初一数轴动点问题练习题
七年级数轴动点经典例题
七年级数轴动点的经典例题
题目:在数轴上,点A、B、C分别表示-20、-10、10,甲、乙、丙三个动点同时从A、B、C三点出发,沿数轴负方向运动,已知甲的速度是每秒1个单位长度,乙的速度是每秒2个单位长度,丙的速度是每秒3个单位长度,当丙追上乙时,甲是否追上了乙?为什么?
解析:
确定初始位置:首先明确三个点的初始位置,A在-20,B在-10,C在10。
计算丙追上乙的时间:
丙和乙的相对速度是 3−2=1 个单位长度/秒(因为两者都是向数轴的负方向运动)。
丙和乙的初始距离是 10−(−10)=20 个单位长度。
所以丙追上乙所需的时间是 120=20 秒。
计算在20秒内甲和乙的移动距离:
甲在20秒内移动了 1imes20=20 个单位长度。
乙在20秒内移动了 2imes20=40 个单位长度。
确定20秒后甲和乙的位置:
甲的新位置是−20−20=−40。
乙的新位置是−10−40=−50。
判断甲是否追上了乙:
比较甲和乙的新位置,发现它们并不相同(−40=−50)。
因此,甲没有追上乙。
答案:甲没有追上乙。
在丙追上乙的20秒内,甲移动了20个单位长度到达-40,而乙移动了40个单位长度到达-50。
因此,甲和乙的位置仍然不同。
解题思路总结:
确定动点的初始位置和速度。
根据相对速度和初始距离计算追及时间。
使用追及时间计算各动点的移动距离。
更新动点的位置并比较是否追及。
本题考查了数轴上动点的追及问题,需要灵活运用速度、时间和距离之间的关系进行计算。
七年级初一数学数轴动点类型题库(可直接打印做题)
1、已知数轴上有两点A,B 对应的数分别为-4,8.(1)如图1,如果点P 和点Q 分别从点A,B 同时出发,沿数轴负方向运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒6个单位。
图一①A,B 两点之间的距离为:____________②当点P 和点Q 两点相遇时,点P 在数轴上对应的数是_________.③求点P 出发_____秒后,与点Q 之间的相距4个单位长度。
(2)如图2,如果点P 从A 出发沿数轴的正方向以每秒2个单位的速度移动,点M,N 分别是线段AP ,BP 的中点,在运动过程中,线段MN 的长度是否为定值。
如果变化,请说明理由:如果不变,请直接写出线段MN 的长度.图二2、已知在纸面上有一数轴(1)折叠纸面,使表示的点1与-1重合,则-2表示的点与______表示的点重合(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数______表示的点重合②3表示的点与数_____表示的点重合③若数轴上A,B 两点之间的距离为9(A 在B 的左侧),且A,B 两点折叠后重合,此时点A 表示的数是______,点B 表示的数是_______(3)已知数轴上点A 表示的数是a,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,求a 的值.A0 B A3、如图,在数轴上有两个长方形和ABCD 和EFGH ,这两个长方形的宽都是2个单位长度,长方形 ABCD 的长AD 是4个单位长度,长方形EFGH 的长EH 是8个单位长度,点E 在数轴上表示的数是5,且E 、D 两点之间的距离为12。
(1)填空:点H 在数轴上表示的数是_____,点A 在数轴上表示的数是_____。
(2)若线段的AD 中点为M ,线段EH 上有一点N ,EN=41EH ,M 以每秒4个单位的速度向右匀速运动,N 以每秒3个单位的速度向左运动,设运动时间为x 秒,求当x 多少秒时,OM=ON 。
初中数学数轴动点问题含答案
初中数学数轴动点问题含答案一.选择题(共10小题)1.如图,点A,P,Q,B在一条不完整的数轴上,点A表示数﹣3,点B表示数3.若动点P从点A出发以每秒1个单位长度向终点B匀速运动,同时动点Q从点B出发以每秒2个单位长度向终点A匀速运动,其中一点到达终点时,另一个点也随之停止运动.当BP =3AQ时,点P在数轴上表示的数是()A.2.4B.﹣1.8C.0.6D.﹣0.62.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB3.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发).经过几秒,点M、点N分别到原点O的距离相等?()A.2秒B.10秒C.2秒或10秒D.以上答案都不对4.如图,点A在数轴上表示的数是﹣16,点B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.4秒C.2秒或4秒D.2秒或6秒5.如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒6.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有()A.2种B.3种C.4种D.5种7.分别表示数a和数b的点在数轴上的位置如图所示,下面4个结论中正确的个数为()①|a﹣b|=|a|+|b|②a向右运动时,|a﹣b|的值增大③当a向右运动时,|a﹣b|的值减小.④当a向右运动时,|a﹣b|的值先减小后增大.A.1个B.2个C.3个D.4个8.如图,数轴上点A,B表示的数分别为﹣40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为()A.15秒B.20秒C.15秒或25秒D.15秒或20秒9.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.现有一只机器狗从数轴的原点出发,沿数轴正方向运动,这只机器狗每前进6步后,将倒退2步,设该机器狗每秒前进或后退2步,并且每步的距离是1个单位长度,x n表示第n秒时机器狗在数轴上的位置所对应的数,下列结论:①x4=4;②x7=10;③x108<x107;④x2014<x2013,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共10小题)11.已知,如图所示,A、B是数轴上的两个点,点A所表示的数为﹣5,点B表示的数为7,动点P以每秒4个单位长度的速度从点B向左运动,同时,动点Q、M从点A向右运动,且点M的速度是点Q速度的,当运动时间为4秒时,点M和点P之间的距离是6个单位长度,则当点P运动到点A时,动点Q所表示的数为______.12.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N同时出发,经过______秒,点M、点N分别到原点O的距离相等.13.动点A,B分别从数轴上表示10和﹣2的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,______秒后,点A,B间的距离为3个单位长度.14.如图,在数轴上点A、B表示的数分别为﹣2、4,若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过______秒后,M、N两点间的距离为12个单位长度.15.