片机系统中实现了高速数据采集,而且特别适用于采集大量数据的情况,从而解决了在单片机系统中较难解决的问题。

系统总体设计方案如图1所示。

该系统由单片机89C55,FPGA,RAM以及A/D转换器组成(其他外围接口及FPGA重载电路不做分析)。

基于FPGA和USB3.0的高速视频图像采集处理系统设计

基于FPGA和USB3.0的高速视频图像采集处理系统设计

摘要随着机器视觉的广泛应用,以及工业4.0和“中国制造2025”的提出,在数字图像的采集、传输、处理等领域也提出了越来越高的要求。

传统的基于ISA接口、PCI接口、串行和并行等接口的图像采集卡已经不能满足人们对于高分辨率、实时性的图像采集的需求了。

一种基于FPGA和USB3.0高速接口,进行实时高速图像采集传输的研究越来越成为国内外在高速图像采集研究领域的一个新的热点。

针对高速传输和实时传输这两点要求,通过采用FPGA作为核心控制芯片与USB3.0高速接口协调工作的架构,实现高帧率、高分辨率、实时性的高速图像的采集和传输,并由上位机进行可视化操作和数据的保存。

整体系统采用先硬件后软件的设计方式进行设计,并对系统各模块进行了测试和仿真验证。

通过在FPGA 内部实现滤波和边缘检测等图像预处理操作,验证了FPGA独特的并行数据处理方式在信号及图像处理方面的巨大优势。

在系统硬件设计部分,采用OV5640传感器作为采集前端,选用Altera的Cyclone IV E系列FPGA作为系统控制芯片,由DDR2存储芯片进行数据缓存,采用Cypress公司的USB3.0集成型USB3.0芯片作为数据高速接口,完成了各模块的电路设计和采集卡PCB实物制作。

系统软件设计,主要分为FPGA逻辑程序部分、USB3.0固件程序部分和上位机应用软件部分。

通过在FPGA上搭建“软核”的方式,由Qsys系统完成OV5640的配置和初始化工作。

由GPIF II接口完成FPGA和FX3之间的数据通路。

通过编写状态机完成Slave FIFO的时序控制,在Eclipse中完成USB3.0固件程序的设计和开发。

上位机采用VS2013软件通过MFC方式设计,从而完成整体图像采集数据通路,并在上位机中显示和保存。

整体设计实现预期要求,各模块功能正常,USB3.0传输速度稳定在320MB/s,通过上位机保存至PC机硬盘的图像分辨率大小为1920*1080,与传感器寄存器设置一致,采集卡图像采集帧率为30fps,滤波及边缘检测预处理符合要求,采集系统具有实际应用价值和研究意义。

高速公路监控系统软件的设计与实现

高速公路监控系统软件的设计与实现

高速公路监控系统软件的设计与实现一、需求分析高速公路监控系统软件的设计需求主要包括两个方面:一是实时监控高速公路上的交通情况,包括车流量、车速、车辆违章等信息;二是实时监控高速公路上的安全情况,包括交通事故、道路损坏等信息。

根据这些需求,我们需要设计一个具备数据采集、处理和显示功能的软件系统。

二、系统设计1. 数据采集高速公路上的数据主要通过传感器和监控摄像头来采集。

传感器主要用于采集车流量、车速、气象等数据,而监控摄像头用于采集车辆和交通情况的图像数据。

这些采集的数据需要通过网络上传到数据中心进行处理和存储。

2. 数据处理在数据中心,需要对采集到的数据进行处理,包括图像识别、数据分析等工作。

图像识别可以通过计算机视觉技术进行车辆和交通情况的识别,从而得到车辆的数量、车速等信息。

而数据分析可以通过统计和算法分析来得到公路上的安全情况。

3. 数据显示处理好的数据需要通过用户界面进行显示,以便相关人员对高速公路的情况进行监控和管理。

数据显示界面需要清晰直观地展示各项数据指标,并能够实时更新数据信息。

为了方便相关人员进行操作和管理,界面需要具备一定的交互性和可操作性。

三、系统实现高速公路监控系统软件的实现主要包括三个方面:数据采集系统、数据处理系统、数据显示系统。

数据采集系统需要采用传感器技术和监控摄像头技术进行数据采集和传输;数据处理系统需要具备图像识别和数据分析的算法技术;数据显示系统需要具备良好的用户界面设计和数据显示能力。

