中考数学压轴题100题精选及答案
中考数学压轴题100题精选-中考数学压轴题100题及答案
中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?图16②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
(完整)中考数学压轴题精选含答案
一、解答题1.综合与探究.如图,抛物线y=ax2+bx+1与x轴交于A,C两点,点A(﹣1,0),C (3,0),与y轴交于点B,抛物线的顶点为D,直线l经过B,C两点.(1)求抛物线的函数解析式;(2)若P为抛物线上一点,横坐标为m,过点P作PM⊥y轴于点M,交线段BC于点N,当N是线段BC的黄金分割点时,求点P到x轴的距离;(3)若将抛物线向上平移个单位长度,点D的对应点为D′,坐标轴上是否存在点Q,使∠BD′Q=30°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.矩形OABC中,OA=8,OC=10,将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将△EOC沿CE折叠.(1)i:如图①,当点O落在AB边上的点D处时,点E的坐标为;ii:如图②,将矩形OABC变为正方形,OC=10,当点E为AO中点时,点O落在正方形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.(2)如图③,当点O落在矩形OABC内部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(t,s),用含s的代数式表示t.3.【基础巩固】(1)如图1,点A ,F ,B 在同一直线上,若∠A =∠B =∠EFC ,求证:△AFE ∼△BCF ;【尝试应用】(2)如图2,AB 是半圆⊙O 的直径,弦长AC =BC =42,E ,F 分别是AC ,AB 上的一点,∠CFE =45°,若设AE =y ,BF =x ,求出y 与x 的函数关系及y 的最大值. 【拓展提高】(3)已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上.如图3,如果AD :BD =1:2,求CE :CF 的值.4.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,求∠B 与∠C 的度数之和;(2)如图2,锐角△ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF .求证:四边形DBCF 是倍对角四边形;(3)如图3,在(2)的条件下,过点D 作DG ⊥OB 于点H ,交BC 于点G .当4DH =3BG 时,求△BGH 与△ABC 的面积之比.5.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.6.如图,抛物线2:C y ax bx c =++的对称轴为直线1x =-,且抛物线经过(1,0),(0,3)M D 两点,与x 轴交于点N .(1)点N 的坐标为_______.(2)已知抛物线1C 与抛物线C 关于y 轴对称,且抛物线1C 与x 轴交于点1,A B (点A 在点1B 的左边).①抛物线1C 的解析式为_________;②当抛物线1C 和抛物线C 上y 都随x 的增大而增大时,请直接写出此时x 的取值范围. (3)若抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=,抛物线n C 的顶点为n P ,与x 轴的交点为,n A B (点A 在点n B 的左边).①求123100AB AB AB AB ++++的值;②判断抛物线的顶点123,,,,n P P P P 是否在一条直线上,若在,请直接写出该直线的解析式;若不在,请说明理由.7.在平面直角坐标系xOy 中,规定:抛物线y =a (x ﹣h )2+k 的“伴随直线”为y =a (x ﹣h )+k .例如:抛物线y =2(x +1)2﹣3的“伴随直线”为y =2(x +1)﹣3,即y =2x ﹣1.(1)在上面规定下,抛物线y =(x +1)2﹣5的顶点坐标为_____,“伴随直线”为_____. (2)如图,顶点在第一象限的抛物线y =a (x ﹣1)2﹣4a (a ≠0)与其“伴随直线”相交于点A ,B (点A 在点B 的左侧),与x 轴交于点C ,D . ①若△ABC 为等腰三角形时,求a 的值;②如果点P (x ,y )是直线BC 上方抛物线上的一个动点,△PBC 的面积记为S ,当S 取得最大值274时,求a 的值.8.如图1,四边形ABCD 和四边形CEFG 都是菱形,其中点E 在BC 的延长线上,点G 在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.9.如图,对称轴x=1的抛物线y=ax2+bx+c与x轴交于A(﹣2,0),B两点,与y轴交于点C(0,2),(1)求抛物线和直线BC的函数表达式;(2)若点Q是直线BC上方的抛物线上的动点,求△BQC的面积的最大值;(3)点P为抛物线上的一个动点,过点P作过点P作PD⊥x轴于点D,交直线BC于点E.若点P在第四象限内,当OD=4PE时,△PBE的面积;(4)在(3)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.10.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 11.在平面直角坐标系中,三角形ABC 为等腰直角三角形,AC BC =,BC 交x 轴于点D .(1)若()4,0A -,()0,2C ,直接写出点B 的坐标 ;(2)如图,三角形OAB 与ACD △均为等腰直角三角形,连OD ,求AOD ∠的度数;(3)如图,若AD 平分BAC ∠,()4,0A -,(),0D m ,B 的纵坐标为n ,求2n m +的值.12.已知抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,点D 是直线BC下方抛物线上的动点.(1)求直线BC的解析式;(2)如图1,过D作DE∥y轴交BC于E,点P是BC下方抛物线上的动点(P在D的右侧),过点P作PQ∥y轴交BC于Q,若四边形EDPQ为平行四边形.且周长最大.求点P的坐标;(3)如图2,当D点横坐标为1时,过A且平行于BD的直线交抛物线于另一点E,若M在x轴上,是否存在这样点的M,使得以M、B、D为顶点的三角形与△AEB相似?若存在,求出所有符合条件的点M的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,四边形AOBC是矩形,OB=4,OA=3,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当BF=13BC时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)将△EFC沿EF折叠,得到△EFG,当点G恰好落在矩形AOBC的对角线上时,求k的值.14.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.15.如图,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AB=2,将一张和△ABC一样大的纸片和△ABC重叠放置,点E是边BC上一点(不含点B、C),将△OCE 沿着OE翻折,点C落在点P处.(1)直接写出∠OBC、∠OCB的数量关系是.(2)连接DE,设△OPE的面积为S1,△ODE的面积为S2,在点E取边BC上每一点(除点B、C)的过程中,S1+S2的值是否变化?如果变化,请求出它的取值范围;如果不变,请求出S1+S2的值;(3)分别连接PD、PC,当点P与点B重合时,易知PO•PC=PE•PD,当点P不与点B重合时,PO•PC=PE•PD是否成立?请在图3、图4中选一种情况进行证明.16.如图,ABD△内接于O中,弦BC交AD于点E,连接CD,BG CD⊥交CD的延长线于点G,BG交O于点H,2∠=∠.ABC GBD(1)如图1,求证:DB平分GDE∠;(2)如图2,CN AB⊥于点N,CN=CG,求证:AN=HG;(3)如图3.在(2)的条件下,点F在AE上,连接BF、CF,且BF CF⊥,∠=∠,BC=5.求AE的长.BCN CBF217.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD到点E,使DE=AD,再连结BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.由此得出中线AD的取值范围是__________【应用】如图②,如图,在△ABC中,D为边BC的中点、已知AB=10,AC=6,AD=4,求BC的长.