(完整版)平方根与立方根及实数(综合提高)

合集下载

完整版)平方根立方根提高练习题

完整版)平方根立方根提高练习题

完整版)平方根立方根提高练习题平方根和立方根的练一、选择题(共8小题)1.4的平方根是±2,那么9的平方根是(B)。

2.若2m-4与3m-1是同一个数的平方根,则m的值是(C)。

3.一个数的立方根是它本身,则这个数是(A)。

4.数n的平方根是x,则n+1的算术平方根是(C)。

5.如果y=6+2,那么xy的算术平方根是(D)。

6.若a-b=3,则xy的值为(B)。

7.已知:a-b=2,那么xy的算术平方根是(C)。

8.若a<b<c,化简3a-b+c的结果为(B)。

二、填空题(共8小题)9.已知a、b为两个连续的整数,且a>b,则a+b=a+b。

10.若a的一个平方根是b,那么它的另一个平方根是-b,若a的一个平方根是b,则a的平方根是±b。

11.已知:a+b=3,ab=2,则a和b的值分别为1和2.12.设等式(x-1)(y-2)(z-3)=0在实数范围内成立,其中m,x,y是互不相同的值,则z=m+x+y-6.13.如图是一个按某种规律排列的数阵:根据数阵的规律,___第一个数是n(n-1)+1.14.已知有理数a,满足|2016-a|+|2017-a|=1,则a的值为2016或2017.15.若两个连续整数x、y满足x<y,则x+y的值是2x+1.16.一组按规律排列的式子:1,3,7,13,…则第n个式子是n²-n+1.三、解答题(共9小题)17.(1)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。

解:由2a-1的平方根是±3可得2a-1=9或2a-1=-9,解得a=5或a=-4.由3a+b-1的算术平方根是4可得3a+b-1=16,解得a=5,b=4.因此,a+2b=13.2)已知m是x²的整数部分,n是x的小数部分,求m-n的值。

解:由题意可得x²≤m<(x+1)²,即x≤√m<x+1.又因为n=x-√m,所以x=n+√m。

(完整版)平方根与立方根练习题

(完整版)平方根与立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。

实数(挑战综合(压轴)题分类专题)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

实数(挑战综合(压轴)题分类专题)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)

专题6.15 实数(挑战综合(压轴)题分类专题)(专项练习)【类型一】实数✭✭平方根✭✭立方根【类型①】实数➼➻平方根✭✭立方根➼➻解方程(两个题)1.求下列x 的值(1) ()2251360x +-=(2) ()3218x -=-2.求下列各式中x 的值:(1) 225640x -=;(2) ()33433270x ++=;(3) 2(21)16x +=【类型②】实数➼➻平方根✭✭立方根➼➻运算求值(两个题)3.计算: (1) 33(1)128-+ (2) 3223(5)(3)2532(3)--+.4.计算 (1)310.0184- (2) 332【类型③】实数➼➻平方根✭✭立方根➼➻综合化简与运算(四个题) 5.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B 3设点A 所表示的数为m .(1) 实数m 的值是_________;(2) 求()221m m +++的值.(3) 在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +4d -求238c d ++的平方根.6.已知:x 的平方根是3a +与215a -213b -.(1) 求a ,b 的值;(2) 求x 的值;(3) 求1a b +-的立方根.7.已知235,4,8a b c ===-.(1) 若,a b <求a b +的值;(2) 若0abc >,求32a b c --的值.8.计算: (1) 239(6)27--(2) 51的整数部分为a 51的小数部分为b ,求23a b +的值.【类型二】实数✭✭平方根✭✭立方根【类型①】实数➼➻混合运算(四个题)9.计算(1) ()29234--; (2) 223184(3)2⎛⎫- ⎪⎝⎭.10.计算: (1)23327(3)1--- (2) 23164(2)9-+-11.(1)用“<”“>”或“=”填空: 1 22 3(2)由以上可知:①|12= , 23= .(3)计算:12233420212022++.(结果保留根号)12.知识链接:①对于任意两个实数a ,b ,如果0a b ->,那么a b >;如果0a b -=,那么a b =;如果0a b -<,那么a b <;①任意实数a 的平方都是非负数,即20a ≥.知识运用:(1) 7______53; (2) 已知a 为实数,2(32)A a =-,()()21432B a a a =---,请你比较A 、B 的大小;(3) 已知x 、y 均为正数,比较2x y +与82xy x y+的大小.【类型②】实数➼➻大小比较✭✭估算✭✭整数部分与小数部分(两个题) 13.已知21a -的平方根是3±,9b -的立方根是2,c 12(1) 求a 、b 、c 的值; (2) 若x 12的小数部分,求1212x 的值.14.阅读材料,解答下面的问题: 479<273<<,7272.(1) 6的整数部分.(2) 已知56a ,56的小数部分是b ,求2021()a b +的值.【类型③】实数➼➻运算✭✭化简✭✭规律(三个题)15.观察下列等式,并回答问题: ①1221=; 2332= 3443= 4554=……(1) 请写出第①个等式:______356=______;(2) 写出你猜想的第n 个等式:______;(用含n 的式子表示) (3) 241-1的大小.16.观察下列各等式及验证过程:11122323-=211121223232323-==⨯⨯ 11113()23438-=21111313()23423423843-===⨯⨯⨯⨯ 11114()345415-=21111414()345345534541-==⨯⨯⨯⨯ 针对上述各式反映的规律,写出用n (n 为正整数)表示的等式_____.17.观察表格,回答问题:a…0.00010.01110010000…a…0.01x1y100…(1)表格中x=________,y=________;(2)从表格中探究a a①10 3.16≈1000≈________;①8.973b=,用含m的代数式表示b,则b=________;m897.3(3)a a的大小.当________a a>;当________a a=;当________a a.【类型四】实数✭✭平方根(算术平方根)✭✭立方根➽拓展与应用【类型①】实数➼➻应用➼➻化简✭✭求值(四个题)18.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).(1)图中拼成的正方形的面积是___________;边长是___________;(2)你能把十个小正方形组成的图形纸(图3),剪开并拼成正方形吗?若能,请仿照图的形式把它重新拼成一个正方形.并求出这个正方形的边长是___________.19.如图,长方形内有两个相邻的正方形,面积分别为9和6,(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)(2)求图中阴影部分的面积.(3)若小正方形边长的值的整数部分为x,小数部分为y,求(y6)x的值.20.综合与实践如图是一张面积为2400cm的正方形纸片.(1)正方形纸片的边长为______;(直接写出答案)(2)若用此正方形纸片制作一个体积为3216cm的无盖正方体,请在这张正方形纸片上画出无盖正方体的平面展开图的示意图,并求出该正方体所用纸片的面积.21.“2”探究活动,根据各探究小组的汇报,完成下列问题.(1) 22我们知道面积是222 1.4=+,画出如下示意图.>.2 1.4x由面积公式,可得2x+______2=.因为x值很小,所以2x更小,略去2x,得方程______,解得x≈____(保留到0.001),2≈_____.(2) 22过程.现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.x x>.依题意,割补前后图形的面积相等,小敏同学的做法是:设新正方形的边长为()0有22x =,解得2x 1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形.请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.【类型②】实数➼➻综合➼➻拓展✭✭提升(三个题)22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322=-a b b a 的值.解:由题意得(3)(2)20-++a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,2是无理数,所以a -3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -=+x+y 的值.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;①若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.24.探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y= ;(2)从表格中探究a a①101000≈ ;① 3.24 1.8a 180,则a = ;(3) 312 2.289≈30.2289z =,则z= .参考答案1.(1)10.2x =,2 2.2x =-(2)12x =-【分析】(1)首先移项,然后利用直接开平方,即可求出答案; (2)先直接开立方,即可求出答案. 解:(1)()2251360x +-=,∴()225136x +=,∴()236125x +=, ∴10.2x =,2 2.2x =-.(2)()3218x -=-,∴212x -=-,∴12x =-.【点拨】本题主要考查了解方程,熟练掌握求平方根和求立方根的方法是解本题的关键. 2.(1)x =85±(2)x =247-(3)121322x x ==-,【分析】(1)移项,系数化为1后求平方根即可; (2)移项,系数化为1后求立方根即可解题; (3)先求平方根,然后解一元一次方程解题. 解:(1)225640x -=, 22564x =,26425x =, x =85±;(2)()33433270x ++=, ()3343327x +=-,327(3)343x +=-, 3x +=-37, x =247-; (3)2(21)16x +=212x +=±,212x +=,212x +=-,①121322x x ==-,.【点拨】本题考查平方根,立方根,注意一个正数的平方根有两个,它们互为相反数. 3.2(2)43【分析】(1)先计算立方值、绝对值、立方根,再把有理数和无理数分别计算即可; (2)先计算立方根、平方值、平方根、绝对值,再把有理数和无理数分别计算即可. (1)解:原式=12122-+2 (2)解:原式=595233-+-+=43【点拨】本题考查实数的运算,熟练掌握立方根、立方值、平方值、平方根、绝对值的计算方法是解题关键.4.(1) 2.4- (2)2【分析】(1)根据算术平方根、立方根的定义及性质分别计算后再根据有理数加减运算法则求解即可;(2)根据相反数的定义及性质直接运算即可得到答案.(1310.0184-()1=0.1+22--0.120.5=-- 2.4=-;(23322=-【点拨】本题考查有理数的运算,涉及到算术平方根、立方根的定义及性质和相反数的定义及性质,熟练掌握相关运算法则及性质是解决问题的关键.5.32;(2)23 (3)4±【分析】(1)根据两点间的距离公式,直接右边的数减去距离即得左边的数; (2)代入m 求值即可;(3)根据非负数的性质,求得c,d 的值,代入即可求解. (1)解:(1)32m =, 32; (2)解:()221m m +++=)2322321++=313+ =23+故答案为:23+(3)解:①24c + 4d -, ①|24|c + 4d -, ①24|0|c ≥+ 4d -, ①|2|40c += 4d -, ①24c d -=,=,①()2382234816c d ++=⨯-+⨯+=, ①164±=±.【点拨】本题考查的是两点间的距离公式、非负数的性质,关键是要会理解两点间的距离,最后求的平方根有两个.6.(1) 4a =,5b =(2)49(3)2【分析】(1)根据一个数的两个平方根互为相反数可得答案; (2)求出3a +或者215a -的平方即可得出答案; (3)将,a b 的值代入1a b +-中,求其立方根即可. (1)解:x 的平方根是3a +与215a -,(3)(215)0a a ∴++-=,解得4a =, 213b -=,5b ∴=;(2)x 的平方根是3a +与215a -,22(3)(43)49x a ∴=+=+=;(33314512a b +-+-=.【点拨】本题考查了平方根以及立方根,熟知一个数的两个平方根互为相反数是解本题的关键.7.(1)3-或7-(2)15 或7-【分析】(1)利用绝对值的定义求出a 的值,利用平方根的定义求出b 的值,利用立方根的定义求c 的值,代入即可求出a +b 的值;(2)根据ab 小于0,得到ab 异号,求出a 与b 的值,代入所求式子中计算即可求出值.(1)解:①235,4,8a b c ===-.①5,2,2a b c =±=±=-, ①a b <, ①5,2a b =-=±,①523a b +=-+=-或527a b +=--=-, 即a b +的值为3-或7-; (2)①0,2abc c =->, ①0ab <,①5,2==-a b 或 5,2a b =-=, ①当5,2,2a b c ==-=-时,()()3253222a b c --=-⨯--⨯-5+64=+15.=当5,2,2a b c =-==-时,()3253222a b c --=--⨯-⨯-564=--+ 7.=-①3215a b c --=或7-.【点拨】本题考查了代数式求值,涉及的知识有:绝对值及平方根、立方根的定义,求出a 与b 的值是解本题的关键.8.(1)0 (2)35【分析】(1)根据算术平方根和立方根的定义计算即可;(25151介于那两个连续整数之间,从而确定它们的整数部分和51的小数部分,继而求出23a b +的值.(1)解:原式()3630=---=(2)①459①253<<①3514<<,1512<<51的整数部分3a =51的整数部分为1, 51的小数部分)51152b =-,①)232335235a b +=⨯+⨯=【点拨】本题考查算术平方根与立方根,算术平方根有关的整数部分和小数部分问题,掌握算术平方根和立方根的定义,会估算无理数的范围是解题的关键。