四、系统优化高速公路监控系统软件的优化主要包括两个方面:系统性能优化、用户体验优化。

系统性能优化需要不断优化数据采集、处理和显示系统的性能,提高系统的响应速度和稳定性。

用户体验优化需要不断改善用户界面的设计,提高用户对系统的使用舒适度和便利性。

1. 系统性能优化在数据采集系统中,可以采用更加先进的传感器和监控摄像头技术,以提高数据的采集速度和准确性。

在数据处理系统中,可以采用更加高效的图像识别算法和数据分析算法,以提高数据处理的速度和精度。

一种基于FPGA的高速图像采集及显示电路设计

一种基于FPGA的高速图像采集及显示电路设计
《 业 控 制计 算 机 ) 0 0年 第 2 工 21 3卷第 1 期 1
1 9

种基于 F G P A的高速图像采集及显示电路设计
De i f Hi —s e d Vi o Ac ust n An Dip a r utBa e o P sgn o gh— p e de q iio d i s ly Ci i c s d n F GA
选 用 的 接 收 芯 片是 DS 0 R 8 , 最 高 数 据 传输 速 率 可 以达 到 9 C 2 6其
该 F G 进 行 配 置和 验 证 , 试 表 明该 设 计 不仅 实现 了 图像 高 速 采 集和 显 示 , 使 图像 清 晰 、 PA 测 且 系统 稳 定 可 靠 。
关 键 词 :P F GA, Cl CP 总线 , 图像 采 集
Ab ta t s rc
Th si u e Ca Ln nera e nd e de gn s d m ik it f c a DVI o r al e i -s ed i a qust d t e i hgh pe vdeo c iion an diply.hi z i s a T s pap itodu es er nr c t e y tm of i a quiion nd h s se vdeo c st a diply a d i s a b se on PGA,h ws o F s o h w t s m pl m o e he a e dul ba ed s on Cam Lnk n e ce i it da an DVI s a o e d diply m dul wor d. d de An ba ed n s o CP bu ,i Cl shgh- ee i a da a ex h ge et e c sp d m ge t c an b we n ompu e an i tr d mag e ci ui wa r aied. EP 30 7 4 FP r t c s el z 2S F6 21 GA o t m p y i u e t n i d ery h de i . e es manfses h fAl Co an s s d o co fg an v i te er f sgnTh t t i t te e de i n tonl eaied i sgn o y r l z hgh—s ee vdeo a p d i cqust a d iion n diply, talo m a de ea ,y tm r i l i s a bu s de vi o cl rs se el e ab Ke wo d : P y r s F GA. Cl s, de a quiion CP bu vi o c st i

高速公路交通信息采集系统设计

高速公路交通信息采集系统设计

高速公路交通信息采集系统设计随着社会经济的快速发展和人们生活水平的不断提高,交通问题逐渐成为制约国家发展的重要因素之一。

在现代城市中,交通拥堵已经成为了人们生活中的一大烦恼,而高速公路交通信息采集系统的设计,就是为了解决这个问题。

本文将从设计的背景、设计的目标和设计的方案等方面,对高速公路交通信息采集系统进行探讨。

一、设计的背景随着城市化进程的加速,人口的大规模流动和车辆的快速增加,交通拥堵的问题越来越严重。

高速公路作为重要的交通设施,承载着大量的车流和人流,但是由于车辆数量的增加,导致高速公路的交通流量越来越大,交通拥堵问题日益严重。

同时,传统的高速公路交通管理方法已经不能很好地处理复杂的交通环境,迫切需要一种新的高效交通信息处理系统来更好地管理高速公路交通。

二、设计的目标高速公路交通信息采集系统的设计的目标,是帮助交通管理部门更好地处理交通信息,实现道路交通的科学管理。

具体地说,它可以实现以下几个方面的目标:1. 实现高速公路实时监控。

利用高精度跟踪技术,通过自动化的摄像头系统,实现对道路上的行车情况进行实时监测,为交通管理者提供实时的路况数据。

2. 提高交通安全水平。

通过对道路上的交通信息进行采集和处理,及时发现各种交通违规行为,并及时进行处理,提高交通规范度和安全水平。

3. 降低耗时和物力成本。

通过智能化的高速公路交通信息采集系统,自动化的完成各种交通信息的收集和处理,降低人力资源和物资投入成本,提高道路交通的效率。

4. 实现路况预测功能。

通过对历史数据和实时采集的数据进行分析,对未来的交通情况进行预测。

为交通部门提供预测数据,帮助其更好地制定管理决策。

三、设计方案高速公路交通信息采集系统的设计中,需要解决以下几个重点问题:1. 数据采集和处理高速公路交通信息的采集和处理,是系统设计的核心和难点。

通过高精度的摄像头和相关传感器,对道路上的车辆行驶情况进行实时监测,并通过智能化算法对各种信息(如车辆数量、速度、车型、车牌等)进行采集和处理,通过智能分析技术和大数据处理技术,对采集的数据进行分析和处理,生成管理人员所需要的各类报表和图表,达到及时监管和迅速反应的目的。