【拓展】如图③,在△ABC中,∠A=90°,点D是边BC的中点,点E在边AB上,过点D作D F⊥DE交边AC于点F,连结EF.已知BE=5,CF=6,则EF的长为__________.18.如图,点P是矩形ABCD的边AB的其中一个四等分点(点P靠近点A),8AB ,将直角三角尺的顶点放在P处,直角尺的两边分别交AD、DC于点E,F,(如图1).(1)当点E与点D重合时,点F恰好与点C重合(如图2),求AD的长;(2)探究:将直尺从图2中的位置开始,绕点P逆时针旋转,当点E和点A重合时停止,在这个过程中,请你观察、猜想,并解答:①∠PEF的大小是否发生变化?请说明理由;②求出从点E与D重合开始,到点E与点A重合结束,线段EF的中点经过的路线的长度.19.如图,在Rt△ABC中,∠B=90°,AE平分∠BAC,交BC于点E,点D在AC上,以AD为直径的⊙O经过点E,点F在⊙O上,且EF平分∠AED,交AC于点G,连接DF.(1)求证:△DEF ∽△GDF : (2)求证: BC 是⊙O 的切线: (3)若cos∠CAE =32,DF =102,求线段GF 的长. 20.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B .(1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上. ①求点F 的坐标; ②直接写出点P 的坐标.【参考答案】参考答案**科目模拟测试一、解答题 1.(1) 51或(3)存在,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0)【解析】【分析】(1)用待定系数法即可求解;(2)MP∥CO,则,进而求解;(3)当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F (1,0)、E,tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°;当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,求出直线D′Q′的表达式,即可求解.(1)解:将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:;(2)∵MP∥CO,则,∵N是线段BC的黄金分割点,∴或,即或,而OB=1,故MO=512-或,即点P到x轴的距离为:512-或;(3)存在,理由:由抛物线的表达式知,点D(1,43),则将抛物线向上平移个单位长度,点D的对应点为D′的坐标为(1,3+1),①当点Q在BD′的右侧时,连接BD′,过点D′分别作x轴、y轴的垂线,垂足分别为F(1,0)、E,则BE3﹣13ED′=1,∴tan∠EBD′=,故∠EBD′=30°=∠BD′F,故点Q与点F重合时,∠BD′F=∠BD′Q=30°,即点Q的坐标为(1,0);②当点Q在BD′的左侧时,设点Q′D′交x轴和y轴分别为点Q′、Q″,则∠BD′Q′=30°,故∠Q′Q″O=30°+30°=60°,则∠D′Q′O=90°﹣60°=30°,故设直线Q′D′的表达式为y 3+t,将点D′的坐标代入上式得:3t,解得t=,故直线D′Q′的表达式为y=33x+,对于y=33x+,令y=33x+=0,解得x=﹣2﹣3,令x=0,则y=,故点Q′、Q″的坐标分别为(﹣2﹣3,0)、(0,),综上,点Q的坐标为(﹣2﹣3,0)或(0,)或(1,0).【点睛】本题是二次函数综合题,主要考查了一次函数的性质、三角形相似、解直角三角形等,其中(3),要注意分类求解,避免遗漏.2.(1)i:(0,5);ii:AT=52;(2)t=120s2+5.【解析】【分析】(1)i:如图①中,根据翻折变换的性质以及勾股定理得出BD的长,进而得出AE,EO的长即可得出答案.ii:如图②中,连接ET.证明△CET是直角三角形,由勾股定理得2222ED TD TC EC+=-,代入数据计算即可求出AT.(2)根据H点坐标得出各边长度,进而利用勾股定理求出t与s的关系即可.【详解】解:(1)i:如图①中,∵OA=8,OC=10,根据折叠的性质,∴OC=DC=10,∵BC=OA=8,∴BD2222108CD BC--,∴AD=10-6=4,设AE =x ,则EO =8-x ,∴x 2+42=(8-x )2,解得:x =3,∴AE =3,则EO =8-3=5,∴点E 的坐标为:(0,5);故答案为:(0,5); ii :如图②中,连接ET .∵点E 是AO 的中点,∴EA =EO ,∵OE =ED ,EC =EC ,∠EOC =∠EDC =90°,∴Rt △ECD ≌Rt △ECO (HL ),∴∠CEO =∠CED ,同法可证,Rt △ETA ≌Rt △ETD (HL ),∴∠AET =∠DET ,∴∠DET +∠CED =90°,即∠CET =90°,由折叠的性质得:ED =EO =12OA =5,OC =CD =10,AT =TD , 222125EC EO OC =+=, 设AT =x ,则TD =x ,∵2222ED TD TC EC +=-,即()222510125x x +=+-, 解得:52x =∴AT =52; (2)如图③中,过点H 作HW ⊥OC 于点W ,根据折叠的性质得:∠1=∠2,∵EG∥OC,∴∠1=∠3,∴∠2=∠3,∴EH=HC,设H(t,s),∴EH=HC=t,WC=10-t,HW=s,∴HW2+WC2=HC2,∴s2+(10-t)2=t2,∴t与s之间的关系式为:t=120s2+5.【点睛】本题属于四边形综合题,主要考查了翻折变换的性质以及勾股定理和全等三角形的判定与性质等知识,熟练构建直角三角形利用勾股定理得出相关线段长度是解题关键.3.(1)见解析;(2)y2x22(0≤x≤8),23)4:5【解析】【分析】(1)利用已知得出∠E=∠CFB,进而利用相似三角形的判定方法得出即可;(2)利用(1)得出△AFE∽△BCF,由相似三角形的性质:对应边的比值相等即可得到y 和x的数量关系,进而求出y与x的函数关系式;(3)首先证明△ADE∽△BFD,表示出ED,DF,EA,DB,AD,BF,再利用相似三角形的性质解决问题即可.【详解】(1)证明:∵∠A=∠EFC,∴∠E+∠EFA=∠EFA+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB=22AC BC+=8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴AE AFBF BC=,即842y xx-=,∴y=﹣28x2+2x(0≤x≤8),∴当x=4时,y最大=22;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴DE EA AD DF DB BF==,∴323a x a xb x x b-==-,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a =75x , ∴3425a x ab x -==, ∴CE :CF =4:5.【点睛】本题是圆的综合题,考查了相似三角形的判定与性质,圆的有关知识,勾股定理以及二次函数最值等知识,解题的关键是学会利用参数解决问题.4.(1)120°;(2)见解析;(3)215 【解析】【分析】(1)根据四边形内角和为360°,即可得出答案;(2)利用SAS 证明△BED ≌△BEO ,得∠BDE =∠BEO ,连接OC ,设∠EAF =α,则∠AFE =2α,则∠EFC =180°−∠AFE =180°−2α,可证∠EFC =∠AOC =2∠ABC 即可;(3)过点O 作OM ⊥BC 于M ,由(1)知∠BAC =60°,再证明△DBG ∽△CBA ,得2ΔΔ()DBG ABC S BD S BC =,再根据4DH =3BG ,BG =2HG ,得DG =52GH ,则ΔΔBHG BDG S S =HG DG =25,从而解决问题.【详解】(1)解:在倍对角四边形ABCD 中,∠D =2∠B ,∠A =2∠C ,∵∠A +∠B +∠C +∠D =360°,∴3∠B +∠3∠C =360°,∴∠B +∠C =120°,∴∠B 与∠C 的度数之和为120°;(2)证明:在△BED 与△BEO 中,BD BO EBD EBO BE BE =⎧⎪∠=∠⎨⎪=⎩, ∴△BED ≌△BEO (SAS ),∴∠BDE =∠BEO ,∵∠BOE =2∠BCF ,∴∠BDE =2∠BCF连接OC ,设∠EAF =α,则∠AFE =2α,∴∠EFC =180°﹣∠AFE =180°﹣2α,∵OA =OC ,∴∠OAC =∠OCA =α,∴∠AOC =180°﹣∠OAC ﹣∠OCA =180°﹣2α,∴∠EFC =∠AOC =2∠ABC ,∴四边形DBCF 是倍对角四边形;(3)解:过点O 作OM ⊥BC 于M ,∵四边形DBCF 是倍对角四边形,∴∠ABC +∠ACB =120°,∴∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,∴∠OBC =∠OCB =30°,∴BC =2BM 33,∵DG ⊥OB ,∴∠HGB =∠BAC =60°,∵∠DBG =∠CBA ,∴△DBG ∽△CBA , ∴2ΔΔ()DBG ABC S BD S BC =13, ∵4DH =3BG ,BG =2HG , ∴DG =52GH ,∴ΔΔBHG BDG S S =25HG DG =, ∵ΔΔ15315DBG ABC S S == ∴ΔΔBHG ABC S S =215. 