2018年人教版初一数学下册第二课时(算数平方根、平方根、立方根、实数提高部分)教案

2018年人教版初一数学下册第二课时(算数平方根、平方根、立方根、实数提高部分)教案

算术平方根、平方根、立方根提高部分教学内容一、同步知识梳理知识点1:算术平方根的概念如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作a ,读作“根号a ”。

规定0的算术平方根是0。

知识点2:算术平方根的双重非负性负数没有平方根,即被开方数一定是正数或0, 0a ≥;算术平方根是非负数,即0a ≥。

二、同步题型分析【例1】 下列说法正确的是( )A .-5是-25的平方根B .3是(-3)2的算术平方根C .(-2)2的平方根是2D .8的平方根是±4【例2】 (2019•毕节地区)16的算术平方根是( )A .4B .±4C .2D .±2【例3】 若21(2)m n -+-=0,则m =________,n =_________。

三、课堂达标检测题型一:算术平方根【检测题26】化简:=-2)3(π 。

【检测题27】 如果a a 21)12(2-=-,则( )A .a <12 B. a ≤12 C. a >12 D. a ≥12【检测题28】已知()01522=++++-c b a 那么a+b-c 的值为___________.一、同步知识梳理知识点3:平方根的概念如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即:如果2x a =,那么x 叫做a 的平方根,记作a ±,读作“正、负根号a ”。

知识点4:平方根的性质正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

知识点5:两个重要的公式 ①()0≥a a a =2)(; ②a a =2 二、同步题型分析【例1】 判断下列说法的是否正确(1)a 的平方根可以写成±a .( )(2)只有正数才有平方根.( )(3)(-a )2的平方根是±a .( )(4)正数a 的平方根一定比a 小.( )(5)一个正数的平方根的平方就是这个数.( )(6)一个正数的平方的平方根就是这个数.( )【例2】已知实数a b c、、在数轴上的位置如下,化简()222a b a b c a c+++---三、课堂达标检测题型一:平方根概念【检测题1】下列各数:-2,(-3)2,|-0.5|,0,-(-1),其中有平方根的数有____个.【检测题2】下列说法中正确的是( )A.-1的平方根是-1B.如果一个数有平方根,那么这个数的平方根一定有两个C.任何一个非负数的平方根都是非负数D.2是4的平方根【检测题3】 9的平方根是________.【检测题4】 0.16的平方是________,0.16的平方根是________.【检测题5】 (-4)3的相反数的倒数的平方根是________.【检测题6】若13是m的一个平方根,则m的另一个平方根是________.【检测题7】若5x+4的平方根是±1,则x=________.【检测题8】求下列数的平方根⑴100 ⑵916⑶0.25 ⑷16-⑸ 0 (6)256【检测题9】 ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.49【检测题10】 16的平方根是( )A .4 B.C. 2D. 【检测题11】若7x =,则_____x =,x 的平方根是_____ 【检测题12】 求下列各数中的x 值⑴225x = ⑵2810x -= ⑶2449x =⑷225360x -= (5)().063-23252=+x【检测题13】已知a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+++的值。