数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0.点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,P、Q分别为ME、ON 的中点.思考,在运动过程中,的值______.16.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为______.17.已知M,N为数轴上从原点O出发的两个动点,点M每秒1个单位,点N的速度为点M的2倍,则当运动时间为4秒时,OM和ON两条线段的中点相距______个单位.18.在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t 秒.在运动过程中,若点P,Q,O三点其中一个点恰好是另外两点为端点的线段的一个三等分点,则运动时间为______秒.19.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A从原点运动至数轴上的点B,则点B表示的数是______.20.数轴上有A、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为______单位长度.三.解答题(共10小题)21.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离______.数轴上表示﹣12和﹣6的两点之间的距离是______.(2)数轴上表示x和﹣4的两点之间的距离表示为______.(3)|x﹣2|+|x+4|的最小值为______时,能使|x﹣2|+|x+4|取最小值的所有整数x的和是______.(4)若数轴上两点A、B对应的数分别是﹣1、3,现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?22.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C 在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M对应的数.23.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动______秒时,点P到点E,点F的距离相等.24.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______;(2)当x=______时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.25.一个动点M从一水平数轴上距离原点4个单位长度的位置向右运动2s,到达A后立即返回,向左运动7s到达点B,若动点M的运动速度为2.5个单位长度,求此时点B在数轴上所表示的数的相反数.26.数轴上点A对应的数是﹣1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再立即返回到A点,共用了4秒钟.(1)求点C对应的数;(2)若小虫甲返回到A点后再作如下运动:第1次向右爬行2个单位,第2次向左爬行4个单位,第3次向右爬行6个单位,第4次向左爬行8个单位,…依次规律爬下去,求它第10次爬行所停下的点所对应的数;(3)若小虫甲返回到A后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点C出发沿着数轴的负方向以每秒7个单位的速度爬行,设甲小虫对应的点为E点,乙小虫对应的点为F点,设点A、E、F、B所对应的数分别是x A、x E、x F、x B,当运动时间t不超过1秒时.求|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|的值.27.已知数轴有A、B两点,分别表示的数为a、b,且|a+12|+|b﹣18|=0.(1)a=______,b=______,点A和点B之间的距离为______;(2)如图1,动点P沿线段AB自点A向点B以2个单位长度/秒的速度运动,同时动点Q沿线段BA自点B向点A以4个单位/秒的速度运动,经过______秒,动点P,Q两点能相遇;(3)如图1,点P沿线段AB自点A向点B以2个单位/秒的速度运动,点P出发3秒后,点Q沿线段BA自点B向A以4个单位/秒的速度运动,问再经过几秒P,Q两点相距6个单位长度;(4)如图2,AO=4厘米,PO=2厘米,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自点B向点A运动,假若点P,Q两点能相遇,直接写出点Q运动的速度.28.“阳光向上,跑动青春”,为营造阳光运动的校园氛围,培养学生热爱体育、崇尚运动的健康观念和良好习惯,学校利用课间进行趣味跑操活动,其中有两名学生课间在操场上沿着直线进行折返跑,往返一次;将这条直线看成数轴,起点记为M,折返点记为N,主席台记为点O,两位同学分别记为点P,Q;若动点P、Q从M点同时出发向N点运动,到达N点后折返到M点;已知:数轴上点M、N对应的数分别为m、n,且满足|m+20|+(n﹣40)2=0,点O对应的数为k,k的相反数等于本身.(1)直接写出m、n、k的值;(2)设点P在数轴上对应的数为x,那么当x为多少时能使得PO+PN=50?(3)已知点P的速度为3个单位长度/秒,点Q的速度为2个单位长度/秒,当动点P到达点N后,点Q开始改变速度,以a个单位长度/秒继续折返跑,4秒后,P、Q两点相距2个单位长度,求a的值.29.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q 到点C的距离相等.30.已知,如图A,B分别为数轴上的两点,点A对应的数是﹣20,点B对应的数为80.(1)请直接写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇.请解答下面问题:①试求出点C在数轴上所对应的数;②何时两只电子蚂蚁在数轴上相距15个单位长度?初中数学数轴动点问题含答案参考答案与试题解析一.选择题(共10小题)1.解:设运动的时间为t秒,则点Q所表示的数为3﹣2t,点P所表示的数为﹣3+t,∴BP=3﹣(﹣3+t)=6﹣t,AQ=3﹣2t﹣(﹣3)=6﹣2t,∵BP=3AQ,∴6﹣t=3(6﹣2t),解得,t=2.4,∴点P所表示的数为﹣3+2.4=﹣0.6,故选:D.2.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.3.解:∵点A表示的数为﹣10,OB=3OA,∴OB=3OA=30.则B对应的数是30,设经过x秒,点M、点N分别到原点O的距离相等,①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.故选:C.4.解:设当AB=8时,运动时间为t秒,由题意得6t+2t+8=8﹣(﹣16)或6t+2t=8﹣(﹣16)+8,解得:t=2或t=4.故选:C.5.解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.6.