【点睛】本题是新定义题,主要考查了圆的性质,相似三角形的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质等知识,读懂题意,利用前面探索的结论解决新的问题是解题的关键.5.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案;(3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案.【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C , ∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++. (2)∵22131325222228y x x x ⎛⎫=-++=--+ ⎪⎝⎭, ∴抛物线的对称轴是直线32x =.∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+= ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形,∴123CP DP DP CD ===.作CH ⊥对称轴于点H ,∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =, ∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭. ∵BCD CEF BEF CDBF S S S S =++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.6.(1)(3,0)-;(2)①2(1)4y x =--+;②1x <-;(3)①5350;②不在,理由见解析【解析】【分析】(1)由题意可得,点N 和点M 关于1x =-轴对称,求解即可;(2)①先求得抛物线C 的解析式,再根据关于y 轴对称,求得抛物线1C 即可;②根据二次函数的性质,求解即可;(3)①由抛物线解析式可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,求得线段1AB 、2AB 、……、100AB 的值,即可求解;②求得顶点1P 、2P 、3P ,求得13P P 的解析式,然后验证2P 是否在直线上.【详解】解:(1)由题意可得,点N 和点M 关于1x =-轴对称∵(1,0)M∴点(3,0)N -故答案为(3,0)-(2)①由(1)得,抛物线C 过点(1,0)M 、(3,0)N -、(0,3)D抛物线C 的解析式为31y a x x =+-()(),将点(0,3)D 代入解析式得:(03)(01)3a +-=解得1a =-∴22(3)(1)(23)(1)4y x x x x x =-+-=-+-=-++,顶点坐标为(1,4)-∵抛物线C 与抛物线1C 关于y 轴对称∴抛物线1C 的顶点为(1,4),开口与抛物线C 相同∴抛物线1C 解析式为2(1)4y x =--+②抛物线C 的解析式为2(1)4y x =-++,由二次函数的性质可得,当1x <-时,y 随x 的增大而增大,抛物线1C 解析式为2(1)4y x =--+,由二次函数的性质可得,当1x <时,y 随x 的增大而增大, ∴当1x <-时,抛物线C 和抛物线1C 上y 都随x 的增大而增大, (3)①抛物线n C 的解析式为(1)(2)(1,2,3)y x x n n =-+--=可得抛物线n C 与x 轴交点的坐标为(1,0)A -,(2,0)n B n +,即1(3,0)B ,2(4,0)B ,……,100(102,0)B∴14AB =,25AB =,……,100103AB = ∴123100103455350AB AB AB AB =+++++=++②当1n =时,抛物线1C 的解析式为2(1)(3)(1)4y x x x =-+-=--+,1(1,4)P 当2n =时,抛物线2C 的解析式为2325(1)(4)()24y x x x =-+-=--+,2325(,)24P当3n =时,抛物线3C 的解析式为2(1)(5)(2)9y x x x =-+-=--+,3(2,9)P 设直线13P P 的解析式为y kx b =+,将点1(1,4)P ,3(2,9)P 代入得429k b k b +=⎧⎨+=⎩,解得51k b =⎧⎨=-⎩,即51y x =- 当32x =时,3132551224y =⨯-=≠ ∴点2325(,)24P 不在直线13P P 上∴抛物线的顶点123,,,,n P P P P 不在一条直线上【点睛】此题考查了二次函数的图像与性质,涉及了待定系数法求解二次函数和一次函数解析式,解题的关键是熟练掌握二次函数的有关性质.7.(1)(﹣1,﹣5),y =x ﹣4;(2)①a 的值为a =﹣2. 【解析】 【分析】(1)由“伴随直线”的定义即可求解;(2)①先求y =a (x −1)2−4a 的伴随直线为y =ax −5a ,再联立方程组2(1)45y a x ay ax a ⎧=--⎨=-⎩,求出A (1,−4a ),B (2,−3a ),C (−1,0),D (3,0),由于当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,即可求a 的值;②先求直线BC 解析式为y =−ax −a ,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,则P [x ,a (x −1)2−4a ],Q (x ,−ax −a ),23127()228PBC S a x a ∆=--,即可求面积的最大值,进而求a 的值. 【详解】(1)∵抛物线y =(x +1)2﹣5,∴顶点坐标为(﹣1,﹣5),“伴随直线”为y =x ﹣4, 故答案为:(﹣1,﹣5),y =x ﹣4;(2)①由“伴随直线”定义可得:y =a (x ﹣1)2﹣4a 的伴随直线为y =ax ﹣5a ,联立2(1)45y a x a y ax a ⎧=--⎨=-⎩,解得14x y a =⎧⎨=-⎩或23x y a=⎧⎨=-⎩,∴A (1,﹣4a ),B (2,﹣3a ),在y =a (x ﹣1)2﹣4a 中,令y =0可解得x =﹣1或x =3, ∴C (﹣1,0),D (3,0), ∴AC 2=4+16a 2,BC 2=9+9a 2,∵当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,∴AC 2=BC 2,即4+16a 2=9+9a 2,解得=a ∵抛物线开口向下,∴a =∴若△ABC 为等腰三角形时,a 的值为 ②设直线BC 的解析式为y =kx +b , ∵B (2,﹣3a ),C (﹣1,0),∴200k b k b +=⎧⎨-+=⎩,解得k a b a =-⎧⎨=-⎩, ∴直线BC 解析式为y =﹣ax ﹣a ,如图,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x , ∴P [x ,a (x ﹣1)2﹣4a ],Q (x ,﹣ax ﹣a ), ∵P 是直线BC 上方抛物线上的一个动点,∴22219(1)4(2)()24PQ a x a ax a a x x a x ⎡⎤=--++=--=--⎢⎥⎣⎦,∴23127()228PBC S a x a ∆=--, ∴当12x =时,△PBC 的面积有最大值278-a , ∴S 取得最大值274时,即272784-=a ,解得a =﹣2.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,理解新定义,将所求问题转化为直线与抛物线的知识是解题的关键.8.(1)见解析;(2)7;(3)2193.【解析】【分析】(1)根据两个菱形中,点E在BC的延长线上,点G在DC的延长线上这一特殊的位置关系和CE=BH可证明相应的边和角分别相等,从而证明结论;(2)由AB=BC,∠ABC=60 ,可证明△ABC是等边三角形,从而证明∠AHB=90°,再由△ABH≌△HEF,得∠HFE=∠AHB=90°,再得∠DPF=180°﹣∠HFE=90°,在Rt△DPF 中用勾股定理求出DF的长;(3)作FM⊥BG于点M,当EH⊥BC时,可证明CH=CM=12CG=12BH,从而求出BM、FM的长,再由勾股定理求出BF的长.