第六章 实数(提高卷)(解析版)

第六章 实数(提高卷)(解析版)

第六章实数(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.在实数中无理数的个数为()A.1个B.2个C.3个D.4个【答案】B【分析】根据无理数的定义求解即可.【解答】解:在实数中,无理数有,共2个,故选:B.【知识点】立方根、无理数、算术平方根2.已知m=,则下列对m值的范围估算正确的是()A.1<m<2B.2<m<3C.3<m<4D.4<m<5【答案】C【分析】估算确定出m的范围即可.【解答】解:∵1<<2,,∴3<<4,即3<m<4,故选:C.【知识点】估算无理数的大小3.实数a、b在数轴上的位置如图所示,化简的结果是()A.﹣2B.0C.﹣2a D.2b【答案】A【分析】根据实数a和b在数轴上的位置,确定出其取值范围,再利用二次根式和绝对值的性质求出答案即可.【解答】解:由数轴可知﹣2<a<﹣1,1<b<2,∴a+1<0,b﹣1>0,a﹣b<0,∴=|a+1|+|b﹣1|﹣|a﹣b|=﹣(a+1)+(b﹣1)+(a﹣b)=﹣a﹣1+b﹣1+a﹣b=﹣2故选:A.【知识点】二次根式的性质与化简、实数与数轴4.已知无理数x=+2的小数部分是y,则xy的值是()A.1B.﹣1C.2D.﹣2【答案】A【分析】因为4<+2<5,所以+2的整数部分是4,小数部分是﹣2,由此代入求得数值即可.【解答】解:∵4<+2<5,∴+2的整数部分是4,小数部分是﹣2,则xy=.故选:A.【知识点】估算无理数的大小5.已知等腰三角形的两边长满足+b2﹣4b+4=0,那么这个等腰三角形的周长为()A.8B.10C.8或10D.9【答案】B【分析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【解答】解:根据题意得,a﹣4=0,b﹣2=0,解得a=4,b=2,①4是腰长时,三角形的三边分别为4、4、2,∵4+2=6>4,∴能组成三角形,周长=4+4+2=10,②4是底边时,三角形的三边分别为4、2、2,∵2+2=4,∴不能组成三角形,所以,三角形的周长为10.故选:B.【知识点】等腰三角形的性质、三角形三边关系、非负数的性质:算术平方根、非负数的性质:偶次方6.已知(1﹣x)2+,则x+y的值为()A.1B.2C.3D.5【答案】C【分析】根据非负数的性质:它们相加和为0时,必须满足其中的每一项都等于0.即可求得x,y的值.【解答】解:∵(1﹣X)2+∴解得∴x+y=1+2=3.故选:C.【知识点】非负数的性质:绝对值、非负数的性质:算术平方根7.对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A.4B.5C.6D.7【答案】B【分析】根据新定义可得出关于x的一元一次不等式组,解之取其中的整数即可得出结论.【解答】解:由题意得,解得4<x<6,则该不等式组的整数解为5,故选:B.【知识点】一元一次不等式组的整数解、实数的运算8.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第10行从左至右第5个数是()A.﹣2B.﹣5C.D.【答案】B【分析】根据题意可以发现每行数字个数的变化规律和每行中的数的特点,从而可以求得第10行从左至右第5个数是哪个数,本题得以解决.【解答】解:由图可得,被开方数是偶数时,值为负,奇数时值为正,第一行1个数,第二行2个数,第三行3个数,…,则第10行10个数,故前9行的数的个数一共有:1+2+3+…+9=45个,则第10行从左至右第5个数是:﹣=﹣5,故选:B.【知识点】算术平方根、规律型:数字的变化类9.类比平方根和立方根,我们定义n次方根为:一般地,如果x n=a,那么x叫a的n次方根,其中n>1,且n是正整数.例如:因为(±3)4=81,所以±3叫81的四次方根,记作:,因为(﹣2)5=﹣32,所以﹣2叫﹣32的五次方根,记作:,下列说法不正确的是()A.负数a没有偶数次方根B.任何实数a都有奇数次方根C.D.【答案】D【分析】根据根式定义逐项判断.【解答】解:A.负数a没有偶数次方根,正确;B.任何实数a都有奇数次方根,正确;C.=a,正确;D.=|a|,故错误,故选:D.【知识点】立方根、分数指数幂、平方根10.a2=2,b3=3,c4=4,d5=5,且a、b、c、d为正数,则()A.a<b<c<d B.b<a<c<d C.d<a=c<b D.a=c<d<b【答案】C【分析】根据题意,比较a、b、c、d的大小关系,可以比较它们的相同的次幂,乘方的值大,则对应的数就大,据此即可作出判断.【解答】解:∵a2=2,c4=4,∴c2=2=a2,a=c,又∵a6=(a2)3=8,b6=(b3)2=9,∴b>a=c,比较b与d的大小:∵b15=(b3)5=243,d15=(d5)3=125,∴b>d,比较a与d的大小:∵a10=(a2)5=32,d10=(d5)2=25,∴a>d∴d<a=c<b.故选:C.【知识点】实数大小比较11.观察:=1+,=1+,s=+++…+,则s的整数部分是()A.2016B.2015C.2014D.2013【答案】C【分析】根据关系式,得到s的规律,再经过裂项计算即可.【解答】解:由规律可知s=1++1++1++…+1+(共有2014个1)=2014+1…+=2014+则s的整数部分为2014故选:C.【知识点】规律型:数字的变化类、估算无理数的大小12.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[﹣1.2}=﹣2.对数字65进行如下运算:①[]=8:②[]=2:③[]=1,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过()次运算后的结果为1.A.3B.4C.5D.6【答案】A【分析】根据[x]表示不超过x的最大整数计算,可得答案.【解答】解:255→第一次[]=15→第二次[]=3→第三次[]=1,则数字255经过3次运算后的结果为1.故选:A.【知识点】估算无理数的大小、实数的运算二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.计算:=.【答案】-1【分析】直接利用零指数幂的性质和负整数指数幂的性质、特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:1﹣2=﹣1.故答案为:﹣1.【知识点】实数的运算14.若有理数a,b满足a+b+3=a﹣b+7,则a=,b=.【答案】【第1空】7【第2空】2【分析】根据无理数的概念列出算式,分别求出a、b.【解答】解:∵a、b是有理数,b+3+a=a﹣b+7,∴b+3=a﹣b,a=7,解得,a=7,b=2,故答案为:7;2.【知识点】实数的运算15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为.【答案】16【分析】利用非负数的性质求出b的值,推出a=c,推出PQ=6,根据PQ向右平移a个单位长度,其扫过的面积为24,推出a=4即可解决问题.【解答】解:∵|a﹣c|+=0,又∵|a﹣c|≥0,≥0,∴a﹣c=0,b﹣8=0,∴a=c,b=8,∴P(a,8),Q(a,2),∴PQ=6,∵线段PQ向右平移a个单位长度,其扫过的面积为24,∴a=4,∴a=c=4,∴a+b+c=4+8+4=16,故答案为16.【知识点】坐标与图形变化-平移、非负数的性质:绝对值、非负数的性质:算术平方根16.