解:∵数轴上有一个动点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,动点落在表示数3的点上,∴动点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选:D.7.解:由数a和数b在数轴上的位置可知:a<0,b>0,且|a|>|b|,|a﹣b|表示a与b两点之间的距离,由于a<0,b>0,因此|a﹣b|=|a|+|b|,故①正确,根据①的结论,当a在b的左侧向右运动时,|a﹣b|的值逐渐减小,当a在b的右侧向右运动时,|a﹣b|逐渐增大,因此②③均不正确,而④则正确,故选:B.8.解:设运动的时间为t秒,P、Q相遇前,依题意有50﹣(﹣40)﹣3t=3[50﹣(﹣40)﹣2t﹣3t],解得t=15;P、Q相遇后,依题意有50﹣(﹣40)﹣3t=3[2t+3t﹣50+(﹣40)],解得t=20.故运动的时间为15秒或20秒.故选:D.9.解:∵数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),∴质点的不同运动方案为:方案一:0→﹣1→0→1→2→3;方案二:0→1→0→1→2→3;方案三:0→1→2→1→2→3;方案四:0→1→2→3→2→3;方案五:0→1→2→3→4→3.故选项A错误,选项B错误,选项C错误,选项D正确.故选:D.10.解:根据题意得:x1=2,x2=4,x3=6,x4=4,x5=6,x6=8,x7=10,x8=8,根据此规律可推导出,x108=7×15+3=108,x107=7×15+5=110,2014=7×287+5,故x2014=287×4+6=1154.x2013=287×4+4=1152故①x4=4,②x7=10;③正确,④错误.故选:C.二.填空题(共10小题)11.解:由题意得,点M的速度是点Q速度的,设点Q的速度为x,则点M的速度为,∵运动时间为4秒时,点M和点P之间的距离是6个单位长度,∴,解得,x=2,即Q点的速度是每秒2个单位长度,又A、B两点间的距离为:7﹣(﹣5)=12,12÷4=3(秒),故点P从点B到点A需要3秒,点Q运动的距离为:2×3=6,∴点Q表示的数为:7﹣6=1,故答案为:1.12.解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.13.解:设运动的时间为t秒,则运动后A所表示的数为(10﹣7t),B所表示的数为(﹣2﹣4t),由题意得,|10﹣7t﹣(﹣2﹣4t)|=3,解得,t=3或t=5.故答案为:3或5.14.解:分两种情况,①当点N沿着数轴向右移动,则点M表示的数为(﹣2+5t),点N表示的数为(4+4t),由MN=12得,|(﹣2+5t)﹣(4+4t)|=12,解得,t=﹣6(舍去),或t=18;②当点N沿着数轴向左移动,则点M表示的数为(﹣2+5t),点N表示的数为(4﹣4t),由MN=12得,|(﹣2+5t)﹣(4﹣4t)|=12,解得,t=﹣(舍去),或t=2;故答案为:2或18.15.解:∵|a+2|+(b﹣8)2020=0∴a=﹣2,b=8,∴A表示﹣2,B表示8;设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣7t,点N对应的数是8+10t.∵P是ME的中点,∴P点对应的数是=﹣1﹣3t,又∵Q是ON的中点,∴Q点对应的数是=4+5t,∴MN=(8+10t)﹣(﹣2﹣7t)=10+17t,OE=t,PQ=(4+5t)﹣(﹣1﹣3t)=5+8t,∴==2(定值).故答案为:2.16.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.17.解:设线段OM的中点为G,线段ON的中点为H,分两种情况:①M,N同向时,如图1,H与M重合,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH﹣OG=4﹣2=2;②M,N反向时,如图2,当t=4时,ON=8,OM=4,∵H是ON的中点,G是OM的中点,∴OH=4,OG=2,∴GH=OH+OG=4+2=6;综上,当运动时间为4秒时,OM和ON两条线段的中点相距2或6个单位.故答案为:2或6.18.解:当点O在PQ之间,则3(15﹣3t)=9+t﹣(﹣15+3t)解得:t=3当P在OB之间,则3(3t﹣15)=9+t解得:t=或3t﹣15=(9+t)解得:t=9当Q在OP之间,则(3t﹣15)=9+t,方程无解或(3t﹣15)=9+t解得:t=19故答案为:3或9或或19秒19.解:∵将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,∴圆滚动的距离为:π,∵点A从原点运动至数轴上的点B,∴点B表示的数是:﹣π.故答案为:﹣π.20.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.三.解答题(共10小题)21.解:(1)1和3两点之间的距离3﹣1=2,数轴上表示﹣12和﹣6的两点之间的距离是﹣6﹣(﹣12)=6;故答案为:2,6;(2)x与﹣4之间的距离表示为|x﹣(﹣4)|=|x+4|;故答案为:|x+4|;(3)当x≥2,原式=x﹣2+x+4=2x+2;最小值为2×2+2=6;当﹣4<x<2,原式=2﹣x+x+4=6;当x≤﹣4,原式=2﹣x﹣x﹣4=﹣2x﹣2,最小值为﹣2×(﹣4)﹣2=6;∴|x﹣2|+|x+4|最小值为6;∵要使代数式|x﹣2|+|x+4|取最小值时,相应的x的取值范围是﹣4≤x≤2,∴能使|x﹣2|+|x+4|取最小值的所有整数x的值为:﹣4,﹣3,﹣2,﹣1,0,1,2,它们的和为:﹣4﹣3﹣2﹣1+0+1+2=﹣7;故答案为:6,﹣7;(4)点A在点B的左边,(4﹣3)÷(2﹣0.5)×2+(﹣1)=.点A所对应的数是点A在点B的右边,(4+3)÷(2﹣0.5)×2+(﹣1)=8.点A所对应的数是8.故点A所对应的数是或8.22.解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.23.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.24.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.25.解:①点M距原点4个单位长度,且位于原点的右侧,∴M=4,∴B=4+2.5×2﹣2.5×7=﹣8.5,∴此时点B在数轴上所表示的数的相反数是8.5,②点M距原点4个单位长度,且位于原点的左侧,∴M=﹣4,∴B=﹣4+2.5×2﹣2.5×7=﹣16.5,∴此时点B在数轴上所表示的数的相反数是16.5.26.解:(1)设C点表示的数为x,根据题意得x﹣1+x+1=4×4,解得x=8,所以C点表示的数为8;(2)﹣1+2﹣4+6﹣8+10﹣12+14﹣16+18﹣20=﹣11,所以它第10次爬行所停下的点所对应的数为﹣9;(3)因为t<1,所以点E在A点左侧,F点在A、B之间,所以|x A﹣x E|﹣|x E﹣x F|+|x F﹣x B|=x A﹣x E﹣x E﹣x F+x F﹣x B=x A﹣x B=﹣1﹣1=﹣2.27.