【详解】解:(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E 在BC 的延长线上,点G 在DC 的延长线上, ∴AB ∥DG ∥EF , ∴∠B =∠E , 在△ABH 和△HEF 中, BH EF B E AB HE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABH ≌△HEF (SAS ).(2)如图2,设FH 交CG 于点P ,连结CF ,∵AB =BC ,∠ABC =60°, ∴△ABC 是等边三角形, ∵BH =CH , ∴AH ⊥BC , ∴∠AHB =90°,由(1)得,△ABH ≌△HEF , ∴∠HFE =∠AHB =90°, ∵DG ∥EF ,∴∠DPF =180°﹣∠HFE =90°, ∴PF ⊥CG ,∵CG =FG ,∠G =∠E =∠B =60°, ∴△GFC 是等边三角形, ∴PC =PG =12CG ;∵BC =AB =2, ∴CG =EF =BH =12BC =1,∴PC =12;∵CD =AB =2, ∴PD =12+2=52, ∵CF =CG =1,∴PF 2=CF 2﹣PC 2=12﹣(12)2=34, ∴22253()724DF PD PF =+=+=.(3)如图3,作FM ⊥BG 于点M ,则∠BMF =90°,∵EH ⊥BC ,即EH ⊥BG , ∴EH ∥FM ,∵∠CEF =∠ACB =60°, ∴EF ∥MH ,∴四边形EHMF 是平行四边形, ∵∠EHM =90°, ∴四边形EHMF 是矩形, ∴EH =FM ;∵EF =EC ,∠CEF =60°, ∴△CEF 是等边三角形, ∴CE =CF ,∵∠EHC =∠FMC =90°, ∴Rt △EHC ≌Rt △FMC (HL ), ∴CH =CM =12CG ;∵CG =CE =BH , ∴CH =12BH ,∴CM =CH =13BC =13×2=23,∴CF =CG =2CM =2×23=43, ∴2FM =(43)2﹣(23)2=43,∵BM =2+23=83,∴2224876219()339BF FM BM =++==. 【点睛】本题主要考查了几何综合,其中涉及到了菱形的性质,全等三角形的判定及性质,等边三角形的判定及性质,勾股定理,矩形的判定及性质等,熟悉掌握几何图形的性质和合理做出辅助线是解题的关键.9.(1)抛物线表达式为211242y x x =-++;直线表达式为122y x =-+;(2)△BQC的面积的最大值为2(3)△PBE 的面积为58(4)点N的坐标为(5(5235,45-)或(92,14). 【解析】 【分析】(1)首先根据二次函数的对称性求出点B 的坐标,然后利用待定系数法把点的坐标代入表达式求解即可;(2)过Q 点作QH 垂直x 轴交BC 于点H ,连接CQ ,BQ ,由二次函数表达式设点Q 的坐标为(x ,211242x x -++),表示出△BQC 的面积,根据二次函数的性质即可求出△BQC的面积的最大值;(3)根据题意设出点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),表示出OD 和PE 的长度,根据OD =4PE 列出方程求出m 的值,即可求出PE 和BD 的长度,然后根据三角形面积公式求解即可;(4)当BD 是菱形的边和对角线时两种情况分别讨论,设出点M 和点N 的坐标,根据菱形的性质列出方程求解即可. 【详解】解:(1)∵抛物线的对称轴为x =1,A (﹣2,0), ∴B 点坐标为(4,0),∴将A (﹣2,0),B (4,0),C (0,2),代入y =ax 2+bx +c 得,42016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得:14122a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的表达式为211242y x x =-++;设直线BC 的函数表达式为y kx b =+,∴将B (4,0),C (0,2),代入y kx b =+得,4002k b b +=⎧⎨+=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为122y x =-+. (2)如图所示,过Q 点作QH 垂直x 轴交BC 于点H ,交x 轴于点M ,连接CQ ,BQ ,设点Q 的坐标为(x ,211242x x -++),点H 的坐标为(x ,122x -+),∴HQ =221111224224x x x x x ⎛⎫-++--+=-+ ⎪⎝⎭,∴()221111111422222242QBC QHC QHB S S S QH OM QH BM QH OM BM QH OB x x x x ⎛⎫=+=+=+==⨯-+⨯=-+ ⎪⎝⎭△△△, ∴当221222bx a=-=-=⎛⎫⨯- ⎪⎝⎭时,2122222S =-⨯+⨯=, ∴△BQC 的面积的最大值为2;(3)设点P 坐标为(m ,211m m 242-++),E 点坐标为(m ,122m -+),D 点坐标为(m ,0),∴221111222424PE m m m m m ⎛⎫=-+--++=- ⎪⎝⎭,OD m =,∵OD =4PE ,∴21=44m m m ⎛⎫⨯- ⎪⎝⎭,整理得:250m m -=,解得:10m =(舍去),25m =,∴2211555444PE m m =-=⨯-=,D 点坐标为(5,0), ∴BD =1,∴115512248PBE S PE BD ==⨯⨯=△; (4)如图所示,当BD 是菱形的边时,BM 是菱形的边时,∵四边形BDNM 是菱形, ∴BD =BM =MN ,∴设M 点坐标为(a ,122a -+),N 点坐标为(a +1,122a -+),又∵B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =1,()221422BM a a ⎛⎫=-+-+ ⎪⎝⎭, ∵BD =BM , ∴BD 2=BM 2, ∴()2214212a a ⎛⎫-+-+= ⎪⎝⎭, 整理得:2540760a a -+=, 解得:1225254455a a =+=-,, ∴N 点坐标为(2555+,55-)或(2555-,55), 当BD 是菱形的边时,DM 是菱形的边时,∵四边形BDMN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴BD =MN =DM =1,∴设M 点坐标为(b ,122b -+),N 点坐标为(b -1,122b -+), ∴DM2=()221522b b ⎛⎫-+-+ ⎪⎝⎭, ∵BD =DM , ∴BD 2=DM 2,∴()2215212b b ⎛⎫-+-+= ⎪⎝⎭, 整理得:25481120b b -+=, 解得:122845b b ==,(舍去), ∴N 点坐标为(235,45-);当BD 是菱形的对角线时,∵四边形BMDN 是菱形,B 点坐标为(4,0),D 点坐标为(5,0), ∴M 点横坐标为45922+=, 将92x =代入122y x =-+得:y =14-, ∴M 点的坐标为(92,14-),又∵点M 和点N 关于x 轴对称, ∴点N 的坐标为(92,14).综上所述,点N 的坐标为(25552555235,45-)或(92,14). 【点睛】此题考查了一次函数和二次函数表达式的求法,二次函数的性质,二次函数中三角形最大面积问题,菱形存在性问题等知识,解题的关键是根据题意设出点的坐标,表示出三角形面积,根据菱形的性质列出方程求解.10.(1)①见解析;②见解析;③7 (2)57221+77【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =,根据三角形的面积公式即可得到结论.(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠, BEA BEC ∴∠=∠,BE ∴平分AEC ∠;②证明:如图1,过点B 作CE 的垂线BQ ,BE 平分AEC ∠,BA AE ⊥,BQ CE ⊥,AB BQ ∴=,CG BQ ∴=,90BQH GCH ∠=∠=︒,BQ AB CG ==,BHQ GHC ∠=∠, ()BHQ GHC AAS ∴∆≅∆,即点H 是BG 中点, 又点P 是BC 中点,//PH CG ∴;③解:如图2,过点G 作BC 的垂线GM ,22BC AB ==,1BQ ∴=,30BCQ ∴∠=︒,90ECG ∠=︒, 60GCM ∴∠=︒, 1CG AB CD ===,32GM ∴=,12CM =, 222253()()722BG BM MG ∴=+=+=;(2)解:如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,24BC AB ==,2AB ∴=,将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,4CE BC ∴==,2CD AB ==,点A ,E ,D 第二次在同一直线上,90CDE,12CD CE ∴=,60DCE ∴∠=︒,30NCG ∴∠=︒,2CG =, 1NG ∴=,3PG =,523DBG DBC DCG BCG S S S S ∆∆∆∆∴=++=+,2227BG BP PG =+=,25722177DBG S DM BG ∆∴==+. 