高速CCD图像采集存储系统的硬件设计

高速CCD图像采集存储系统的硬件设计

第30卷 第6期2007年12月电子器件Ch inese Jou r nal Of Elect ro n DevicesVol.30 No.6D ec.2007Design of High 2Speed CCD Ima ge D a ta A cquisition H ar d w ar e SystemL I A i 2li n g1,2,Z H A N G Bo 2heng 1,B IA N Ch ua n 2p in g11.Xi ’an Ins ti t ute of Opt ics an d P recisi on Mechanics ,S haanx i Xi ’an 710068,Chi na;2.Gra duate School of Chi nese Academy of Science ,B ei J i n g 100039,Chi naAbstract :A hi gh 2speed ima ge dat a acquisit ion system wa s propo sed .Because of t he large amount of CCD i mage dat a ,t he syst em adopt ed fi bre channel hard di sk to store t he data and fi nally achieve a hi gh speed of850MB/s.Now It ha s been well applied i n t he course of CCD image dat a acquisition.K ey w or ds :CCD Ca mera ;LVDS ;Camlink ;CL FC ;Fi bre Channel EEACC :7220高速CCD 图像采集存储系统的硬件设计李爱玲1,2,张伯珩1,边川平11.中国科学院西安光学精密机械研究所,西安710068;2.中国科学院研究生院,北京100039收稿日期22作者简介李爱玲(832),女,博士研究生,主要研究方向为遥感D 相机图像数据的采集与处理,@;张伯珩(2),博士生导师,主要研究方向为遥感D 相机电路设计摘 要:针对某高速CCD 相机图像数据量大的特点,设计采用L VDS 格式信号输出,转换成Camlink 格式后实现海量数据的高速、稳定传输,提出了一种新型的高速数据采集存储系统的设计方案,该方案采用Fibre Cha nnel 接口硬盘实现对图像数据的高速存储,最高存储速度可达850Mbyte/s ,现已在CCD 相机系统图像采集实验中得到应用.关键词:CCD 相机;LVDS ;Camlink ;CL FC ;Fibr e Channel 中图分类号:TN 911.73 文献标识码:A 文章编号:100529490(2007)0622145203 CC D 相机被广泛应用于光电扫描、空间遥感、非接触工业控制、天文星体跟踪、光学图象处理等领域,CC D 相机所获取的目标信息,是我们所需要的宝贵信息,对其所获取的图像数据进行实时采集、存储和处理,高速、高精度的大量获取目标数据并进行实时信号处理,对目标的检测和识别非常重要.目前国内已有很多科研机构具备自行开发基于PCI 总线采集卡的实力,但在海量数据采集卡的开发方面还有待发展.当前有一种发展趋势是利用成熟的F P G A 技术和大规模集成芯片技术组合,通过高速大容量的FIFO 或者双端口RAM 作为数据缓存器,从而实现数据的高速采集.这种采集卡一般都通过PCI 接口与计算机系统连接,卡上带有PCI 桥控制器,使得使用者能够通过计算机对采集卡方便的进行控制.还有一些采集卡甚至将DMA 控制器和SCS I 控制器等设备都集成在其中,可以将采集到的数据不经过计算机总线而直接存储到SCSI 接口或其他接口的高速硬盘中,真正实现了采集与存储的结合,并且不受计算机系统的限制[1].1 采集系统的设计实现CCD 图像数据的采集与普通视频信号的采集相比,其最大的特点是数据传输速率高,传输通道多.通用的CCD 图像数据采集方法是在计算机中插入高速数据采集卡,采集卡与CCD 相机之间通过点对点物理层接口(如RS 2422、RS 2485)以及其他的数据传输标准进行数据传输,高速数据采集卡接收到数据通过PCI 总线将数据写入计算机内存,然后利用采集卡的存储功能将数据通过IDE (电子集成驱动器)接口写入计算机硬盘.首先,物理层接口无法满足数据的传输速度;其次,传输通道的增多,引起传输导线数量增加,系统功耗、噪声也随之增大;再次,采用通过IDE:20070422:19CC lal op 1942CC .接口来存储数据的方式无法满足数据高速存储的要求,容易引起数据帧的丢失.因此采用新的技术解决多通道、高速CCD图像数据采集成为必然趋势[2].C amlink接口技术为解决这一瓶颈问题提供了可能.本文通过应用Camlink接口技术,提出了一种适用于高速、海量CCD图像数据的采集系统.通过调试,该系统运行正常,完全能满足图像数据稳定、高速传输的要求,并实现图像数据的高速存储.在本系统中,CCD相机输出的数字信号为4通道8bi t并行同步L VDS格式数据,数据时钟为25 MHz,每通道的数据量58.01~87.46Mbyt e/s,如此高的数据吞吐量要求系统设计具有高速传输的特性.根据以上分析要求,设计了采集系统的硬件结构框图如图1所示.图1 采集系统结构框图如图2所示,CCD视频处理电路差分输出采集系统所需的像元时钟DCL K、行同步LVAL等2路信号和4路8bit图像数据,经由MLC(LVDS2Cam2 Li nk信号转换器)转换成符合采集卡接口标准的CamLink Medi um信号格式.然后在CL FC采集卡接口处,该CamLi nk格式的输入数据经过CL FC接收后可以不经过PCI总线,而是直接在磁盘控制器的控制下,存储到Fi ber Cha nnel接口硬盘,使得存储和实时显示同时进行成为可能.通过应用程序可以实现实时显示图像功能,也可以将已存到F C硬盘中图像数据导出到计算机硬盘进行处理和应用.图2 输出信号时序图1.1 数据传输设计Camlink接口采用美国Nat io nal Semiconduc2 tor公司的Cha nnel li nk技术作为基础,Channel 技术是低电压差分信号LVDS技术在数字领域的最新成果,它使用并行2串行的发送和串行2并行的接收,数据传输率可以达到38G如图3所示,发送端将28bit的CMO S/TTL数据转换成4路L VDS数据流,第五路LVDS数据流传送稳定的锁相时钟信号.每一个时钟周期,完成一次28bi t数据的采样和传输.在接收端,数据流被还原为28bi t 的CMO S/TTL数据,接收和发送完全同步.图3 Channel link标准接口模块电路图Camli nk采用数据线复用的方法,实实在在地减少了传输电缆的导线数目.这样可以使电缆加工容易,屏蔽要求降低,电缆接插件体积减小、强度增加,电缆价格也随之降低.单个的Ca mli nk芯片组可以传送高达2.38Gbit/s数据带宽,Camli nk标准允许采用两个这样的芯片组,如此高的数据传输能力不仅能满足目前应用,而且在将来相当长时间内不会落后.在本系统中,为了实现图像数据的高速稳定传输,我们充分利用了Camli nk的以上优点,设计了L VDS2Camlink信号转换器.在本系统中,转换器MLC的结构图如图4所示,ML C首先接收来自信号模拟源的LVDS输出图4 转换器硬件结构图信号,经过LVDS接收器件DS90C032,还原为TTL 信号.Camli nk驱动芯片选用National Semic onductor 公司的DS90CR287,它的输入信号和电源的电压要求均为3.3V,为了做到两种信号的电平匹配,在中间增加了多片IDT74LVCC4245A总线驱动器.I DT74LVCC4245A有两个电源输入端,一端只能加5 V电源,另一端可以加5V或33V,因此当它一端的输入电平是5V信号时,另一端可以是5V或33V 信号I D T LV5是双向器件,在接收端也可6412电 子 器 件第30卷link2.bit/s... .74CC424A以再转换成5V 电平的信号.经过DS 90CR287后,输出的Channel link 信号,最终通过符合Camlink 标准的MDR26接口连接到采集卡.1.2 数据的采集与存储为了保证CCD 图像数据在不出现丢帧现象的同时以更高速度被存储到硬盘,我们采用了I O Indus 2t ries 公司最新的采集卡DVR Express CLFC ,它的突出特点是采用FC 接口硬盘对图像进行存储,最高可以达到850Mbyte/s.其硬件结构如图5所示.图5 CL FC 采集卡结构框图通过符合Camli nk 标准的MDR26接口,Cam 2link 格式的图像数据在接口处被还原为T TL 信号,F PGA 集成了缓存、电平转换、DMA 控制器等功能,完成和PCI 总线之间的数据和控制命令传递.图像数据直接在磁盘控制器的控制下,存储到Fi ber Channel 接口硬盘,这样可以大大的节省图像数据对PCI 总线的占有率,从而提高整个采集系统的速度.FC 技术的应用,使得本系统的采集速度与以往的采集系统相比较得到很大提高.Fiber Channel 光纤通信(FC )是一种通过光纤实现的基于块的数据流传输方式,传输率可达1G bit/s ,多模光纤传输距离为500m ,单模光纤距离为1km.Fiber Channel 技术的最大特点是将网络和设备或服务器和设备的通信协议与物理传输介质隔离开,这样多种协议可以在同一个物理连接上同时传送.FC 传输速度快,它可以提供接近于设备处理速度的吞吐量,提供从266Mbit/s 到4G bit/s 的传输带宽,支持超过10km 的传输距离;它是一种通用传输机制,支持HIPPI\IPI\SCSI \IP\ATM 等多种高级协议.FC 技术对于视频图像和海量数据的存储及传输极为理想,现已成为视频传输与存储领域具有强大生命力的新技术.与SCSI 硬盘接口相比较,FC 接口硬盘有以下优点:Fiber Channel 通道比SCSI 总线有更巨大的存储容量;与SCSI 接口相比,Fiber Channel 接口允许使用更长的电缆,而接口体积更小[6] 根据以上分析,我们对存储部分的设计最终采用了FC 接口技术和RAID3磁盘阵列技术.根据数据量需要,采用了4块日立公司最新推出的FC 接口硬盘组成磁盘阵列,实验证明,存储部分设计很好地满足了整个系统的需要.图6 辨别率靶的采集图像2 结论本系统通过调试,已成功地应用于某高速CCD 相机系统的图像数据采集,如图6所示为该系统采集到的CC D 相机室内拍摄辨别率靶的图像.通过软件对存储数据的恢复分析,数据正确,无丢帧现象,无数据错误.系统通用灵活,稳定可靠,能满足多种CCD 图像数据的实时采集,为多通道高速CC D 图像数据的实时采集提供了解决方案,因而有着广泛的应用前景.参考文献:[1] 李爱玲.数字图像信号的模拟与采集技术研究.中国科学院西安光学精密机械研究所,硕士毕业学位论文,2006.[2] 王琳琅,张伯珩,边川平.多通道、高速CCD 图像数据的实时采集,中国有线电视.2004.12.22224.[3] 达选福,张伯珩,边川平.高速CCD 图像数据存储技术.光子学报,2003.32.139321395.[4] 王冰,靳学明.LVDS 技术及其在多信道高速数据传输中的应用.电子技术应用,2003.3.55256.[5] 林强,熊华刚,张其善.光纤通道综述,计算机应用技术.2006.2.9213.[6] 杨进,魏轶伟,何宁,熊剑平,贾惠波.基于光纤通道的高速数据传输系统主机接口设计,计算机工程与应用.2002.22.1372138,176.[7] 李春兰,陈宇,丁铁夫.探地雷达中PC I 总线高速数据采集卡的设计.电子工程师.2004.7.4223.[8] Camera Li nk Technolo gy B ri ef.Docu m ent ID Number :DD000601,Revi s io n Date :March 28,2001.Subj ect t o Change Wit hout No tice ,Bas l er Vi s io n Technologies.7412第6期李爱玲,张伯珩等:高速CCD 图像采集存储系统的硬件设计.。