解:(1)∵|a+12|+|b﹣18|=0,∴a+12=0,b﹣18=0,解得,a=﹣12,b=18,∴AB=|﹣12﹣18|=30,故答案为:﹣12,18,30;(2)30÷(2+4)=5(秒),故答案为:5;(3)设再经过x秒后点P、点Q相距6个单位长度,当P点在Q点左边时,2(x+3)+4x+6=30,解得,x=3;当点P在点Q右边时,2(x+3)+4x﹣6=30,解得,x=5;所以,再经过3或5秒后,点P、Q两点相距6个单位长度;(4)设点Q的运动速度为xcm,当P、Q两点在点O左边相遇时,120÷60x=30﹣6,解得,x=14;当P、Q两点在点O右边相遇时,240÷60x=30﹣2,解得,x=6;所以,点P,Q两点能相遇,则点Q的运动速度为每秒14cm或6cm.28.解:(1)∵|m+20|+(n﹣40)2=0,且|m+20|≥0,(n﹣40)2≥0,∴|m+20|=0,(n﹣40)2=0,∴m=﹣20,n=40.∵k的相反数等于本身,∴k=0.∴m=﹣20,n=40,k=0;(2)∵点P在数轴上对应的数为x,点N对应的数为40,∴PO=|x|,PN=40﹣x,∴PO+PN=|x|+40﹣x=50,解得:x=﹣5;(3)设动点P到达点N所用的时间为t1,∵点P的起始点位于数轴上的﹣20处,点N位于数轴上的40处,∴PN=60,∴t1===20(秒),∵动点P、Q从M点同时出发向N点运动,∴在t1=20(秒)时,Q运动的距离为20×2=40个单位长度,4秒后,点P运动的距离为3×4=12个单位长度,点Q运动的距离为4a个单位长度,∴点P共运动了60+12=72个单位长度,点Q共运动了(40+4a)个单位长度,∵P、Q两点相距2个单位长度,∴PQ=|72﹣(40+4a)|=2,解得:a=或a=.29.解:(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=,答:经过或10秒,点P、点Q到点C的距离相等.30.解:(1)AB的中点M所对应的数为=30(2)①如图1,设点C所表示的数为x,则AC=x+20,BC=80﹣x,由题意得,=,解得,x=40,答:点C在数轴上所表示的数为40;②分两种情况进行解答,设运动的时间为t秒Ⅰ)如图2,相遇前相距15个单位长度,则3t+2t=80﹣(﹣20)﹣15,解得,t=17(秒),Ⅱ)如图3,相遇后相距15个单位长度则3t+2t=80﹣(﹣20)+15,解得,t=23(秒)答:当两只蚂蚁运动17秒或23秒时,两只电子蚂蚁在数轴上相距15个单位长度.。
初一数轴动点问题(有答案)
数轴动点问题1、如图,有一数轴原点为O,点A所对应的数是-1,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K 和点C所对应的数.2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后,两点相距15cm(单位长度为1cm).已知动点A、B的速度比是1∶4 (速度单位:cm/s).(1)求出3s后,A、B两点在数轴上对应的数分别是多少?(2)若A、B两点从(1)中的位置同时向数轴负方向运动,经过几秒,原点恰好处在两个动点的正中间?3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?(1)若点P到点A、点B的距离相等,求点P对应数。
(3-(-1))/2=2 3-2=1 所以P=1.(2)|x-(-1)|+|x-3|=|x+1|+|x-3|=5 所以,存在,X=3.5或X=-1.5.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?设时间是t. t分后,P是-1*t=-t,A是-1-5t,B是3-20t. |-t-(-1-5t)|=|-t-(3-20t)| |-t+1+5t |=|-t-3+20t| |4t+1|=|19t-3| 所以有: 4t+1=19t-3,解得t=4/15. 或者说4t+1=3-19t,得t=2/23 所以,出发的时间是2/23分或4/15分钟.4、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数.(注:文档可能无法思考全面,请浏览后下载,供参考。
初一数学动点问题20题及答案
初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。
七年级数学动点题50道
七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。
(1)当t = 1时,求PQ的长度。
(2)求经过多少秒后,PQ = 5。
解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。
所以公式。
(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。
则公式。
当公式时,即公式。
则公式或公式。
当公式时,公式,公式(舍去,因为时间不能为负)。
当公式时,公式,公式。
2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。
解析:因为点C在点A、B之间,公式,公式。
又因为公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式。
解得公式。
3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。
(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。
解析:(1)点P表示的数为公式。
当点P到点B的距离为2时,公式。
则公式或公式。
解得公式或公式。
(2)点Q表示的数为公式,公式。
当公式时,公式。
即公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。
(1)求t秒后,点M表示的数和点N表示的数。
(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。
(2)当点M与点N相距4个单位长度时,公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
七年级数学数轴上的动点压轴题专题练习
七年级数学数轴上的动点压轴题专题练习题目一:小明在数轴上从0点出发向右走,每走一步距离为3,走了n步后,他所在的位置是多少?解答:小明每走一步距离为3,所以n步后走的距离为3n。
由于小明从0点出发向右走,所以他所在的位置为0 + 3n = 3n。
题目二:小华在数轴上从原点出发向右走,每走一步距离为4,走了n步后,他所在的位置是多少?解答:小华每走一步距离为4,所以n步后走的距离为4n。
由于小华从原点出发向右走,所以他所在的位置为0 + 4n = 4n。
题目三:小明和小华同时从原点出发向右走,小明每走一步距离为3,小华每走一步距离为4。
他们同时走了n步后,他们之间的距离是多少?解答:小明每走一步距离为3,小华每走一步距离为4,所以他们同时走了n步后,小明走的距离为3n,小华走的距离为4n。
他们之间的距离为4n - 3n = n。
题目四:小明和小华同时从原点出发向右走,小明每走一步距离为3,小华每走一步距离为4。
他们走了n步后,小明比小华多走了5步,求n的值。