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.11.(1)(2,2)-;(2)90°;(3)4- 【解析】 【分析】(1)如图1中,作BH y ⊥轴于H .只要证明()ACO CBH AAS △≌△即可解决问题; (2)过C 作CK x ⊥轴交OA 的延长线于K ,求证ACK DCO △≌△即可求出AOD ∠的度数可求;(3)作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,证明()ABE AFE ASA △≌△,由全等三角形的性质得出BE FE =,证明()ACD CBF ASA △≌△,得出BF AD =,则可得出答案. 【详解】解:(1)如图1中,作BH y ⊥轴于H .(4,0)-A ,(0,2)C ,4∴=OA ,2OC =,90AOC ACB BHC ∠=∠=∠=︒,90ACO BCH ∴∠+∠=︒,90CAO ACO ∠+∠=︒,CAO BCH ∴∠=∠,在ACO △与CBH 中,AOC BHCCAO BCH AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ACO CBH AAS ∴△≌△,4CH OA ∴==,2BH OC ==, 2OH CH OC ∴=-=,(2,2)C ∴-,故答案为:(2,2)-;(2)如图所示,过C 作CK x ⊥轴交OA 的延长线于K ,则90OCK ∠=︒,∵AOB 为等腰直角三角形, ∴45AOB ∠=︒, 又∵90OCK ∠=︒,∴9045K AOB AOB ∠=︒-∠=︒=∠, ∴OC CK =,ACD 为等腰直角三角形, 90ACD ∴∠=︒,AC DC =,90ACO OCD ∴∠+∠=︒,又∵90OCK ∠=︒,90ACO ACK ∴∠+∠=︒, ACK OCD ∴∠=∠,在ACK 与DCO 中,CK OC ACK OCD AC DC =⎧⎪∠=∠⎨⎪=⎩()ACK DCO SAS ∴△≌△,45DOC K ∴∠=∠=︒, 90AOD AOB DOC ∴∠=∠+∠=︒;(3)如图2中,作BE x ⊥轴于点E ,并延长交AC 的延长线于点F ,(4,0)-A ,(,0)D m ,4AD m ∴=+,AD 平分BAC ∠, BAE FAE ∴∠=∠,∵BE x ⊥轴于点E ,90AEB AEF ∴∠=∠=︒,在ABE △和AFE △中, AEB AEF AE AEBAE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABE AFE ASA ∴△≌△,BE FE ∴=,∵B 的纵坐标为n ,且点B 在第四象限,BE FE n ∴==-, 2BF BE FE n ∴=+=-, 90ACB AEB ∠=∠=︒,90CAD CDA CBF BDE ∴∠+∠=∠+∠=︒,又∵CDA BDE ∠=∠,CAD CBF ∴∠=∠,在ACD △和BCF △中,ACD BCF AC BCCAD CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACD CBF ASA ∴△≌△,AD BF ∴=,42m n ∴+=-,即:24m n +=-, ∴2n m +的值为4-. 【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的性质和判定,角平分线的定义,坐标与图形性质,熟练掌握全等三角形的判定与性质是解题的关键.12.(1)y=x﹣4(2)P(4)(3)存在,M(,0)或(﹣17,0)【解析】【分析】(1)先分别求出A、B、C三点的坐标,即可利用待定系数法求出直线BC的解析式;(2)设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),由平行四边形的性质得到ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),从而推出x1+x2=4,再由四边形EDPQ的周长(0<x<4),即可利用二次函数的性质得到答案;(3)分△AEB∽△BDM和△AEB∽△BM′D,利用相似三角形的性质求解即可.(1)解:∵抛物线y=x2﹣3x﹣4与x轴交于A、B(A在B的左侧),与y轴交于点C,∴令x=0,则y=4,令y=0,则x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∴C(0,﹣4),A(﹣1,0),B(4,0),设直线BC的解析式为:y=kx+b(k≠0),∴把B、C坐标代入上式得:,解得:,∴直线BC的解析式为:y=x﹣4;(2)解:如图1,过D作轴交BC于E,点P是BC下方抛物线上动点(P在D的右∥轴交BC于Q,侧),过点P作PQ y又∵抛物线的解析式为:y=x2﹣3x﹣4,直线BC的解析式为:y=x﹣4,∴设E(x1,x1﹣4),Q(x2,x2﹣4),则D(x1,x12﹣3x1﹣4),P(x2,x22﹣3x2﹣4),若四边形EDPQ为平行四边形,则ED=QP,即(x1﹣4)﹣(x12﹣3x1﹣4)=(x2﹣4)﹣(x22﹣3x2﹣4),∴,∴解得:x1=x2(不合题意,应舍去),x1+x2=4,∵,ED=4x1﹣x12,又∵四边形EDPQ的周长把x2=4﹣x1代入上式得:四边形EDPQ的周长(0<x<4),∵﹣2<0,∴当时,四边形EDPQ的周长有最大值12,此时,∴P(,);(3)解:如图2,若DM∥EB,则∠DMB=∠EBM,∵AE∥DB,∴∠EAB=∠DBM,∴△AEB∽△BDM,∴,∵xD=1,∴yD=1﹣3﹣4=﹣6,∴D(1,﹣6),∵B(4,0),D(1,﹣6),∴yBD=2x﹣8,∵AE∥BD,∴设yAE=2x+n并把A(﹣1,0)代入得:yAE=2x+2,联立,解得:(与A重合,应舍去)或,∴,,∴,∴,∴,∴M(,0),②如图3,若∠DM′B=∠BEA且∠EAB=∠DBM′,∴△AEB∽△BM′D,∴,∴,∴BM′=21,∴OM′=BM′﹣BO=21﹣4=17,∴M′(﹣17,0),综上所述,M(,0)或(﹣17,0).【点睛】本题主要考查了二次函数的综合,二次函数与平行四边形,二次函数与相似三角形,一次函数与二次函数综合等等,解题的关键在于能够熟练掌握相关知识.13.(1)E(43,3)(2)4 3(3)k=6【解析】【分析】(1)由OB=4、OA=3,求出点A、B、C的坐标分别为:(0,3)、(4,0)、(4,3),由BF=13BC得到点F(4,1),进而求解;(2)F点的横坐标为4,则F(4,),E的纵坐标为3,则E(,3),进而求解;(3)当点G落在对角线AB上时,得到EF∥AB,则MF是△CGB的中位线,则点F是BC 的中点,即可求解;当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故该情况不存在.(1)解:∵OB=4,OA=3,∴点A、B的坐标分别为:(0,3)、(4,0)∵四边形OACB为矩形,则点C(4,3),当BF=13BC时,点F(4,1),将点F的坐标代入y=kx并解得:k=4,故反比例函数的表达式为:y=4x,当y=3时,x=43,故E(43,3);(2)解:∵F点的横坐标为4,点F在反比例函数上,∴F(4,),∴CF=BC-BF=3-=,∵E的纵坐标为3,∴E(,3),∴CE=AC-AE=4-13k=,在Rt△CEF中,tan∠EFC==43;(3)①当点G落在对角线AB上时,在Rt△ABC中,tan∠ABC=ACBC=43=tan∠EFC,故EF∥AB,连接CG交EF于点M,则MG=MC,即点M是CG的中点,而EF∥AB,故MF是CGB的中位线,则点F是BC的中点,故点F的坐标为(4,32),将点F的坐标代入反比例函数表达式得:k=4×32=6;②当点G落在OC上时,由①知,CG⊥AB,如果G落在OC上,则OC⊥AB,由题意得AB和OC不垂直,故点G不会落在OC上;综上,k=6.【点睛】。
中考数学压轴题100题精选(120题)
中考数学 压轴题题 精选(题)【】如图,已知抛物线2(1)y a x =-+经过点(2)A -,0,抛物线的顶点为D ,过O作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .()求该抛物线的解读式;()若动点P 从点O 出发,以每秒个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?()若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒个长度单位和个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【】如图,在△中,∠°, , .点从点出发沿以每秒个单位长的速度向点匀速运动,到达点后立刻以原来的速度沿返回;点从点出发沿以每秒个单位长的速度向点匀速运动.伴随着、的运动,保持垂直平分,且交于点,交折线于点.点、同时出发,当点到达点时停止运动,点也随之停止.设点、运动的时间是秒(>).()当时,,点到的距离是;()在点从向运动的过程中,求△的面积与的函数关系式;(不必写出的取值范围)()在点从向运动的过程中,四边形能否成()当经过点时,请直接..写出的值.图【】如图,在平面直角坐标系中,已知矩形的三个顶点(,)、(,)、(,).抛物线过、两点.()直接写出点的坐标,并求出抛物线的解读式;()动点从点出发.沿线段向终点运动,同时点从点出发,沿线段向终点运动.速度均为每秒个单位长度,运动时间为秒.过点作⊥交于点,①过点作⊥于点,交抛物线于点.当为何值时,线段最长?②连接.在点、运动的过程中,判断有几个时刻使得△是等腰三角形? 请直接写出相应的值。