毕业设计--基于单片机的高速数据采集系统设计

毕业设计--基于单片机的高速数据采集系统设计

目录1.绪论 (1)1.1 课题研究的意义 (1)1.2 数据采集技术的发展历程和现状 (1)1.3 本文的研究内容 (2)1。

4 系统设计涉及的理论分析 (2)2.系统设计 (4)2.1方案选择 (4)2。

2系统框图 (5)3.单元电路设计 (6)3.1信号调理电路 (6)3.2高速A/D模块 (7)3。

3 FPGA模块设计 (8)3。

4MCU模块设计 (8)3.5数据采集通道总体原理图 (9)3.6硬件电路总体设计 (9)4。

软件设计 (10)4。

1 信号采集与存储控制电路工作原理 (10)4.2 信号采集与存储控制电路的FPGA实现 (11)4.3 原理图中的各底层模块采用VHDL语言编写 (12)4。

3。

1三态缓冲器模块TS8 (12)4.3。

2分频器模块fredivid (13)4.3.3地址锁存器模块dlatch8 (14)4。

3.4地址计数器模块addrcount (15)4.3.5双口RAM模块lpm_ram_dp (16)4.4 数据显示模块设计 (18)4。

4.1 主程序 (18)4。

4。

2 INT0中断服务程序 (19)4。

4.3 INT1中断服务程序 (19)4。

5软件仿真 (20)4.5.1三态缓冲器模块TS8 (20)4。

5.2分频器模块fredivid (20)4。

5。

3地址锁存器模块dlatch8 (20)4.5。

4地址计数器模块addrcount (21)5。

系统调试 (21)5.1 单片机子系统调试 (21)5。

2 FPGA子系统调试 (22)5.3 高速A/D模块的调试 (22)6 总结 (22)致谢 (22)参考文献 (23)附录 (25)高速数据采集系统设计摘要:随着数字技术的飞速发展,高速数据采集系统也迅速地得到了广泛的应用.在生产过程中,应用这一系统可以对生产现场的工艺参数进行采集、监视和记录,为提高生产质量,降低成本提供了信息和手段。

在科学研究中,应用数据采集系统可以获取大量的动态数据,是研究瞬间物理过程的有力工具,为科学活动提供了重要的手段.而当前我国对高速数据采集系统的研究开发都处于起步阶段,因此,开发出高速数据采集系统就显得尤为重要了。