设2016a3=2017b3=2018c3,abc>0,且=++,则++=【答案】1【分析】充分利用2016a3=2017b3=2018c3这个关系,对=++中的a、b都用c进行替换即可求解.【解答】解:===(),++=+=(),即:=,解得:=1.故答案为1.【知识点】分式的加减法、立方根三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1);(2)﹣;(3).【分析】(1)直接利用算术平方根的性质化简得出答案;(2)直接利用立方根的定义化简得出答案;(3)直接利用算术平方根的性质、立方根的定义化简得出答案.【解答】解:(1)=0.9﹣0.2=0.7;(2)﹣=﹣=﹣;(3)=﹣11+﹣6﹣0.5=﹣16.【知识点】实数的运算、立方根18.有理数a和b对应点在数轴上如图所示:(1)大小比较:a、﹣a、b、﹣b,用“<”连接;(2)化简:|a+b|﹣|a﹣b|﹣2|b﹣1|.【分析】(1)先根据数轴的特点判断出a、b的符号,再根据两点到原点的距离判断出﹣b与a的大小即可.(2)根据数轴点的特点可以得到a+b<0,a﹣b<0,b﹣1<0,再把要求的式子进行化简即可得出答案.【解答】解:(1)根据数轴上点的特点可得:a<﹣b<b<﹣a;(2)根据数轴给出的数据可得:a+b<0,a﹣b<0,b﹣1<0,则|a+b|﹣|a﹣b|﹣2|b﹣1|=﹣a﹣b﹣(b﹣a)﹣2(1﹣b)=a﹣b﹣b+a﹣2+2b=﹣2.【知识点】实数大小比较、绝对值、数轴19.已知A=是2x﹣y+4的算术平方根,B=是y﹣3x的立方根,试求A+B的平方根.【分析】先根据题意列方程组,解方程组求出对应的x和y的值,再计算A和B的值,最后计算其结果.【解答】解:由题意得:,方程组整理,得,,②﹣①,得3y=3,解得y=1,把y=1代入①,得x﹣1=2,解得x=3,∴A==,B==,∴A+B=3﹣2=1,∴A+B的平方根为:.【知识点】立方根、平方根、算术平方根20.解答下列各题.(1)已知:y=﹣﹣2019,求x+y的平方根.(2)已知一个正数x的两个平方根分别是a+2和a+5,求这个数x.【分析】(1)根据二次根式有意义的条件列出不等式,解不等式求出x,进而求出y,根据平方根的概念解答;(2)根据平方根的概念列出方程,解方程求出a,根据有理数的平方法则计算即可.【解答】解:(1)由题意得,x﹣2020≥0,2020﹣x≥0,解得,x=2020,则y=﹣2019,∴x+y=2020﹣2019=1,∵1的平方根是±1,∴x+y的平方根±1;(2)由题意得,a+2+a+5=0,解得,a=﹣,则a+2=﹣+2=﹣,∴x=(﹣)2=.【知识点】二次根式有意义的条件、平方根21.已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是的整数部分.(1)求a,b,c的值;(2)求2a﹣b+的平方根.【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵<<,∴6<<7,∴的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+=﹣6﹣5+×6=16,2a﹣b+的平方根为±=±4.【知识点】估算无理数的大小、平方根22.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:①(2+i)+(3﹣4i)=(2+3)+(i﹣4i)=5﹣3i②(5+i)(3﹣4i)=5×3﹣5×4i+3i﹣4i2=15﹣20i+3i﹣4×(﹣1)=19﹣17i③(5+i)(5﹣i)=52﹣i2=25﹣(﹣1)=26(1)填空:i6=,i4n+3=(n为正整数)(2)填空:①=;②(1+2i)2=.(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知(1﹣i)x+(﹣i﹣1)y=1﹣3i,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式.(5)解方程:x2﹣x+1=0.【答案】【第1空】-1【第2空】-i【第3空】1【第4空】4i-3【分析】(1)把i2=﹣1代入求出即可;(2)①先根据平方差公式进行计算,再把i2=﹣1代入求出即可;②先根据完全平方公式进行计算,再把i2=﹣1代入求出即可;(3)根据两个复数相等的定义得出方程组,求出方程组的解即可;(4)根据分子和分母都乘以1﹣i,再进行计算即可;(5)原式化为x2﹣x=i,利用配方法求解即可.【解答】解:(1)i6=(i2)3=﹣1,i4n+3=(i2)2n×i2×i=﹣i,故答案为:﹣1,﹣i;(2)①=﹣i2=+=1;②(1+2i)2=1+4i+4i2=1+4i+4×(﹣1)=4i﹣3;故答案为1;4i﹣3;(3)(1﹣i)x+(﹣i﹣1)y=1﹣3i,(x﹣y)﹣(x+y)i=1﹣3i,∴解得:x=2,y=1;(4)=====﹣i;(5)x2﹣x+1=0,x2﹣x=﹣1,∵i2=﹣1,∴x2﹣x=i2,x2﹣x+=i2+,(x﹣)2=i2+x﹣=±,x1=,x2=.【知识点】二元一次方程的解、实数的运算23.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为,当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a﹣b例如:T(1,3)=1+3=4:T(2,﹣1)=2﹣(﹣1)=3材料二:关于数学家高斯的故事,200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?(1+100)据说,当其他同学忙于把100个数还项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:+(2+99)+…+(50+51)=101×50=5050也可以这样理解:令S=1+2+3+…+100,则S=100+99+…+3+2+1②①+②:2S==100×101=10100,即S==5050.根据以上材料,回答下列问题:(1)已知x+y=10,且x>y,求T(5,x)﹣T(5,y)的值;(2)对于正数m,有T(m2+1,﹣1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.【分析】(1)根据x+y=10,且x>y,可得x>5,y<5,再根据当a<b时T(a,b)=a+b;当a≥b时,T(a,b)=a﹣b,即可求解;(2)由于m2+1≥1,由T(m2+1,﹣1)=3,可得m2+1﹣(﹣1)=3,根据m是正数可求m,再代入T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)得到原式=1+100+2+100+3+100+…+199﹣100,再根据高斯求和公式即可求解.【解答】解:(1)∵x+y=10,且x>y,∴x>5,y<5,∴T(5,x)﹣T(5,y)=5+x﹣(5﹣y)=x+y=10;(2)∵m是正数、m2+1≥1,T(m2+1,﹣1)=3,∴m2+1﹣(﹣1)=3,解得m=±1(负值舍去),∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=1+100+2+100+3+100+…+199﹣100=(1+2+3+…+199)+100×99﹣100×100=(1+199)×199÷2﹣100=100×199﹣100=100×198=19800.【知识点】数学常识、实数的运算、规律型:数字的变化类。