解答:小明每走一步距离为3,小华每走一步距离为4,所以他们走了n步后,小明走的距离为3n,小华走的距离为4n。
根据题意,小明比小华多走了5步,所以3n - 4n = 5。
化简得到 -n = 5,解方程得到 n = -5。
题目五:小明从原点出发向右走,每走一步距离为3,小华从原点出发向左走,每走一步距离为2。
他们分别走了n步后,他们之间的距离是多少?解答:小明从原点出发向右走,每走一步距离为3,所以他走的距离为3n。
小华从原点出发向左走,每走一步距离为2,所以他走的距离为-2n。
他们之间的距离为3n - (-2n) = 3n + 2n = 5n。
题目六:小明从原点出发向右走,每走一步距离为3,小华从原点出发向左走,每走一步距离为2。
他们分别走了n步后,小明比小华多走了7步,求n的值。
解答:小明从原点出发向右走,每走一步距离为3,所以他走的距离为3n。
七年级数学数轴动点试卷
一、选择题(每题4分,共20分)1. 数轴上点A表示的数是-2,那么点A在数轴上的位置是:A. 在原点的左侧B. 在原点的右侧C. 在原点上D. 无法确定2. 在数轴上,点B表示的数是3,那么点B与原点的距离是:A. 1B. 2C. 3D. 43. 如果数轴上点C表示的数是-5,那么点C在数轴上的位置是:A. 在原点的左侧B. 在原点的右侧C. 在原点上D. 在数轴上不存在4. 在数轴上,点D表示的数是2,那么点D与点-1的距离是:A. 1B. 2C. 3D. 45. 如果数轴上点E表示的数是0,那么点E在数轴上的位置是:A. 在原点的左侧B. 在原点的右侧C. 在原点上D. 在数轴上不存在二、填空题(每题4分,共20分)6. 数轴上点F表示的数是-3,那么点F与原点的距离是______。
7. 如果数轴上点G表示的数是4,那么点G在数轴上的位置是______。
8. 在数轴上,点H表示的数是-2,那么点H与点1的距离是______。
9. 如果数轴上点I表示的数是0,那么点I在数轴上的位置是______。
10. 在数轴上,点J表示的数是5,那么点J与点-3的距离是______。
三、解答题(每题10分,共30分)11. 在数轴上,点K表示的数是-4,那么点K在数轴上的位置是______,与原点的距离是______。
12. 如果数轴上点L表示的数是3,那么点L与点-1的距离是______,与点5的距离是______。
13. 在数轴上,点M表示的数是-2,那么点M与点-5的距离是______,与点0的距离是______。
四、应用题(每题10分,共20分)14. 小明在数轴上表示了两个数,分别是-5和3,请画出这两个数在数轴上的位置,并计算它们之间的距离。
15. 小红在数轴上表示了一个数,这个数比原点右侧的2点还要大,请画出这个数在数轴上的位置,并写出这个数的值。
注意:请在答题卡上作答,答案不要求写出具体过程,只需写出结果即可。
七年级上册数轴上的动点压轴题专练
七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。
在数轴上,数与点是一一对应的关系。
2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。
例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。
3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。
二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。
(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。
解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。
又因为公式,所以公式。
当公式时,方程无解。
当公式时,公式,公式,解得公式。
所以点公式对应的数为公式。
(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。
解析:因为公式,公式,且公式,所以公式。
因为点公式在公式、公式之间,即公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
所以点公式对应的数为公式。
(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。
问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。
根据公式,公式。
当公式时,即公式。
当公式时,公式,公式,解得公式。
当公式时,公式,公式,公式,解得公式。
2. 数轴上点公式表示的数为公式,点公式表示的数为公式。
(1)求线段公式的长。
解析:根据两点间距离公式公式。
(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。
初一数轴动点问题(有答案)
-1,点沿数轴匀速平移经过点K到达点C,所用时间是所对应的数.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?(1)若点P到点A、点B的距离相等,求点P对应数。
(3-(-1))/2=2 3-2=1 所以P=1.(2)|x-(-1)|+|x-3|=|x+1|+|x-3|=5 所以,存在,X=3.5或X=-1.5.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?设时间是t. t分后,P是-1*t=-t,A是-1-5t,B是3-20t. |-t-(-1-5t)|=|-t-(3-20t)| |-t+1+5t |=|-t-3+20t| |4t+1|=|19t-3| 所以有: 4t+1=19t-3,解得t=4/15. 或者说4t+1=3-19t,得t=2/23 所以,出发的时间是2/23分或4/15分钟.4、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数.不得用于商业用途仅供个人参考仅供个人用于学习、研究;不得用于商业用途。
初一上学期动点问题(含答案)