一种高速图像采集装置的设计

一种高速图像采集装置的设计


种 高 速 图像 采 集装 置 的设 计
李 长 乐 , 臧 希 茹 , 赵 杰
( 哈尔 滨 工 业 大 学 机 器 人 研 究 所 , 龙 江 哈尔 滨 1 0 8 ) 黑 5 0 0
摘 要 : 设 计 了一 种 基 于 NI S I 软核 处 理 器为 系统 控 制 核 心 , 高速 线 阵 C D 为 图像 采 集 器 件 、 S R O I 以 C 以 D AM
De i n a H i h— Spe d I a le tn sgn o g e m geCo l c i g Sys e tm
LI a g l ,ZANG — z e Ch n — e Xi h ,ZH AO i Je
( b t sa c n tt t ,H a bnI siu eo Teh oo y,Ha bnH eln Ja g 1 0 8 Ro o e rh I siu e Re ri n tt t f c n lg r i io g in 5 0 0,P. R. C i a hn )
实现 了一 种 高速 图像 采 集 装 置 , 且 简化 了 系统 的 硬 件 结 构 , 高 了装 置 的 实 时性 。 并 提
关 键 词 : 高 速 线 阵 CC FP D; GA; 图像 采 集 中 图 分 类 号 : TN9 1 7 1 . 3;TP 7 . 242 文 献 标 识 码 :A
维普资讯
第 2 卷 第 3 0 期
20 0 7年 9月










Hale Waihona Puke VO1 .20N O.3
J OURNAL OF PETROCHEM I CAL UNI VERS TI I ES

高速数据采集系统设计说明书

高速数据采集系统设计说明书

基于FPGA和SoC单片机的高速数据采集系统设计一.选题背景及意义随着信息技术的飞速发展,各种数据的实时采集和处理在现代工业控制和科学研究中已成为必不可少的部分。

高速数据采集系统在自动测试、生产控制、通信、信号处理等领域占有极其重要的地位。

随着SoC单片机的快速发展,现在已经可以将采集多路模拟信号的A/D转换子系统和CPU核集成在一片芯片上,使整个数据采集系统几乎可以单芯片实现,从而使数据采集系统体积小,性价比高。

FPGA为实现高速数据采集提供了一种理想的实现途径。

利用FPGA高速性能和本身集成的几万个逻辑门和嵌入式存储器块,把数据采集系统中的数据缓存和控制电路全部集成在一片FPGA芯片中,大大减小了系统体积,提高了灵活性。

FPGA 还具有系统编程功能以及功能强大的EDA软件支持,使得系统具有升级容易、开发周期短等优点。

二.设计要求设计一高速数据采集系统,系统框图如图1-1所示。

输入模拟信号为频率200KHz、Vpp=0.5V的正弦信号。

采样频率设定为25MHz。

通过按键启动一次数据采集,每次连续采集128点数据,单片机读取128点数据后在LCD模块上回放显示信号波形。

图1-1 高速数据采集原理框图三.整体方案设计高速数据采集系统采用如图3-1的设计方案。

高速数据采集系统由单片机最小系统、FPGA最小系统和模拟量输入通道三部分组成。

输入正弦信号经过调理电路后送高速A/D转换器,高速A/D转换器以25MHz的频率采样模拟信号,输出的数字量依次存入FPGA内部的FIFO存储器中,并将128字节数据在LCD模块回放显示。

图3-1 高速数据采集系统设计方案四.硬件电路设计1.模拟量输入通道的设计模拟量输入通道由高速A/D转换器和信号调理电路组成。

信号调理电路将模拟信号放大、滤波、直流电平位移,以满足A/D转换器对模拟输入信号的要求。

2.高速A/D转换电路设计五.FPGA模块设计本设计的数据缓冲电路采用FIFO存储器。

CCD图像采集解决方案

CCD图像采集解决方案

CCD图象采集解决方案一、概述CCD(Charge-Coupled Device)是一种常见的图象传感器,广泛应用于工业、医疗、安防等领域。

CCD图象采集解决方案是指通过使用CCD传感器和相关设备,实现高质量、高效率的图象采集和处理。

二、解决方案的组成部份1. CCD传感器:CCD传感器是图象采集的核心部件,负责将光信号转化为电信号。

传感器的选择应根据具体应用场景的需求来确定,包括分辨率、灵敏度、动态范围等参数。

2. 光学系统:光学系统用于将光线聚焦到CCD传感器上,包括镜头、滤光片等组件。

选择合适的光学系统可以提高图象的清晰度和色采还原度。

3. 采集设备:采集设备负责将CCD传感器采集到的电信号转化为数字信号,并进行处理和存储。

常见的采集设备包括图象采集卡、相机模块等。

4. 控制系统:控制系统用于控制CCD传感器和采集设备的工作,包括触发信号的生成、参数设置等。

控制系统可以通过软件或者硬件的方式实现。

5. 图象处理软件:图象处理软件用于对采集到的图象进行处理和分析,如去噪、增强、测量等。

根据具体需求,可以选择使用现有的图象处理软件或者自行开辟。

三、解决方案的工作流程1. 准备工作:确定应用场景和需求,选择合适的CCD传感器和光学系统,并搭建好采集设备和控制系统。

2. 图象采集:通过控制系统发出触发信号,启动CCD传感器进行图象采集。

传感器将光信号转化为电信号,并传输给采集设备。

3. 数字信号转换:采集设备将传感器采集到的电信号转化为数字信号,并进行采样和量化。

采集设备可以根据需求进行参数设置,如暴光时间、增益等。

4. 图象处理:将采集到的数字信号传输给图象处理软件,进行图象处理和分析。

根据具体需求,可以进行去噪、增强、边缘检测、目标识别等操作。

5. 结果输出:图象处理软件将处理后的图象结果输出,可以保存为图象文件或者实时显示在监视器上。

根据具体需求,还可以将结果进行存储、传输或者打印。

四、解决方案的优势和应用领域1. 高质量图象:CCD传感器具有高灵敏度和低噪声特性,能够采集到高质量的图象。

一种高速光纤图像实时采集卡的设计(本期优秀论文)