《数的开方》全章复习与巩固--知识讲解(提高)

《数的开方》全章复习与巩固--知识讲解(提高)

《数的开方》全章复习与巩固—知识讲解(提高)责编:杜少波【学习目标】1.了解平方根、立方根的概念,会用根号表示数的平方根、立方根;了解开方与平方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;2.理解无理数和实数的概念,知道实数与数轴上的点一一对应,了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化;3.能用适当的有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22aaaaaaaaa333333)(aaaaaa-=-==要点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数, 如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应. 3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、平方根和立方根1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( ) A.2个 B.3 个 C.4 个 D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列说法其中错误的是( )A .5是25的算术平方根B .()24-的平方根是-4 C .()34-的立方根是-4D .0的平方根与立方根都是0【答案】B ;2、已知M 是满足不等式63<<-a 的所有整数a 的和,N 是满足不等式2237-≤x 的最大整数.求M +N 的平方根. 【答案与解析】 解:∵36a -<<的所有整数有-1,0,1,2所有整数的和M =-1+1+0+2=2 ∵2237-≤x ≈2,N 是满足不等式2237-≤x 的最大整数. ∴N =2∴M +N =4,M +N 的平方根是±2.【总结升华】先由已知条件确定M 、N 的值,再根据平方根的定义求出M +N 的平方根. 类型二、实数的概念与运算3、(2014秋•章丘市校级期末)设x 是的整数部分,y 是的小数部分,化简|x﹣y ﹣3|.【思路点拨】求出的范围,得出x=5,y=﹣5,代入求出即可.【答案与解析】 解:∵<<,∴5<<6, ∴x=5,y=﹣5, ∴|x ﹣y ﹣3|=|5﹣(﹣5)﹣3|=|7﹣| =7﹣.【总结升华】本题考查了估算无理数的大小和绝对值,解此题的关键是求出x 、y 的大小. 举一反三:【变式】 已知5+11的小数部分为a ,5-11的小数部分为b ,则a +b 的值是 ;a -b 的值是_______.【答案】1;2117a b a b +=-=-;提示:由题意可知113a =-,411b =-.4、已知无理数10在3.1622与3.1623之间,π在3.1415与3.1416之间.求10−π的值.(结果精确到百分位)【思路点拨】先求出10−π的值的区间,再求出近似数. 【答案与解析】解:∵无理数10在3.1622与3.1623之间,π在3.1415与3.1416之间.∴3.1622-3.1416<10−π<3.1623-3.1415, 0.0206<10−π<0.0208, ∴10−π≈0.02.【总结升华】中间过程应多保留一位小数. 举一反三:【变式】(2015春•北京校级期中)阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:∵<<,设=3+k (0<k <1), ∴()2=(3+k )2, ∴13=9+6k+k 2,∴13≈9+6k ,解得k ≈, ∴≈3+≈3.67.(上述方法中使用了完全平方公式:(a+b )2=a 2+2ab+b 2,下面可参考使用)问题: (1)请你依照小明的方法,估算 ≈ (结果保留两位小数); (2)请结合上述具体实例,m 的公式:已知非负整数a 、b 、m ,若a m <a+1,且m=a 2+b m ≈ (用含a 、b 的代数式表示).【答案】(1)6.08;(2).解:(1)∵<<,设=6+k (0<k <1),∴()2=(6+k )2, ∴37=36+12k+k 2, ∴37≈36+12k ,解得k ≈, ∴≈6+≈6.08.故答案为:6.08;(2)若a <m <a+1,且m=a 2+b ,则m ≈a+.故答案为:.类型三、实数综合应用5、(2016春•南昌期末)已知实数x 、y 满足,求2x ﹣的立方根.【答案与解析】解:由非负数的性质可知:2x ﹣16=0,x ﹣2y +4=0, 解得:x=8,y=6.∴2x ﹣y=2×8﹣×6=8. ∴2x ﹣的立方根是2.【总结升华】本题主要考查的是非负数的性质、立方根的定义,求得x 、y 的值是解题的关键.举一反三:【变式】设a 、b 、c 都是实数,且满足08)2(22=+++++-c c b a a , 求23a b c --的值.【答案】解:∵08)2(22=+++++-c c b a a∴220080a a b c c -=⎧⎪++=⎨⎪+=⎩,解得248a b c =⎧⎪=⎨⎪=-⎩∴2341280a b c --=-+=.6、如图,数轴上A、B两点,表示的数分别为-1和3,点B关于点A的对称点为C,求点C所表示的实数.【思路点拨】首先结合数轴和利用已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.【答案与解析】解:∵数轴上A、B两点,表示的数分别为-13∴点B到点A的距离为13则点C到点A的距离也为13,设点C的坐标为x,则点A到点C的距离为-1-x=13∴x=-23【总结升华】此题主要考查了实数与数轴之间的定义关系,其中利用了:当点C为点B关于点A的对称点,则点C到点A的距离等于点B到点A的距离.两点之间的距离为两数差的绝对值.。

实数,无理数以及平方根与立方根题型总结

实数,无理数以及平方根与立方根题型总结

实数中的平方根和立方根一、平方根【学习目标】1.了解开方与乘方互为逆运算,会用平方运算求百以内整数的平方根2.了解算术平方根、平方根的概念,会用根号表示数的算术平方根、平方根【知识点】1.正数a的两个平方根可以用“”表示,其中“”表示a的正平方根(又叫算数平方根),读作“根号a”;“”表示a的负平方根,读作“负根号a”.零的平方根记作“”,.【总结】(1)一个正数有两个平方根,它们互为相反数;(2)零的平方根是零;(3)负数没有平方根.【说明】负数没有平方根,或者说负数不能进行开平方运算,这个结论只是在实属范围内正确.【经典例题】1.若√x+2在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.;B.;C. ;D. .2.要使二次根式√x−3有意义,则x的取值范围是()A. x≠3;B. x>3;C. x≤3;D. x≥3.3.下列各式中,正确的是()A. √42=−4;B. √(−4)2=−4;C. −√42=4;D. √(−4)2=44.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a−b)等于()A. 7;B. 6;C. 5;D. 4.5.下列说法正确的是()①−√2是2的一个平方根;②(−2)2的算术平方根是—2;③√16的平方根是±2;【知识点】【经典例题】例1.实数-2,0.4,17,√2,−π中,无理数的个数是( ) A. 2个;B. 3个;C. 4个;D. 5个.例2.将下列有理数分类17,﹣1,12,0,﹣3.01,0.62,﹣15,−812,180,﹣15% (1)正数集合:{ };(2)整数集合:{ };(3)分数集合:{ };(4)非负数集合:{ }.例3.有下列说法:①任何实数都可以用分数表示;②实数与数轴上的点一一对应;③在1和3之间的无理数有且只有√2,√3,√5,√7这4个;④π2是分数,它是有理数.其中正确的个数是( )A. 1;B. 2;C. 3;D. 4.例4.把下列各实数填在相应的大括号内π2,−|−3|,√−127,0,227,−3.,√5,1−√2,1.1010010001…(两个1之间依次多1个0).整数 { …};分数 { …};无理数 {… };负数 { …}.四、实数比较大小【知识点】1.数轴比较法2.作差法3.作商法4.倒数比较法,5.平发法6.比较被开方数7.特殊值法,-2,√5表示在数轴上,并用“<”将它们从小到大连接起来.例1.把112例2.如图所示,数轴上点A表示的数是−1,O是原点,以AO为边作正方形AOBC,以A为圆心、AB长为半径画弧交数轴于P1、P2两点,则点P1表示的数是,点P2表示的数是.例3.若实数a,b在数轴上的位置如图所示,则下列判断正确的是()A. a>0;B. ab>0;C. a<b;D. a,b互为倒数.例4.比较大小:-3__________ .(填“>””<”或“=”号)例5.已知a=(﹣1)2016,b=﹣(﹣1.2),c=﹣32,则a,b,c的大小关系是()A. a>b>cB. a>c>bC. c>a>bD. b>a>c例6.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A. M<NB. M=NC. M>ND. 不能确定例7.当时,的大小顺序是__________例8.比较两实数的大小:与【经典例题】例1.若x−1是125的立方根,则x−7的立方根是.例2.已知x,y为实数,且满足=0,那么x3-y3=__________.例3.下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个A. 1B. 2C. 3D. 4 例4.已知,且与互为相反数,求的平方根.例5.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知,求的立方根.(3)已知x、y为实数,且.求的值.例6.问题:(1);(2);(3).探究1,判断上面各式是否成立.(1)______(2)______(3)______探究2:并猜想=______。

平方根和立方根专题(比较难)

平方根和立方根专题(比较难)

平方根和立方根专题(比较难) 平方根和立方根知识归纳】1.平方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术平方根,记为$\sqrt{x}$。