初一上学期动点问题练习1•如图,已知数轴上点A表示的数为8, B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒.JT O A' 6 S *(1) ___________________________ 写出数轴上点B表示的数,点P表示的数用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;解:(1)由题意得点B表示的数为一6;点P表示的数为8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)贝U AC=5, BC=3,•/ AC— BC=AB••• 5—3="14"解得:=7,.••点P运动7秒时,在点C处追上点Q;(3)没有变化.分两种情况:①当点P在点A、B两点之间运动时:B X O P M A・■・・・・•0 SMN=MP+NP=AP+BP=(AP+BP)=AB="7"②当点P运动到点B的左侧时:x:o A- 」€8 *MN=MP —NP= AP- BP=(AP— BP)=AB="7"•••综上所述,线段MN的长度不发生变化,其值为7;2•已知数轴上有A、B、C三点,分别表示有理数-26 , -10, 10,动点P从A出发,以每秒1个单位的速度向终点C移动, 设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA= __________ ,PC= ______ .(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.解:(1) PA=t, PC=36-t;(2)当16W t W 24 时PQ=t-3 (t-16) =-2t+48 , 当24 V t W 28 时PQ=3 (t-16) -t=2t-48 , 当28V t W 30 时PQ=72-3(t-16) -t=120-4t, 当30V t W 36 时PQ=t-[72-3 (t-16) ]=4t-120 .3•已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为__________ ,点B表示的数为________ ,点C表示的数为_______; ( 2)用含t的代数式表示P到点A和点C的距离:PA= __________ ,PC= _____ ; ( 3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P若能,请求出点Q运动几秒追上•②在点Q开始运动后,P、Q两点之间的距离能否为2个单位如果能,请求出此时点P表示的数;如果不能,请说明理由.I J ・--------- 咕 ---------------------------------- T --------------------------------- -解:(1)点A表示的数为-26,点B表示的数为-10 ,点C表示的数为10;(2)PA=1X t=t,PC=AC-PA=36-t(3)①在点Q向点C运动过程中,设点Q运动x秒追上点P,根据题意得3x=1 (x+16),解得x=8.答:在点Q向点C运动过程中,能追上点P,点Q运动8秒追上;②分两种情况:I)点Q从A点向点C运动时,如果点Q在点P的后面,那么1 (x+16) -3x=2,解得x=7,此时点P表示的数是-3;如果点Q在点P的前面,那么3x-1 (x+16) =2,解得x=9,此时点P表示的数是-1;H)点Q从C点返回到点A时,如果点Q在点P的后面,那么3x+1 (x+16) +2=2X 36,解得x=,此时点P表示的数是;如果点Q在点P的前面,那么3x+1 (x+16) -2=2 X 36,解得x=,此时点P表示的数是.答:在点Q开始运动后,P、Q两点之间的距离能为2个单位,此时点P表示的数分别是-3, -1 ,,.4.已知数轴上有A、B、C三点表示-24、-10、10,两只电子蚂蚁甲、已分别从A、C两点同时相向而行,甲的速度为4单位/秒。
(完整)七年级数轴动点练习材料
(完整)七年级数轴动点练习材料导言本文档是为了帮助七年级学生练数轴上的动点而准备的。
通过这些练,学生将能够巩固对数轴的理解,并提高他们在数轴上定位和移动动点的能力。
练一:定位动点在下面的数轴上,标出以下各个动点的位置。
1. A:22. B:-33. C:6练二:___动点给出一个初始动点的位置和一系列的移动指令,根据指令在数轴上移动动点并标出最终位置。
1. 初始位置:-1移动指令:向右移动2个单位最终位置:__2. 初始位置:3移动指令:向左移动5个单位最终位置:__3. 初始位置:0移动指令:向右移动3个单位,再向左移动2个单位最终位置:__练三:判断语句真假判断下列语句是否为真(True)或假(False)。
1. 3在数轴的左边。
真(True)/假(False)_2. -1在数轴的右边。
真(True)/假(False)_3. 0在数轴的正中间。
真(True)/假(False)_练四:填空题在下面的数轴上填上数字和符号,使得数轴上的动点满足给定的条件。
1. 动点在-3和4之间。
数字填空:-2 _____ 0 _____ 2 _____ 4符号填空:2 < _____ < 32. 动点在7的左边,并且和-5的距离是9个单位。
数字填空:_____ -16 _____ -4 _____ 7符号填空:-6 _____ -5 < _____总结通过这些练,学生将能够巩固数轴的概念,并提高在数轴上定位和移动动点的能力。
希望这份练材料对学生的研究有所帮助。
7年级动点题10道
7年级动点题10道一、数轴上的动点问题。
1. 已知数轴上点A表示的数为 -2,点B表示的数为4,点P从点A出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。
- 当t = 1时,求点P和点Q所表示的数。
- 求经过多少秒,点P与点Q相遇?- 求经过多少秒,点P与点Q之间的距离为2个单位长度?解析:- 点P从 - 2出发,速度为每秒2个单位长度,当t = 1时,点P表示的数为-2 + 2×1=0;点Q从4出发,速度为每秒1个单位长度,当t = 1时,点Q表示的数为4-1×1 = 3。
- 设经过t秒点P与点Q相遇。
点P向右运动的路程为2t,点Q向左运动的路程为t,相遇时2t + t=4 - (-2),即3t = 6,解得t = 2秒。
- 分两种情况:- 相遇前相距2个单位长度:2t+t+2 = 4-(-2),3t+2 = 6,3t = 4,解得t=(4)/(3)秒。
- 相遇后相距2个单位长度:2t + t-2=4 - (-2),3t-2 = 6,3t = 8,解得t=(8)/(3)秒。
2. 数轴上点A对应的数为 -1,点B对应的数为3,点P为数轴上一动点,其对应的数为x。
- 若点P到点A、点B的距离相等,求点P对应的数。
- 数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,求出x的值;若不存在,请说明理由。
- 当点P以每分钟1个单位长度的速度从原点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A、点B的距离相等?解析:- 因为点P到点A、点B的距离相等,所以x=(-1 + 3)/(2)=1。
- 存在。
当点P在点A左侧时,-1 - x+3 - x = 5,-2x+2 = 5,-2x = 3,解得x =-(3)/(2);当点P在点B右侧时,x - (-1)+x - 3 = 5,2x - 2 = 5,2x = 7,解得x=(7)/(2)。
(完整)七年级数轴动点练习册
(完整)七年级数轴动点练习册
练一
1. 在数轴上标出下列数的位置:
-2, 0, 3, -5, 7
2. 用大于或小于号表示下列数之间的关系:
-4和2, -1和5, 0和-3
3. 在数轴上标出下列数的位置,并填写它们之间的关系:
-6和-2, -3和-7
练二
1. 设x表示数轴上某点的位置,若x>3,写出可能的数的范围。
2. 设x表示数轴上某点的位置,若x<0,写出可能的数的范围。
3. 在数轴上标出下列数的位置,并填写它们之间的关系:
1和-5, -4和4, 0和2
练三
1. 每个小短线的单位长度是多少?