一种高速光纤图像实时采集卡的设计(本期优秀论文)

1板 卡 结 构 简 述
本 文基 于 某 型号 的光 电经 纬仪 改 造 项 目 . 出一 提 种 基于 F G 的光纤 图像 采集 方案 .其 原理 框 图如 图 PA
1 示。 所
干扰、 传输 距 离 长 、 格 低廉 等 优 点 , 常符 合 应 用 环 价 非 境复 杂 的光 电经 纬仪 的要求 各 种接 口丰 富 的光 电转 换模 块 的 出 现 . 加速 促进 了光纤 通 信 技 术在 图像 信 号
窝 国
中文 核 心 期 刊


陈利杰 l,周维超 1 ,吴钦章
( . 国科学 院 光 电技术 研 究所 , 都 6 0 0 2 中国科 学 院 研 究 生院 , 1中 成 1 2 9;. 北京 1 0 3 ) 0 0 9
摘 要: 图像观测的需要 , 据 基于高速 串行通信机制 , 利用光纤通信技术及 P IE PE S C X RS 技术 , 实现 高速
光纤图像的实时采集显示。 着重讲述 了高速 串 行光纤信息的解析及收发, 同时介绍 了桥芯片本地总线读 写操作实现过程。 测试结果表明, 该设计能满足高速光纤图像实时采集的要求 , 工程使用反馈表现 良好 。
关键 词 : 纤传 输 ; C X R S ; P A 串行 通信 光 P IEP ES FG ;
C E ii r H U We ca WUQ nzag H NL-e , O i h o, i hn j Z — -
(. s tt o pis n l t nc , hn s c d myo in e, h n d 2 9C ia 1 n t ue f t dE e r isC iee a e f ce c s e g u6 0 ,hn ; I i O ca co A S C 1 0

高速图像采集和传输系统设计

高速图像采集和传输系统设计

亮 度 信号 . 在 F G 并 P A中进 行 图像 的预 处 理 . 以在 可
F G 中进 行 二 值 化 、o e 边 缘 分 割 、 PA Sb l 中值 滤 波 , 处 将 理 后 的亮 度 信 号 送 入 A M 模 块 由 于 IL 9 8 R S 5 8 5产 生

据采集模 块 。设计结 合机器 视觉 的这两 大发展趋 势 ,
随 着 工 业 和 计 算 机 技 术 的 发 展 . 采 用 单 片 机 或 只
12 P . F GA 模 块 Atr l a公 司 的 E 1 1 0系 列 是 性 价 比较 高 的 可 e PK0
者 D P进 行 控 制 的 传 统 图 像 采 集 系 统 . 已 经 不 能 满 S

收 稿 日期 :0 9 O 2 修 稿 日期 :0 9 1 —1 2 0 —1 一 8 20 — 1 5 作 者简介 : 陈增 辉 (9 3 , , 东梅 州 人 , 士 研 究 生 , 究 方 向 为 智 能 工 程 和 嵌 入 式 系 统 1 8 一) 男 广 硕 研


@ M R OPT8 1 OE ̄C  ̄ 2 2 D MU
统的应 用领 , 有 实际的使 用价值 。 具
关键词 : 器视 觉 ; P 机 F GA; ARM ;数 据 采 集
0 引

Q C F模 式和 S C Q I C B接 V ,并 具有 自动 曝光 控制 、 I 自
动增 益控制 、 自动 白平 衡 、 自动 带 通 滤 波 、 自动 黑 级 校 准 等功 能 。O 95 V 6 0的 最 大 帧 速 率 在 V A 格 式 时 为 G
开 发 案 例
——. ..... ..... ... .. ..... ..... ..... ...— .... ..... ..... ...

基于FPGA+ARM的高速图像数据采集板的设计

基于FPGA+ARM的高速图像数据采集板的设计

A R M之 间的数据采集接 口设计 方案,并 实现 了l J i n u x 操作 系统 下F P G A 设备 的中断处理程序 的开发 。并通过设计千兆 以太 网接 口实现 了图像数据的实时远程传 输。
【 关 键 词 】AR M ;F P GA; 千 兆 以 太 网 ;嵌 入 式l i n u x; 中断
1 . 概 述
随 着 图 像 处 理 技 术 的 快 速 发 展 , 图 像 采 集 处 理 系 统在 提 高 工 业 生 产 自动 化 程 度 中 的 应 用 越 来 越 广 泛 。 本 文 结 合 实 际 系 统 中 的 前 端 图像 处 理 和 图 像 数 据 传输 的 需要 ,充分利 用A R M 的灵活性 和F P G A 的 并 行 性 的特 点 , 设 计 了一 种 基 于A R M + F P G A 的 高 速 图像 数 据 采 集 传 输 系 统 。所 选 用 的A R M 体 系结 构 是 3 2 位 嵌 入 式 R I S C 微 处 理 器 结 构 , 该 微 处 理 器 拥 有 丰 富的指令集 且编程灵活 ;而F P G A  ̄ J J 在 速 度 和 并 行 运 算 方 面 有 很 大 优 势 ,适 合 图 像 处 理 的 实 时 性 要 求 ; 并 且 通 过 于 兆 以 太 网 接 口 实 现 了采 集 板 与 上 位 机 之 间 图 像 数 据 的高 速 远程 传 输 。 2 . 硬 件 设 计 方 案 2 . 1系 统 总 体设 计 本 设 计 采 用 的A R M 芯 片 为 三 星 公 司 的 ¥ 3 C 2 4 4 0 A 、F P G A 芯片为X i 1 i n x 公 司 生 产 的S p a r t a n 系 列的¥ 3 C 5 0 0 E 芯 片 , 系 统 组 成 还 包括 千兆 以太 网控 制 芯 片 A X 8 8 1 8 0 、 千 ̄ 6 P H Y 芯片8 8 E 1 1 1 1 、存 储 器 、 嵌 入 式 L i n u x 、 网络 驱 动 程序 等 ( 如图1 所 示) 。 本设计 的主控 芯片¥ 3 C 2 4 4 0 A 是 基 于 A R M 9 2 0 T 核的1 6 / 3 2 位R I S C 微 处理 器 ,采 用 了0 . 1 3 u m 的C M O S 标 准 宏 单 元 和 存 储 器 单 元 ,运 行 频率 高 达5 0 0 M H z 。A P d V I 9 2 0 T 实现 了删 ,A 惦A B U S S U H a r v a r d 高速 缓 冲体 系 结 构 构 。 这 一 结 构 具有 独 立 的 1 6 K B 指 令 C a c h e S g 1 6 K B 数 据C a c h e 。每 个 都 是 由 具有 8 字 长 的行 组 成 。通 过 提供 一套 完 整 的通 用 系统 外 设 ,¥ 3 C 2 4 4 0 A 减 少 整体 系 统 成本 和 无 需配置 额 外 的组 件 。它 主 要面 向手持 设 备 以及 高性 价 比、低 功耗 的应 用 ,具有 非 常丰 富 的 片上 资源 。 F P G A 芯 片s 3 C 5 O O E 主要 用 于 图像传 感器 的控 制 、 图像 数据 的缓存 及 外 围芯 片 时序