【】如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G与点B 重合.()求ABC △的面积;()求矩形DEFG 的边DE 与EF 的长;()若矩形DEFG 从原点出发,沿x 轴的反方向以每秒个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.【】如图,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. ()求点E 到BC 的距离;()点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.(第题)【】如图,二次函数)0(2<++=p q px x y 的图象与轴交于、两点,与轴交于点(,),Δ的面积为45。
中考数学压轴题100题及答案
中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
(完整)中考数学压轴题精选及答案
一、解答题1.将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,其中点E 与点B ,点G 与点D 分别是对应点,连接BG .(1)如图,若点A ,E ,D 第一次在同一直线上,BG 与CE 交于点H ,连接BE . ①求证:BE 平分∠AEC .②取BC 的中点P ,连接PH ,求证:PH ∥CG . ③若BC =2AB =2,求BG 的长.(2)若点A ,E ,D 第二次在同一直线上,BC =2AB =4,直接写出点D 到BG 的距离. 2.四边形ABCD 中,DA DC =,连接BD .(1)如图1,若BD 平分ABC ∠,求证:180A C ∠+∠=︒. (2)如图2,若BD BC =,150=︒∠BAD ,求证:2DBC ABD ∠=∠.(3)如图3,在(2)的条件下,作AE BC ⊥于点E ,连接DE ,若DA DC ⊥,2BC =,求DE 的长度.3.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式;(2)Q 是抛物线上除点P 外一点,BCQ △与BCP 的面积相等,求点Q 的坐标:(3)M 是线段BC 上方抛物线上一个动点,过点M 作x 轴的垂线,交线段BC 于点D ,再过点M 做MN //x 轴交抛物线于点N ,连结DN ,请问是否存在点M 使MDN △为等腰直角三角形?若存在,求出点M 的坐标;若不存在,说明理由.4.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:观察与猜想(1)①如图1,在正方形ABCD 中,点E ,F 分别是AB ,AD 上的两点,连接DE ,CF ,DE CF ⊥,则DECF的值为 ; ②如图2,在矩形ABCD 中,7AD =,4CD =,点E 是AD 上的一点,连接CE ,BD ,且CE BD ⊥,则CEBD的值为 ; 类比探究(2)如图3,在四边形ABCD 中,90A B ∠=∠=︒,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE AB CF AD ⋅=⋅;拓展延伸(3)如图4,在Rt ABD △中,90BAD ∠=︒,3AB =,9AD =,将Rt ABD △沿BD 翻折,点A 落在点C 处得CBD ,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,DE CF ⊥.请问DECF是定值吗?若是求出其值,若不是说明理由; 5.如图,在平面直角坐标系中,ABC 的边AB 在x 轴上,且OB OA >,以AB 为直径的圆过点C .若点C 的坐标为()0,4,10AB =,(1)求抛物线的解析式;(2)点P为该函数在第一象限内的图象上一点(不与BC重合),过点P作PQ BC⊥,垂足为点Q,连接PC.若以点P、C、Q为顶点的三角形与COA相似,求点P的坐标;(3)若ACB∠平分线所在的直线l交x轴与点E,过点E任作一直线l'分别交射线CA,CB(点C除外)于点M,N.则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.6.在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的“伴随直线”为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的“伴随直线”为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣5的顶点坐标为_____,“伴随直线”为_____.(2)如图,顶点在第一象限的抛物线y=a(x﹣1)2﹣4a(a≠0)与其“伴随直线”相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若△ABC为等腰三角形时,求a的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值274时,求a的值.7.如图1,抛物线y=ax2﹣94x+c与x轴交于A(﹣1,0)和B两点,与y轴交于C(0,﹣3),E为抛物线顶点,抛物线的对称轴交x轴于点H.(1)求抛物线的解析式;(2)已知点3(0,2)2F,点P在对称轴右侧的抛物线上运动,连接PO,PO与对称轴交于点D,连接DF.当DF平分∠ODE时,求点P的坐标;(3)如图2,平移对称轴EH交抛物线于M,交直线BC于N.以N为圆心,NM为半径作⊙N.当⊙N与坐标轴相切时,请直接写出⊙N的半径长.8.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE.(1)如图1,连接BE,求证:AD=BE.(2)如图2,连接AE,CF⊥AE交AB于F,T为垂足,①求证:FD=FB;②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当S OF2+BF2的最小值.52FMN9.如图,在△ABC中,AB=AC,⊙是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.10.问题背景如图(1),△ABC 为等腰直角三角形,∠BAC =90°,直线l 绕着点A 顺时针旋转,过B ,C 两点分别向直线l 作垂线BD ,CE ,垂足为D ,E ,此时△ABD 可以由△CAE 通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小(取最小旋转角度). 尝试应用如图(2),△ABC 为等边三角形,直线l 绕着点A 顺时针旋转,D 、E 为直线l 上两点,∠BDA =∠AEC =60°.△ABD 可以由△CAE 通过旋转变换得到吗?若可以,请指出旋转中心O 的位置并说明理由;拓展创新如图(3)在问题背景的条件下,若AB =2,连接DC ,直接写出CD 的长的取值范围.11.如图1,菱形ABCD 绕点A 顺时针旋转()0180αα︒<<︒,得到菱形AEFG ,连接AC ,AF 、分别与BD ,EG 相交于点O ,O '.射线BD ,GE 交于点P ,BPG β∠=.(1)当90α=︒时,四边形AOPO '的形状为 . (2)求α与β的数量关系.(3)如图2.连接PA ,若42BAD ∠=°,PA PB =,求α的值.(4)如图3,连接PC ,PF ,若5AB =,4BD =,四边形AFPC 能否为菱形?若能,直接写出α的值和AP 的长;若不能,请说明理由.12.如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A (0,a),且a、p满足+(p﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP 的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边的等腰直角三角形,直角顶点为Q,若存在,请求出点Q坐标;若不存在,请说明理由.13.我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.