2. 在数轴上标出下列数的位置:
12, -8, 5, -3, 9
3. 每个小短线之间的距离是多少?
练四
1. 在数轴上标出下列数的位置,并填写它们之间的关系:
-3和3, -2和6, -5和-1
2. 找出以下数的相反数:
4, -7, 0, -3
3. 在数轴上标出A、B两点,使得A的位置是B的位置的2倍。
练五
1. 在数轴上标出下列数的位置,并填写它们之间的关系:
-4和-6, -1和0, -3和7
2. 用大于或小于号表示下列数之间的关系:
-2和5, -3和-3, -1和-5
3. 在数轴上标出下列数的位置,并填写它们之间的关系:
4和-4, -5和5
以上为《七年级数轴动点练习册》的部分练习内容,希望能够帮助你巩固和提升数轴的相关知识。
祝你学习进步!。
七年级上册数学数轴动点问题
七年级上册数学数轴动点问题一、数轴动点问题题目。
1. 已知数轴上点A表示的数为 -2,点B表示的数为6,点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动;同时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动。
设运动时间为t秒。
- 当t = 2时,求PQ的长度。
- 当PQ = (1)/(2)AB时,求t的值。
- 在点P、Q运动的过程中,是否存在某一时刻t,使得点P是线段BQ的中点?若存在,求出t的值;若不存在,请说明理由。
解析:- 当t = 2时,点P表示的数为-2 + 1×2=0,点Q表示的数为6-2×2 = 2,则PQ=|0 - 2|= 2。
- AB=|-2 - 6| = 8,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,当PQ=(1)/(2)AB = 4时,即|3t-8| = 4,则3t-8 = 4或3t - 8=-4,解得t = 4或t=(4)/(3)。
- 若点P是线段BQ的中点,则BP = PQ,点P表示的数为-2+t,点Q表示的数为6-2t,BP=|(-2 + t)-6|=| t-8|,PQ=|(-2+t)-(6 - 2t)|=|3t - 8|,所以| t - 8|=|3t - 8|,即t-8=3t - 8(无解)或t - 8=-(3t - 8),解得t=(8)/(2)=4。
2. 数轴上点A对应的数为 -1,点B对应的数为3,点C对应的数为5,点P在数轴上对应的数为x。
- 若点P到点A、点B的距离相等,求x的值。
- 若PA + PB = PC,求x的值。
- 设点P在点A左侧,点M从点P出发,以每秒1个单位长度的速度向点A运动;同时点N从点A出发,以每秒2个单位长度的速度向点B运动,设运动时间为t 秒。
当点M与点N之间的距离为1个单位长度时,求t的值。
解析:- 因为点P到点A、点B的距离相等,所以| x-(-1)|=| x - 3|,即x + 1=-(x - 3)或x+1=x - 3(无解),解得x = 1。
动点数轴问题初一例题
动点数轴问题初一例题及答案例题1:图,数轴上有两点A、B,点A表示的数为0,点B表示的数为200,一只电子蚂蚁P从 A出发,以1个单位每秒的速度由A往B运动,到B点运动停止;另一电子蚂蚁Q在同一时间从B出发,以2个单位每秒的速度由B往A运动,到A点运动停止。
设运动时间为 t。
(1)当P为AQ中点时,求运动时间t;(2)当Q为BP中点时,求运动时间t。
【答案】(1)点P表示的数为t,点Q表示的数为200- 2t ,若P为AQ中点,有AP=PQ,即:t = 200- 2t - t ,解得:t= 50秒;(2)点P表示的数为t,点Q表示的数为200 - 2t ,若Q为BP中点,有PQ=BQ,即:200- 2t - t=2t ,解得:t=40秒。
例题2:如图,数轴上有两点A、B,点A表示的数为a,点B表示的数为b,且数A和数B 的距离为200个单位长度,一只电子蚂蚁P从 A出发,以1个单位每秒的速度由A 往B运动,到B点运动停止。
设运动时间为t。
(1)用含a代数式表示数B;(2)用含a和t代数式表示电子蚂蚁P表示的数。
(3)用含t代数式表示电子蚂蚁P到数B的距离。
【答案】(1)由数轴上两点间距离公式可得:b-a =200,整理得:b =200+a ;(2)由路程=速度×时间得,AP= t,即A、P两点间的距离为t ;同(1)可得,点P表示的数为 a +t(3)由于数B≥数P,故根据数轴上两点间距离公式有:BP=b-(a+t)=a+200-(a+t)=200-t。
只要AB长度固定,点P到B距离跟A、B表示的数无关例题4:如图,数轴上有两点 A、B,点 A 表示的数为0 ,点 B 表示的数为200 ,一只电子蚂蚁 P 从A出发,以1个单位每秒的速度由 A 往 B 运动,到B点运动停止。
设运动时间为 t。
(1)用含t的代数式表示电子蚂蚁P运动的距离;(2)用含t的代数式表示电子蚂蚁P表示的数;(3)用含t的代数式表示电子蚂蚁P到数B距离(4)当电子蚂蚁运动多少时间后,点P为线段 AB 的三等分点【答案】(1)根据路程=速度×时间,有:AP=t ;(2)AP=t ,故点P表示的数为t ;(3)点 B 表示的数为200,点P表示的数为t ,且P在 B左边,故 PB= 200-t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数轴动点问题练习
题
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
初一数轴动点问题练习题
数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:
1、数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2、点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3、数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
1、已知A、B是数轴上两点,A点对应数为12,B点对应数位42,C是数轴上一点,且AC=2AB。
(1)求C点对应的数
(2)D是数轴上A点左侧一点,动点P从D点出发向右运动,9秒钟到达A点,15秒到达B点,求P点运动的速度;
(3)在(2)的条件下,又有2 个动点Q和R分别从A、B和P点同时向右运动,Q的速度为每秒1个单位,R的速度为每秒2个单位,求经过几秒,P和Q的距离等于Q和R的距离的3倍
2、已知数轴上两点a、b对应的数分别为-1、3,点p为数轴上一动,当点p以每分钟1个长度单位的速度从原点0点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟是点P到点A、点B的距离相等?