一种基于ARM+FPGA的高精度数据采集系统设计

一种基于ARM+FPGA的高精度数据采集系统设计

一种基于ARM+FPGA的高精度数据采集系统设计
 1、引言
 随着图像处理、工业控制、无线通信等领域的飞速发展,对数据采集系统的速度、精度等性能要求也越来越高。

这些要求都对数据采集系统的设计和实现提出了新的挑战。

目前数据采集系统的设计方案通常分为以下几类:
 1)以微处理器单一控制芯片和A/D转换器形式为主,该设计方案简单,在对性能要求不高的应用场合为了降低成本甚至可以采用集成A/D转换器的微处理器。

 2)采用通用计算机配置数据采集卡的方式,通常需要开发计算机端应用程序,可以完成复杂的计算,但不同的采集卡相应的驱动程序不同,如果需求改变需要更换采集卡时,相应的应用程序也需要重新开发。

因此,该设计方案通用性差,实时性不高。

 3)以ARM和FPGA或DSP和FPGA组合方式作为采集系统的核心,ARM处理器适合控制领域,DSP处理器适合信号处理领域,FPGA器件由于其自身特点,适合高速并行采集与处理领域,具有ARM或者DSP等处理器。

一种多通道高速并行数据采集系统的设计与实现

一种多通道高速并行数据采集系统的设计与实现
数字处理单元 I ;数字图象存储器 4
图象 数据通道
广泛 的应 用 。 目前 已经大 量 使用 在 航 空 、航 天 、
军工领 域 中的有 关 飞行器 安全 检测 [ 1 ] ,以及 飞机
蜂窝 复合材 料 的检测 等方 面 。但在 应 用 中 ,该 技
术 虽 然体现 了一 定 的优越 性 .同时也 存在 一 些 问 题 。 由于采 用该方 法 必须 依靠 温 差 ,飞机 着 陆须 尽快 检查 ,时 间越 长 ,图像越 模糊 ,因此 ,要及 时获 得检测 数 据 .就 必须 设计 一个 具 有 高速 、实 时性 的红外 图象 数 据采 集 系 统 来 减少 检 测 误 差 。 根据该 系统 的特点 ,本文 采用 D P F G S + P A结 构设 计 的红外 图像采 集 系统满 足 了高 速数 据采 样 、快 速 运够 识 别 的汇 编 语 N I语 Sf  ̄
收 稿 日期 : 0 6 0 — 1 2 0 — 6 2
言代 码 ,这 使 得 D P 用 程 序 的开 发 如虎 添 翼 。 S应
3 电 子 元 器 件 主 用 2 0 .0 删 .h a C .e 2 0 61 C i E D nt n
行数据 采 集的设 计思路 。
关键 词 :数 据采 集 ;F G P A;数 据压 缩 ; D P S ;多通 道 ;高速 并行
0 引言
红外 热 成像 检测 技术 在检 测 领域 正 日益 得 到
标 提取 。其 系统 原理 如 图1 所示 。
,黑 __ ■■ __ ■_ ,_ ■l _ ■
据进行 处理 。
11 D P 片的选 择 . S芯
要 完成数 据 和信 息 的收集 和转 发 功 能 ,而用 现场

基于ADC083000的高速数据采集系统设计

基于ADC083000的高速数据采集系统设计

基于ADC083000的高速数据采集系统设计王军【摘要】文章以超宽带雷达侦察接收机信号处理为应用背景,论述了一种基于ADC083000的高速数据采集系统的设计方案.该方案以Xilinx公司Virtex-5系列FPGA为平台,控制高速模数转换器ADC083000,完成雷达信号的带通采样、数据传输、存储、信号处理功能,并选取高速DDR2作为存储设备,解决海量数据存储问题.该方案实现了软件、硬件设计,测试结果验证了方案的可行性.【期刊名称】《实验科学与技术》【年(卷),期】2010(008)002【总页数】4页(P8-11)【关键词】超宽带雷达;高速数据采集;ADC083000模数转换器;现场可编程阵列【作者】王军【作者单位】电子科技大学电子工程学院,成都,610054【正文语种】中文【中图分类】TN971.1;TN957.524现代高科技战争对雷达装备的功能和性能提出了越来越高的要求。