如图,在平面直角坐标系中,⊙C与x轴交于A,B两点,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE 与⊙C 的位置关系,并说明理由; (3)连接CE ,求sin∠AEC 的值.14.如图,ABC 为O 的内接三角形,AB 为O 的直径,过点A 作O 的切线交BC 的延长线干点D .(1)求证:ABC ∽;(2)若E 为AD 上一点,使得,连接OE ,求证:OE 平分;(3)若点F 为直径AB 下方半圆的中点,连接CF 交AB 于点G ,且,2AB =,求CG的长.15.如图,在平面直角坐标系中,抛物线y =ax 2+bx +2与直线y =x ﹣2交于点A (m ,0)和点B (﹣2,n ),与y 轴交于点C .(1)求抛物线的解析式及顶点D 的坐标;(2)若向下平移抛物线,使顶点D 落在x 轴上,原来的抛物线上的点P 平移后的对应点为P ',若,求点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 的面积是△ABC 面积的一半?若存在,直接写出点Q 的坐标;若不存在,请说明理由.16.已知抛物线24y ax bx =++(a ≠0)与x 轴交于点A (3-,0)、B (2,0),与y 轴交于点C ,直线y mx n =+经过两点A 、C .(1)求a,b的值;(2)如图1,点Р在已知抛物线上,且位于第二象限,当四边形PABC的面积最大时,求点P的坐标.(3)如图2,将已知抛物线向左平移12个单位,再向下平移2个单位.记平移后的抛物线为'y,若抛物线'y与原抛物线的对称轴交于点Q.点E是新抛物线'y的对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,请直接写出点E的坐标.17.如图,已知四边形ABCD内接于⊙O,直径DF交BC于点G.(1)如图1,求证:∠BAD-∠BCF=90°;(2)如图2,连接AC,当∠BAC=∠CFD+∠ACD时,求证:CA=CB;(3)如图3,在(2)的条件下,AC交DF于点H,∠BAC=∠DGB,45CGBG,AC=9,求△CDH的面积.18.设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C.且∠ACB=90度.(1)求m 的值;(2)求抛物线的解析式,并验证点D (1,﹣3)是否在抛物线上;(3)已知过点A 的直线y =x +1交抛物线于另一点E .问:在x 轴上是否存在点P ,使以点P 、B 、D 为顶点的三角形与△AEB 相似?若存在,请求出所有符合要求的点P 的坐标;若不存在,请说明理由.19.图形的旋转变换是研究数学相关问题的重要手段之一,在研究三角形的旋转过程中,发现下列问题:如图1,在ABC 中,AB AC =,BAC α∠=,MN 分别为AB 、BC 边上一点,连接MN ,且MN AC ∥,将ABC 绕点B 在平面内旋转.(1)观察猜想ABC 绕点B 旋转到如图2所示的位置,若60α=︒,则AMCN的值为______. (2)类比探究若90α=︒,将ABC 绕点B 旋转到如图3所示的位置,求AMCN的值. (3)拓展应用若90α=︒,M 为AB 的中点,4AB =,当AM BN ⊥时,请直接写出CN 的值. 20.如图1,在菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =16,BD =12. (1)求菱形ABCD 的面积及周长;(2)点M 是射线DA 上一个动点,作射线BM ,交射线CA 于点E .将射线BM 绕点B 逆时针旋转后交射线CA 于点N ,旋转角为∠MBN ,且∠MBN =12BAD ∠,连接MN .①如图2,当点N 与点O 重合时,求△AMN 的周长;②当AE =BE 时,请直接写出AM 的长为 ; ③BN =35时,请直接写出AM 的长为 .【参考答案】**科目模拟测试一、解答题1.(1)7 57221【解析】 【分析】(1)①根据旋转的性质得到CB CE =,求得EBC BEC ∠=∠,根据平行线的性质得到EBC BEA ∠=∠,于是得到结论;②如图1,过点B 作CE 的垂线BQ ,根据角平分线的性质得到AB BQ =,求得=CG BQ ,根据全等三角形的性质得到BH GH =,根据三角形的中位线定理即可得到结论; ③如图2,过点G 作BC 的垂线GM ,解直角三角形即可得到结论.(2)如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,根据旋转的性质得到4==CE BC ,2CD AB ==,解直角三角形得到1NG =,3PG =(1)解:①证明:矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,CB CE ∴=,EBC BEC ∴∠=∠,又//AD BC ,EBC BEA ∴∠=∠,BEA BEC ∴∠=∠,BE ∴平分AEC ∠;②证明:如图1,过点B 作CE 的垂线BQ ,BE 平分AEC ∠,BA AE ⊥,BQ CE ⊥,AB BQ ∴=,CG BQ ∴=,90BQH GCH ∠=∠=︒,BQ AB CG ==,BHQ GHC ∠=∠,()BHQ GHC AAS ∴∆≅∆,BH GH ∴=,即点H 是BG 中点, 又点P 是BC 中点,//PH CG ∴;③解:如图2,过点G 作BC 的垂线GM ,22BC AB ==,1BQ ∴=,30BCQ ∴∠=︒,90ECG ∠=︒,60GCM ∴∠=︒,1CG AB CD ===,3GM ∴12CM =,222253()()722BG BM MG ∴=+=+=; (2)解:如图3,连接DB ,DG ,过G 作GP BC ⊥交BC 的延长线于P ,GN DC ⊥交DC 的延长线于N ,24BC AB ==,2AB ∴=,将矩形ABCD 绕着点C 按顺时针方向旋转得到矩形FECG ,4CE BC ∴==,2CD AB ==,点A ,E ,D 第二次在同一直线上,90CDE ,12CD CE ∴=, 30DEC ∴∠=︒,60DCE ∴∠=︒,30NCG ∴∠=︒,2CG =,1NG ∴=,3PG =523DBG DBC DCG BCG S S S S ∆∆∆∆∴=++=+2227BG BP PG +257221DBG S DM BG ∆∴= 【点睛】本题考查了旋转的性质,全等三角形的判定和性质,矩形的性质,三角形的中位线定理,勾股定理,解直角三角形,解题的关键是正确地作出辅助线.2.(1)见解析;(2)见解析;(32【解析】【分析】(1)过点D 分别作DF BC ⊥于点F ,DE BA ⊥交BA 的延长线于点E ,根据角平分线的性质可得ED FD =,结合已知条件HL 证明Rt DAE ≌Rt DCF △,继而可得C EAD ∠=∠,根据平角的定义以及等量代换即可证明180BAD BCD ∠+∠=︒;(2)过点D 分别作DF BC ⊥于点F ,DE BA ⊥交BA 的延长线于点E ,过点B 作BG DC ⊥,根据含30度角的直角三角形的性质可得12ED AD =,根据三线合一,可得12DG DC =,进而可得DE DG =,根据角平分线的判定定理可推出12ABD DBG DBC ∠=∠=∠,进而即可证明2DBC ABD ∠=∠; (3)先证明四边形DMEF 是矩形,证明△MAD ≌FCD ,进而证明四边形DMEF 是正方形,设ABD α∠=,根据(2)的结论以及三角形内角和定理,求得15α=︒,进而求得30DBC ∠=︒,根据含30度角的直角三角形的性质,即可求得EF ,进而在Rt DEF △中,勾股定理即可求得DE 的长.【详解】(1)如图,过点D 分别作DF BC ⊥于点F ,DE BA ⊥交BA 的延长线于点E ,BD 平分ABC ∠,ED FD ∴=DA DC =,在Rt DAE 与Rt DCF △中AD DC ED FD =⎧⎨=⎩∴Rt DAE ≌Rt DCF △(HL )C EAD ∴∠=∠180DAB EAD DAB C ∴∠+∠=∠+∠=︒即180BAD BCD ∠+∠=︒(2)如图,过点D 作DE BA ⊥交BA 的延长线于点E ,过点B 作BG DC ⊥,BD BC = 11,22DG GC DC DBG CBG DBC ∴==∠=∠=∠ 150=︒∠BAD ,18015030EAD ∴∠=︒-︒=︒12ED AD ∴= DA DC =ED DG ∴=,ED BE DG BG ⊥⊥EBD GBD ∴∠=∠12ABD DBC ∴∠=∠ 即2DBC ABD ∠=∠(3)如图,过点D 分别作DF BC ⊥于点F ,DM EA ⊥交EA 的延长线于点M ,AE BC ⊥,,DM ME DF FE ⊥⊥∴四边形DMEF 是矩形90MDF ∴∠=︒90MDA ADF ∴∠+∠=︒DA DC⊥90ADC∴∠=︒90ADF FDC∴∠+∠=︒FDC MDA∴∠=∠在△MAD与FCD中MDA FDCDMA DFCDA DC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△MAD≌FCDDM DF∴=,MDA FDC∠=∠∴四边形DMEF是正方形DF EF∴=设ABDα∠=∴22DBC ABDα∠=∠=BD BC=()11802902BDC BCDαα∴∠=∠=︒-=-90MDA FDC BCDα∴∠=∠=︒-∠=90DAE M MDAα∴∠=∠+∠=︒+150BAD∠=︒60BAEα∴∠=-在BAE中9030ABE BAEα∠=︒-∠=︒+23ABE ABD DBCααα∠=∠+∠=+=15α∴=︒230DBCα∴∠==︒2BD =112122DF BD∴==⨯=在Rt DEF△中,1EF DF==DE∴==【点睛】本题考查了三角形全等的性质与判定,角平分线的性质与判定,三角形内角和定理,三角形的外角性质,勾股定理,正方形的性质与判定,正确的添加辅助线是解题的关键.3.