规定,$\sqrt{1}=1$。

2)一个正数的平方根有2个,它们互为相反数;只有1个平方根,它是本身;负数没有实数平方根。

3)两个公式:a)$(a+b)^2=a^2+2ab+b^2$;b)$(a-b)^2=a^2-2ab+b^2$。

2.立方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术立方根,记为$\sqrt[3]{x}$。

2)一个正数的立方根有1个,负数有1个立方根。

3)立方根的性质:a)$\sqrt[3]{a^2}=a^{\frac{2}{3}}$;b)$a^3=(\sqrt[3]{a})^3$。

4.已知某数有两个平方根分别是$a+3$与$2a-15$,求这个数。

设这个数为$x$,则有$(a+3)^2=x$,$2a-15$也是$x$的平方根,因此$(2a-15)^2=x$。

解得$a=7$,$x=64$。

5.已知:$2m+2$的平方根是$\pm4$,$3m+n+1$的平方根是$\pm5$,求$m+2n$的值。

由题意可列出方程组:begin{cases}sqrt{2m+2}=4\\sqrt{3m+n+1}=5end{cases}$解得$m=6$,$n=13$,因此$m+2n=32$。

6.已知$a<0$,$b<0$,求$4a^2+12ab+9b^2$的算术平方根。

4a^2+12ab+9b^2=(2a+3b)^2$,因此算术平方根为$|2a+3b|$。

7.甲乙二人计算$a+1-2a+a^2$的值,当$a=3$的时候,得到下面不同的答案:甲的解答:$a+1-2a+a^2=a+(1-a)^2=a+1-a=1$。

乙的解答:$a+1-2a+a^2=a+(a-1)^2=a+a-1=2a-1=5$。

哪一个解答是正确的?错误的解答错在哪里?为什么?乙的解答是正确的。

(完整版)平方根与立方根典型题大全

(完整版)平方根与立方根典型题大全

1激发兴趣,教给方法,培养习惯,塑造品格乐学,让学习更快乐乐学教育平方根与立方根典型题大全一、 填空题1 .如果 x 9,那么x = _________ ;如果 X 9,那么x _____________ 2•若一个实数的算术平方根等于它的立方根,则这个数是 ____________ ;3. __________________________________ 算术平方根等于它本身的数有 ___ 立方根等于本身的数有 ________________________________ .4. 若 -,.x 3 x,贝Vx ______ ,若•- x 2x,贝Ux ______ 。

4.的平方根是 ____________ ,V4的算术平方根是 ________ ,10 2的算术平方根是 ___________ ; 5 .当m ______时,3 m 有意义;当m _________ 时,3 m 3有意义;6.若一个正数的平方根是2a 1和a 2,则a __________ ,这个正数是 _________ ;7. _______________________________ TTH 2的最小值是 ________ 此时a 的取值是.二、 选择题 8. 若x 2a ,则()A. x 0B.x 0C.a 0D.a 08. (3)2的值是().A.3 B .3C 9D .99. 设x 、y 为实数, 且 y 45 x . x 5,则x y 的值是()A 1B、9C、4D 、510 .如果 3x 5有意义, 则x 可以「 取的最小整数为().A. 0B.1C.2D.311. 一个等腰三角形的两边长分别为5 2和2 3,则这个三角形的周长是( )A 、10 .2 2 3B 、5 .2 4 3C 、10 2 2.3 或 5 2 4 3D 、无法确定12.若x 5能开偶次方,则x 的取值范围是( )A. x 0B.x 5C.x 5D.x 513.若n 为正整数,则姑'、1 1等于( )A. -1B.1C.± 1D. 2n 114.若正数a 的算术平方根比它本身大, 则()底」乐学教育2 激发兴趣,教给方法,培养习惯,塑造品格A. 0 a 1B. a 0C. a 1D. a 1三、解方程12. (2x 1)38 13 .4(x+1) 2=8 14. (2x 3)225 12x四、解答题15.已知:实数a、b满足条件a 1 (ab 2)20试求1 1 1 1的值ab (a 1)(b 1) (a 2)(b 2) (a 2004)(b 2004)乐学,让学习更快乐。

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质2=),那么这个数x就叫做a的平方根(或二如果一个数x的平方等于a(即x a=±,这里a是x的平方数,故a必是一个非负数即a≥0;例次方根),记作:x a如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。

正数a的正的平方根叫做a的算术平方根,表示为()a a≥0,例如16的算术平方=,从定义中容易发现:算术平方根具有双重非负性:①a≥0;②根是164a≥0。

2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。

联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。

3. 立方根的定义与性质3=),那么这个数x就叫做a的立方根(或三次如果一个数x的立方等于a(即x a=3。

方根),记作:x a立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析例1.求()-32的平方根。

2错解:()-=39()∴-32的平方根是-32是一个正数,故它的剖析:一个正数有两个平方根,它们互为相反数,而()-=39平方根应有两个即±3。

例2. 求9的算术平方根。

2=错解: 39∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。

93=,而3的算术平方根为3,故9的算术平方根应为3。

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全平方根与立方根典型题大全一、填空题1.如果$x=9$,那么$x=$ 3;如果$x^2=9$,那么$x=$ 3 或$-3$。

2.若一个实数的算术平方根等于它的立方根,则这个数是1.3.算术平方根等于它本身的数有 1,立方根等于本身的数有 1.4.若$x=3\sqrt{x}$,则$x=0$ 或 $x=9$;若$x^2=-x$,则$x=0$ 或 $x=-1$。

5.当$m3$时,$3m-3$有意义。

6.若一个正数的平方根是$2a-1$和$-a+2$,则$a=2$,这个正数是 3.7.$a+1+2$的最小值是 2,此时$a$的取值是 $-1$。

二、选择题8.若$x^2=a$,则 $|x|\geq 0$,即$x$可以是正数或零,选项B。

8.$(-3)^2=9$,选项D。

9.$y=4+5-x+x-5=-1$,$x-y=x+1$,选项A。

10.当$3x-5>0$时,$x>\frac{5}{3}$,最小整数为2,选项C。

11.一个等腰三角形的周长是 $2\times 5+3\sqrt{2}$,选项D。

12.若$x-5$能开偶次方,则$x\geq 5$,选项C。

13.$2n+1-1=2n$,选项D。

14.正数$a$的算术平方根比它本身大,即$\sqrt{a}>a$,移项得$\sqrt{a}-a>0$,两边平方得$a>1$,选项D。

三、解方程12.$(2x-1)=-8$,解得$x=-\frac{7}{2}$。

13.$4(x+1)^2=8$,解得$x=\pm\sqrt{2}-1$。

14.$(2x-3)^2=25$,解得$x=2$ 或 $x=-\frac{1}{2}$。

四、解答题15.已知:实数$a$、$b$满足条件$a-1+(ab-2)^2=$试求$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}$$解:将$a-1$移到等式右边,得$$(ab-2)^2=-a+1+(ab-2)^2$$两边同时除以$(ab-2)^2$,得$$1=\frac{-a+1}{(ab-2)^2}+1$$移项得$$\frac{1}{ab-2}=\frac{-a+1}{(ab-2)^2}$$两边同时乘以$\frac{1}{ab}$,得$$\frac{1}{ab(ab-2)}=\frac{-1}{ab-2}+\frac{1}{ab}$$移项得$$\frac{1}{ab}=\frac{1}{ab-2}+\frac{1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab}=\frac{ab-2+1}{ab(ab-2)}+\frac{1}{ab(ab-2)}$$化简得$$\frac{1}{ab}=\frac{ab-1}{ab(ab-2)}$$两边同时乘以$\frac{1}{a+1}$,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(a+2)(ab-2)}$$化简得$$\frac{1}{ab(a+1)(a+2)}=\frac{b(ab-1)}{ab(a+2)(ab-2)(a+1)}$$同理,将左边的式子乘以$\frac{1}{a+2}$,得$$\frac{1}{ab(a+1)(a+2)}=\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$将两个式子相加,得$$\frac{2}{ab(a+1)(a+2)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)(a+2)}+\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$通分并化简得$$\frac{2}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{ab(a+1)(a+2)(ab-2)}$$移项得$$\frac{1}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}$$所以$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}=\frac{1}{ab}\left(\frac{1}{a+1}+\frac{ 1}{a+2}+\cdots+\frac{1}{a+2004}\right)\left(\frac{1}{b+1}+\frac {1}{b+2}+\cdots+\frac{1}{b+2004}\right)$$$$=\frac{1}{ab(a+1) (a+2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+200 4}\right)$$$$=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+2004}\r ight)$$。