传统雷达信号带宽较窄难以提供更多的目标信息,因此超宽带雷达技术得到了日益广泛的应用。

高速数据采集和实时信号处理是超宽带雷达的关键技术。

超宽带雷达的相对带宽很大,且要求在此带宽内系统的幅频特性和相频特性必须满足严格的要求,因此超宽带雷达系统实现的难度比较大[1]。

高速、高精度数据采集与高速数据传输是制约超宽带雷达信号处理的关键因素之一。

本文主要研究超宽带雷达的超高速数据采集和信号处理技术,提出了一种以FPGA为核心控制器,DDR2为外部存储器,基于ADC083000的高速数据采集系统。

将ADC083000芯片输出的超宽带雷达信号数据经现场可编程阵列(Field Programmable Gate Array, FPGA)预处理后存入外部DDR2中,以便后续处理。

同时利用RS232接口与PC机通信,方便数据的进一步分析与处理,系统实现了硬件、软件设计,最后给出了测试结果。

超宽带雷达侦察接收机接收频率范围为114~216 GHz,瞬时带宽为112 GHz,信号带宽为200 MHz的雷达照射信号,系统根据带通采样定理,利用ADC083000对其进行采样,采样率为217 GHz[2]。

一种高速图像采集存储系统的设计

一种高速图像采集存储系统的设计

l 系统结构
高速图像采集存储 系统从硬件功能上 , 以划分 可 为 5部分 : 系统控制主板——F G 现场可编程 门阵 P A( 列板 )U B . 口 ( P 、S 20接 板 C U板) 液晶控制面板 、 、 电源
系列芯片, A e 公 司最新一代 S A 是 hr a R M工 艺中等规 .
速、 大容量 图像 采 集和 存储 系统 , 出 了采 用 乒乓 方 式 对硬 盘 进 行 读 写控 制 以提 高 系统 存 储 速 度 , 提 系
统可以脱机 工作也可以联机工作。通过 U B . 数据总线, S20 可以完成 系统与计算机之 间的数据和命令
通 信 。在 该 系统 的基础 上 , 出 了以硬 盘 阵列 为存储 介质 的数据 采 集 与存储 。 提 关键 词 : 图像 采 集存储 系统 ;乒乓 方式 ;IE硬 盘 D
( .山东理工大学计算机科学与技术学院, 1 山东省淄博 市 254 ; 50 9 2 .西安电子科技 大学 53实验室, 0 陕西省西安市 707 ) 10 1

要 : 绍 了一 种基 于 F G 现 场可 编程 门阵 列 ) 制的 双 I E 集成 驱动 器 电子设 备 ) 盘 高 介 P A( 控 D ( 硬
模块以及 IE 集成驱动器电子设备) D( 硬盘存储器。原
理框图如图 1 。
电源模块
I 笙 瑟
液晶控制面板l
括图像数据的输入输出接 口控制 、 外部 动态存储器的 控制 、 E接口的控制 、 I D 外部 C U接 口的控制等。 P 12 S 2 0 口板 ( P . U B . 接 C U板 ) U B . 口板主要 由 U B . S 20接 S 2 0控制芯片 以及程

高速图像数据采集与处理系统的硬件设计

高速图像数据采集与处理系统的硬件设计

唐红雨陈迅随着科学技术的高速发展,图像数字化处理的应用领域也越来越广泛。

数据量大是图像数据的一大特点,数据传输速率高是其另一个特点,特别是对于一些转瞬即逝的图像信息,常规的软件不能及时处理,因此必须要采用硬件设备来加速图像处理过程。

DSP近些年来发展迅速,它具有一系列优点使得高速图像处理系统广泛采用DSP来实现。

本系统的核心器件为DSP和可编程器件CPLD:CPLD在系统中主要用于控制方面,而DSP主要用来进行图像数据的处理。

硬件部分是系统的一个重要部分,硬件电路中器件的选择以及器件的功能和特性,尤其是器件的速度、稳定性、功耗等直接影响着系统实时性的实现以及它的性能。

TMS320C5410芯片特点数字信号处理器是利用专门或通用的数字信号处理芯片以数字计算的方法对信号进行处理,具有处理速度快、精确、抗干扰能力强及可靠性高等优点,满足对信号实时处理及控制的要求。

本系统中采用的DSP芯片是美国德州仪器公司推出的定点数字信号处理芯片TMS320C5410,它具有改进的哈佛结构,丰富的指令集、较大的存贮空间和较快的运算速度,多流水线操作等优点,广泛用于图像处理、语音分析、通信工程等领域。

在DSP处理中,频率为40MHz的晶振接到C5410的X2/CLKIN引脚(X1空着不接),则C5410内部的机器周期约为25ns,当外部存储器的存取时间小于25ns时,C5410可进行零等待的存取。

C54x内部的相同步逻辑PLL(PhaseLockedLogic)兼有频率放大和信号提纯的功能,用高稳定的参考振荡器锁定,可以提供高稳定的频率源。

所以,C54x的外部频率源的频率可以比CPU的机器周期CLKOUT的速率低,这样就能降低因高速开关时钟所造成的高频噪声。

系统硬件设计如图1所示,DSP之前的硬件处理是一个视频图像的采集过程,图像数据具体处理的实现是在DSP中进行的。

视频图像信号经摄像头输入后,分两路进行视频预处理和信号放大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种高速图像数据采集板的设计方案
1.概述
随着图像处理技术的快速发展,图像采集处理系统在提高工业生产自动化程度中的应用越来越广泛。

本文结合实际系统中的前端图像处理和图像数据传输的需要,充分利用ARM的灵活性和FPGA的并行性的特点,设计了一种基于ARM+FPGA的高速图像数据采集传输系统。

所选用的ARM体系结构是32位嵌入式RISC微处理器结构,该微处理器拥有丰富的指令集且编程灵活;而FPGA则在速度和并行运算方面有很大优势,适合图像处理的实时性要求;并且通过千兆以太网接口实现了采集板与上位机之间图像数据的高速远程传输。

2.硬件设计方案
2.1 系统总体设计
本设计采用的ARM芯片为三星公司的S3C2440A、FPGA芯片为Xilinx公司生产的Spartan系列的S3C500E芯片,系统组成还包括千兆以太。

相关文档
最新文档