例1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从
A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?
⑵
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
分析:如图1,易求得AB=14,BC=20,AC=34
⑴设x秒后,甲到A、B、C的距离和为40个单位。
此时甲表示的数为—24+4x。
①甲在AB之间时,甲到A、B的距离和为AB=14
甲到C的距离为10—(—24+4x)=34—4x
依题意,14+(34—4x)=40,解得x=2
②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x
依题意,20+4x)=40,解得x=5
即2秒或5秒,甲到A、B、C的距离和为40个单位。
⑵是一个相向而行的相遇问题。
设运动t秒相遇。
依题意有,4t+6t=34,解得t=3.4
相遇点表示的数为—24+4×3.4=—10.4 (或:10—6×3.4=—10.4)
⑶甲到A、B、C的距离和为40个单位时,甲调头返回。
而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。
设y秒后与乙相遇。
此时甲、乙表示在数轴上为同一点,所表示的数相同。
甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y
依题意有,—24+4×2—4y=10—6×2—6y,解得y=7
相遇点表示的数为:—24+4×2—4y=—44 (或:10—6×2—6y=—44)
②甲从A向右运动5秒时返回。
设y秒后与乙相遇。
甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y
依题意有,—24+4×5—4y=10—6×5—6y,解得y=—8(不合题意,舍去)
即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。
点评:分析数轴上点的运动,要结合数轴上的线段关系进行分析。
点运动后所表示的数,以起点所表示的数为基准,向右运动加上运动的距离,即终点所表示的数;向左运动减去运动的距离,即终点所表示的数。
例2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;
⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;
⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
分析:⑴设AB中点M对应的数为x,由BM=MA
所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40
⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,
依题意有,4t+6t=120,解得t=12
(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12)
相遇C点表示的数为:—20+4t=28(或100—6t=28)
⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。
P、Q为同向而行的追及问题。
依题意有,6y—4y=120,解得y=60
(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60)
D点表示的数为:—20—4y=—260 (或100—6y=—260)
点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。
⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。
在⑵、⑶中求出相遇或追及的时间是基础。
例3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;
⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5若存在,请求出x的值。
若不存在,请说明理由?
⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B 的距离相等?
分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1
⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。
①P在点A左侧,PA=—1—x,PB=3—x
依题意,(—1—x)+(3—x)=5,解得 x=—1.5
②P在点B右侧,PA=x—(—1)=x+1,PB=x—3
依题意,(x+1)+(x—3)=5,解得 x=3.5
⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。
故P点总位于A点右侧,B可能追上并超过A。
P到A、B的距离相等,应分两种情况讨论。
设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。
①B未追上A时,PA=PA,则P为AB中点。
B在P的右侧,A在P的左侧。
PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19t
依题意有,1+4t=3—19t,解得 t=
②B追上A时,A、B重合,此时PA=PB。
A、B表示同一个数。
依题意有,—1—5t=3—20t,解得 t=
即运动或分钟时,P到A、B的距离相等。
点评:⑶中先找出运动过程中P、A、B在数轴上对应的数,再根据其位置关系确定两点间距离的关系式,这样就理顺了整个运动过程。
例4.点A
1、A
2
、A
3
、……A
n
(n为正整数)都在数轴上,点A
1
在原点O的左边,且A
1
O=1,点
A 2在点A
1
的右边,且A
2
A
1
=2,点A
3
在点A
2
的左边,且A
3
A
2
=3,点A
4
在点A
3
的右边,且
A 4A
3
=4,……,依照上述规律点A
2008
、A
2009
所表示的数分别为()。
A.2008,—2009 B.—2008,2009 C.1004,—1005 D.1004,—1004
分析:如图,
点A
1
表示的数为—1;
点A
2
表示的数为—1+2=1;
点A
3
表示的数为—1+2—3=—2;
点A
4
表示的数为—1+2—3+4=2 ……
点A
2008
表示的数为—1+2—3+4—……—2007+2008=1004
点A
2009
表示的数为—1+2—3+4—……—2007+2008—2009=1005
点评:数轴上一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
运用这一特征探究变化规律时,要注意在循环往返运动过程中的方向变化。