完整版)实数难题提高题

完整版)实数难题提高题

完整版)实数难题提高题第1讲实数拓展提高题课专题一:实数相关概念与性质的应用方法指导:本专题主要讲解平方根、算术平方根、立方根、二次根式和无理数的相关概念和性质。

1.下列说法正确的是:()A。

-2是-4的平方根B。

2是(-2)²的算术平方根C。

(-2)²的平方根是2D。

根是±2改写:以下哪个说法是正确的?()A。

-2是-4的平方根B。

2是(-2)²的算术平方根C。

(-2)²的平方根是2D。

根是±22.若a和-a都有意义,则()A。

a≥0B。

a≤0C。

a=0D。

a≠0改写:如果a和-a都是实数,则a的取值范围是()A。

a≥0B。

a≤0C。

a=0D。

a≠03.下列语句中,正确的是()A。

一个实数的平方根有两个,它们互为相反数B。

一个实数的立方根不是正数就是负数C。

负数没有立方根D。

如果一个数的立方根是这个数本身,那么这个数一定是-1或14改写:以下哪个语句是正确的?()A。

一个实数的平方根有两个,它们互为相反数B。

一个实数的立方根不是正数就是负数C。

负数没有立方根D。

如果一个数的立方根是这个数本身,那么这个数一定是-1或144.如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是()A。

n+1B。

n+1C。

n+1D。

n²+1改写:如果一个自然数的算术平方根是n,则下一个自然数的算术平方根是()A。

n+1B。

n+1C。

n+1D。

n²+15.以下四个说法①若a是无理数,则a是实数;②若a是有理数,则a是无理数;③若a是整数,则a是有理数;④若a是自然数,则a是实数。

其中正确的是()A。

①④B。

②③C。

③D。

④改写:以下哪个说法是正确的?()A。

若a是无理数,则a是实数B。

若a是有理数,则a是无理数C。

若a是整数,则a是有理数D。

若a是自然数,则a是实数6.下列二次根式中,不能与2合并的是()A。

1B。

8C。

12D。

18改写:以下哪个二次根式不能与2合并?()A。

实数平方根立方根

实数平方根立方根

实数(一)一.基础知识1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“a±”。

2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

正数与零的算术平方根都只有一个,零的算术平方根是零。

a(a≥0)≥a=aa2;注意a的双重非负性:=-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a-,这说明三次根号内的负号可以移到根号a-=外面。

二.例题分析1.36的平方根是 ;16的算术平方根是 ;2.一个数的平方是9,则这个数是 ( ) , 一个数的立方根是1,则这个数是 ( ) ;3.当x=__________ 时,13-x 有意义;当x= _________ 时,325+x 有意义;4.若164=x ,则x=_________ ;若813=n ,则n= ________ 。

5.下列各式中,正确的是( ) (A)2)2(2-=- (B) 9)3(2=- (C) 393-=- (D) 39±=±6.使x +1x-2有意义的x 的取值范围是( ) A.x ≥0 B.x ≠2 C.x>2 D.x ≥0且x ≠27.若|1-x|-x 2-8x+16 =2x -5,则x 的取值范围是( )A.x>1 B.x<4 C.1≤x ≤4 D.以上都不对8.若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+19.若1<x <3 ;10.求下列χ的值。

①16χ2-9=40 ②4)12=-x ( ③8)12(3-=-x21.计算22.已知实数a 、b 、c 满足,2-c+14=0,,求a+b+c 的值.23.若12112--+-=x x y ,求xy 的值。

《实数和二次根式》全章复习与巩固(提高)知识讲解

《实数和二次根式》全章复习与巩固(提高)知识讲解

实数和二次根式》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】类型平方根立方根项目被开方数非负数任意实数3a符号表示a性质一个正数有两个平方根,且互为一个正数有一个正的立方根;要点二、无理数与实数有理数和无理数统称为实数. 1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点三、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质(1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 取何值,2a 意义.(32a a ,再根据绝对值的意义来进行化简. (42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2)a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.如222,,3,ab x a b +等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如2与8,由于8=22,2与8显然是同类二次根式.要点四、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法(0,0)a b ab a b ⨯=≥≥积的算术平方根化简公式:(0,0)ab a b a b =⨯≥≥二次根式的除法(0,0)a a a b b b=≥> 商的算术平方根化简公式:(0,0)a aa b b b=≥> 要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd ⋅=.(2)被开方数a b 、一定是非负数(在分母上时只能为正数).如(4)(9)49-⨯-≠-⨯-.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-.【典型例题】类型一、有关方根的问题【高清课堂:389318 实数复习,例1】1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根。

(完整版)平方根与立方根及实数(综合提高).doc

(完整版)平方根与立方根及实数(综合提高).doc

平方根与立方根知识点小结及练习一、知识要点1、平方根 : ⑴、定义:如果x 2=a ,则 x 叫做 a 的平方根,记作“a ”( a 称为被开方数) 。

⑵、性质:正数的平方根有两个,它们互为相反数;0 的平方根是 0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“a”。

2、立方根 :⑴、定义:如果x 3=a ,则 x 叫做a 的立方根,记作“3a”(a 称为被开方数) 。

⑵、性质:正数有一个正的立方根; 0 的立方根是 0;负数有一个负的立方根。

3、开平方(开立方) :求一个数的平方根(立方根)的运算叫开平方(开立方) 。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是 0 和 1;立方根是其本身的数是 0 和± 1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3、 a 本身为非负数,即 a ≥0; a 有意义的条件是 a ≥ 0。

4、公式:⑴ ( a )2=a ( a ≥ 0);⑵ 3a =3a ( a 取任何数) 。

5、非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都为0(此性质应用很广,务必掌握) 。

例 1 求下列各数的平方根和算术平方根( 1) 64 ;( 2) ( 3) 2 ; ( 3) 115; ⑷1; (5) 100; ( 6) 25( 7) 0.2549( 3) 2 121例 2 求下列各式的值( 1)81 ; ( 2)16 ; (3)9; ( 4) ( 4) 2 .25( 5) 1.44 ,(6)36 ,(7)25(8)( 25)2 49例 3、求下列各数的立方根:⑴ 343;⑵ 2 10;⑶ 0.729;( 4) 343 ;( 5)8 ;( 6) -0.0064 ;( 7) -729 27 216二、巧用被开方数的非负性求值.当 a≥ 0 时, a 的平方根是± a ,即a是非负数.例 4、若 2 x x 2 y 6, 求y x的立方根.练习: 1、已知y 1 2x2x 12, 求 x y的值.2、已知x 3 y 3 (z 2)20 ,求xyz的值。

(完整版)平方根与立方根练习题

(完整版)平方根与立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。

(完整版)平方根、立方根练习题

(完整版)平方根、立方根练习题

平方根、立方根、实数练习题一、选择题1、化简(-3)2 的结果是( )A.3B.-3C.±3 D .9 2.已知正方形的边长为a ,面积为S ,则( ) A.S =a = C.a =.a S =± 3、算术平方根等于它本身的数( )A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个; 4、下列说法正确的是( )A .a 的平方根是±a ;B .a 的算术平方根是a ;C .a 的算术立方根3a ;D .-a 的立方根是-3a . 5、满足-2<x <3的整数x 共有( )A .4个;B .3个;C .2个;D .1个.6、如果a 、b 两数在数轴上的位置如图所示,则()2b a +的算术平方根是( );A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ;7、如果-()21x -有平方根,则x 的值是( ) A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;8a 是正数,如果a 的值扩大100 ) A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008最接近的一个是( ) A .43;B 、44;C 、45;D 、46;10.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( ) A 、n+1;B 、2n +1;C D 11. 以下四个命题①若a 是无理数,②若a 是有理数,是无理数;③若a 是整数,是有理数;④若a ) A.①④ B.②③ C.③D.④12. 当01a <<,下列关系式成立的是( ) a >a >a <a <a . -1. 0b .. 1.a <a > a >a <13. 下列说法中,正确的是( )A.27的立方根是33= B.25-的算术平方根是5C.a 的三次立方根是D.正数a 14. 下列命题中正确的是( )(1)0.027的立方根是0.3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A.(1)(3)B.(2)(4)C.(1)(4)D.(3)(4) 15. 下列各式中,不正确的是( )><>5=-16.若a<0,则aa 22等于( )A 、21B 、21- C 、±21 D 、0二、填空题17、0.25的平方根是 ;125的立方根是 ;18.计算:412=___;3833-=___;1.4的绝对值等于 .19.若x 的算术平方根是4,则x=___;若3x =1,则x=___; 20.若2)1(+x -9=0,则x=___;若273x +125=0,则x=___; 21.当x ___时,代数式2x+6的值没有平方根; 22.381264273292531+-+= ; 23.若0|2|1=-++y x ,则x+y= ; 24.若642=x ,则3x =____. 25.立方根是-8的数是___,64的立方根是____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根与立方根知识点小结及练习
一、知识要点 1、平方根:
⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:
⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:
1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0有意义的条件是a ≥0。

4、公式:⑴)2=a (a ≥0)=(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根 (1)64;(2)2
)3(-; (3)49151; ⑷ 2
1(3)-; (5)100; (6)25
121
(7)0.25
例2 求下列各式的值
(1)81±; (2)16-; (3)25
9; (4)2
)4(-.
(5)44.1,(6)36-,(7)49
25
±(8)2)25(-
例3、求下列各数的立方根: ⑴ 343; ⑵ 10
227
-; ⑶ 0.729;(4) 343 ;(5) 2168-;(6)-0.0064;(7)-729
二、巧用被开方数的非负性求值.
当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x
的立方根.
练习:1、已知,21221+-+-=x x y 求y x 的值.
2、已知233(2)0x y z -+-++=,求xyz 的值。

3、已知互为相反数,求a ,b 的值。

三、巧用正数的两平方根是互为相反数求值.
当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a
例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.
练习:若32+a 和12-a 是数m 的平方根,求m 的值.
四、巧解方程
例6、解方程(1)(x+1)2
=36 (2)27(x+1)3=64
五、巧用算术平方根的最小值求值.
0≥a ,即a=0时其值最小,换句话说a 的最小值是零.
例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a
的非算术平方根.
六、实数
1、实数:有理数和无理数统称为实数.我们一般用下列两种情况将实数进行分类:
①按属性分类: ②按符号分类
2.关于有理数的运算法则:运算规律和运算性质,在进行实数运算时仍适用.在实数范围内,不仅可以进行加.减.乘.除.乘方运算,而且正数和零总可以进行开平方运算,任何一个数都可以开立方运算.
3.实数和数轴上的点的对应关系:实数和数轴上的点一一对应,即每一个实数都可以用数轴上的一个点表示.反过来,数轴上的每一个点都可以表示一个实数.我们可以用几何作图方法,在数轴上表示某些无理数,如 、
等.
思考:(1)-a 2一定是负数吗?-a 一定是正数吗?
(2)
是一个无理数,那么
-1在哪两个整数之间?
(3)15的整数部分为a,小数部分为b,则a=____, b=____ (4)实数包括____________或__________________; (5)下列各数:3
3
5,π,0.28,04,3.14159,0.121121112L ,3-,
22
7
.其中无理数有( )个
七、实数大小比较的方法
一、平方法 比较
2
3
和3的大小
二、移动因式法 比较32和23的大小
三、求差法 比较2
1
5-和1的大小
四、求商法 比较53
4
和11的大小
练习:比较下列各组数的大小: ①2-和3-;②3和23-;③15和5
4
3;
④7-
和-2.45。

八、解答题 1、当2
1
≤a 时,化简|12|4412-++-a a a
2、已知实数a 、b 在数轴上表示的点如上图,化简b a ++2
)1(+-b a
3、已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.
4、已知b a ,为有理数,且3)323(2
b a +=-,求b a +的平方根
【课堂练习】
1.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数. 2.如果102
=x ,则x 是一个 数,x 的整数部分是 . 3.64的平方根是 ,立方根是 . 4.51-的相反数是 ,绝对值是 . 5.若==
x x 则6 .
6.当_______x 时,32-x 有意义; 7.当_______x 时,
x
-11有意义;
8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.当10≤≤x 时,化简__________12
=-+x x ; 10.b a ,的位置如图所示,则下列各式中有意义的是( ). A 、b a + B 、b a -
C 、ab
D 、a b - 11.全体小数所在的集合是( ).
A 、分数集合
B 、有理数集合
C 、无理数集合
D 、实数集合
12.等式1112-=
+⋅-x x x 成立的条件是( ).
A 、1≥x
B 、1-≥x
C 、11≤≤-x
D 、11≥-≤或x
13.若64
61
1)23(3
=
-+x ,则x 等于( ). A 、21 B 、41 C 、4
1-
D 、49-
14、0.25的平方根是 ;125的立方根是 ; 15.计算:4
12
=___;383
3-=
___;1.4的绝对值等于 .
a
b
o
16.若x 的算术平方根是4,则x=___;若3x =1,则x=___; 17.若2)1(+x -9=0,则x=___;若273x +125=0,则x=___; 18.当x ___时,代数式2x+6的值没有平方根; 19.
381264
27
3292531+-+= ; 20.若0|2|1=-++y x ,则x+y= ; 21.若642=x ,则3x =____. 22.立方根是-8的数是___,
64的立方根是____。

23.如果x 、y 满足|2|+++x y x =0,则x= ,y=___; 24、如果a 的算术平方根和立方根相等,则a 等于 ;
25、如果式子1-x 有意义,则x 的取值范围为 。

26、7在整数 和整数 之间,5在整数 和整数 之间。

27、121的算术平方根是是 ,
81
16
的算术平方根是 。

28、 的算术平方根是它本身。

的平方根是它本身。

29、已知一个正数的平方根是3x-2 和 5x+6,则这个数是 。

30、已知一个正数的平方根是2a-1和a-5,a 的值是 。

二、.计算:
1、(1)21-- (2)34+
(324++-++
(4)8
1
214150232-+
-
(5) )138)(138(-+ (6) )83)(31()35(2
-++-
(7) 2
22222513683)4(--++-- (8)
)625()23(2-+
2.若054=-++-y x x ,求xy 的值.
3.设a 、b 是有理数,且满足(
2
1a +=-,求b a 的值
4、已知:3+-y x 与1-+y x 互为相反数,求x+y 的算术平方根
5、若12112--+-=x x y ,则x y 的值为多少?
6、已知:3+-y x 与1-+y x 互为相反数,求x+y 的算术平方根
7、已知5
1|3a-b-7|+32-+b a =0求(b+a)a
的平方根。

8、若10m ++=,求2000
4m
n -的值。

相关文档
最新文档