(1)2y x 2x 3=-++;(2)1(2,3)Q ,2317117(,)22Q +--,3317117(,)22Q --+;(3)存在,(2,3)M 或5175317(,)22--+ 【解析】【分析】 (1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入求出a ,即可得出答案;(2)①过P 作PQ //BC ,交抛物线于点Q ,如图1所示;②求出点G 坐标,可得2PG GH ==,过H 作直线23Q Q //BC ,交x 轴于点H ,分别求出Q 的坐标即可;(3)MDN △为等腰直角三角形,则MN MD =,求出MN 、MD 的长度即可列出等量关系式,从而得出答案.【详解】(1)设2(1)4(0)y a x a =-+≠,把C(0,3)代入抛物线解析式得:43a +=,即1a =-,则抛物线解析式为22(1)423 y x x x =--+=-++;(2)由(3,0)B ,C(0,3),得到直线BC 解析式为3y x =-+,①过P 作1PQ //BC ,交抛物线于点1Q ,如图1所示,(1,4)P ,∴直线PQ 解析式为5y x =-+,联立得:2235y x x y x ⎧=-++⎨=-+⎩, 解得:14x y =⎧⎨=⎩或23x y =⎧⎨=⎩, 即1(2,3)Q ;②过P 作PH x ⊥轴,交BC 于点G ,交x 轴于点H ,令1x =,代入3y x =-+,得2y =,(1,2)G ∴,2PG GH ∴==,过H 作直线23Q Q //BC ,则直线23Q Q 解析式为1y x =-+,联立得:2231y x x y x ⎧=-++⎨=-+⎩,解得:x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧⎪⎪⎨⎪=⎪⎩2Q ∴,3Q , 综上所述:点Q 的坐标为1(2,3)Q,2Q,3Q ; (3)MDN △为等腰直角三角形,则MN MD =,点()2,23M m m m -++,令x m =,代入3y x =-+得:3y m =-+,(,3)D m m ∴-+,函数的对称轴为:1x =,则点N 的横坐标为:2m -,则|22|MN m =-,2223(3)3MD m m m m m =-++--+=-+,2223m m m ∴-=-+,2223m m m -=-+或2223m m m -+=-+,解得:12m =或21m =-(舍)或3m =4m = 当2m =时,2233m m -++=,当m =223m m -++= 故点M 的坐标为:(2,3)或. 【点睛】 本题考查了二次函数综合题,设计知识有:用待定系数法求函数解析式、同底等高的面积计算、等腰直角三角形的性质,一次函数与二次函数交点问题,熟练掌握相关知识点是解决本题的关键.4.(1)①1;②47;②见解析;(3)是定值,53 【解析】【分析】(1)①如图1,设DE 与CF 交于点G ,由正方形的性质得出∠A =∠FDC =90°,AD =CD ,可证明△AED ≌△DFC (AAS ),由全等三角形的性质得出DE =CF ,则可得出结论;②如图2,设DB 与CE 交于点G ,根据矩形性质得出∠A =∠EDC =90°,由直角三角形的性质证出∠ECD =∠ADB ,由相似三角形的判定定理证出△DEC ∽△ABD 即可;(2)如图3,过点C 作CH ⊥AF 交AF 的延长线于点H ,证明△DEA ∽△CFH ,由相似三角形的性质得出DE AD CF CH =,则可得出结论; (3)过点C 作CG ⊥AD 于点G ,连接AC 交BD 于点H ,CG 与DE 相交于点O ,根据等积关系可得AH 、DH 和CG 的长,,再证明△DEA ∽△CFG ,得出比例线段DE AD CF CG=则可求出答案.【详解】解:(1)①如图1,设DE 与CF 交于点G ,∵四边形ABCD 是正方形,∴∠A =∠FDC =90°,AD =CD ,∵DE ⊥CF ,∴∠DGF =90°,∴∠ADE +∠CFD =90°,∠ADE +∠AED =90°,∴∠CFD =∠AED ,在△AED 和△DFC 中,A FDC CFD AED AD CD ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AED ≌△DFC (AAS ),∴DE =CF ,∴DE CF=1 故答案为:1;②如图2,设DB 与CE 交于点G ,∵四边形ABCD 是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG+∠ECD=90°,∠ADB+∠CDG=90°,∴∠ECD=∠ADB,∵∠CDE=∠A,∴△DEC∽△ABD,∴4,7 CE DCBD AD==,故答案为:47.(2)证明:如图3,过点C作CH⊥AF交AF的延长线于点H,∵CG⊥EG,∴∠G=∠H=∠A=∠B=90°,∴四边形ABCH为矩形,∴AB=CH,∠FCH+∠CFH=∠DFG+∠FDG=90°,∴∠FCH=∠FDG=∠ADE,∠A=∠H=90°,∴△DEA∽△CFH,∴DE AD CF CH=,∴DE AD CF AB=,∴DE•AB=CF•AD;(3)是定值,如图4,过点C作CG⊥AD于点G,连接AC交BD于点H,CG与DE相交于点O,则AC BD ⊥于H∵CF ⊥DE ,GC ⊥AD ,∴∠FCG +∠CFG =∠CFG +∠ADE =90°,∴∠FCG =∠ADE ,∠BAD =∠CGF =90°,∴△DEA ∽△CFG , ∴DE AD CF CG=, 在Rt △ABD 中,AD =9,AB =3, ∴222293310BD AB AD ++ 又1122AD AB BD AH = ∴93910310AD AB AH BD ⨯=== ∴AC =2AH 91052222910279()101010DH AD AH =-=- ∵1122ADC S AC DH AD CG ∆=⋅=⋅, ∴192711010925102CG =⨯, ∴CG =275,由(1)可得,ADE GCF ∆∆∴952735DE AD CF CG ===【点睛】此题是相似形综合题,主要考查了正方形的性质,矩形的性质,勾股定理,相似三角形的判定与性质,全等三角形的判断和性质,三角形的面积,解本题的关键是熟练掌握相似三角形的判定与性质.5.(1)213442y x x =-++;(2)点P 的坐标为:(6,4171,2172);(3)11NC MC += 【解析】【分析】(1)根据题意,先证明AOC ∆∽COB ∆,得到AO OC CO OB=,求出点A 、B 的坐标,然后利用待定系数法,即可求出抛物线解析式;(2)根据题意,可分为两种情况:AOC ∆∽PQC ∆或AOC ∆∽CQP ∆,结合解一元二次方程,相似三角形的判定和性质,分别求出点P 的坐标,即可得到答案;(3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,然后由角平分线的性质定理,得到EI =EJ ,再证明△MEI ∽△MNC ,△NEJ ∽△NMC ,得到111NC MC EI +=,然后求出EI 一个定值,即可进行判断.【详解】解:(1)∵以AB 为直径的圆过点C ,∴∠ACB =90°,∵点C 的坐标为()0,4,∴CO ⊥AB ,∴∠AOC =∠COB =90°,∴∠ACO +∠OCB =∠ACO +∠OAC =90°,∴∠OCB =∠OAC ,∴AOC ∆∽COB ∆, ∴AO OC CO OB =, ∵4CO =,10AO BO AB +==,∴10AO OB =-, ∴1044OB OB-=, 解得:2OB =或8OB =,经检验,满足题意,∵OB OA >,∴8OB =,∴点A 为(2-,0),点B 为(8,0).设抛物线的解析式为2y ax bx c =++,把点A 、B 、C 三点的坐标代入,有44206480c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得:14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为213442y x x =-++; (2)根据题意,如图:当AOC ∆∽PQC ∆时,∴ACO PCQ ∠=∠,∵90ACO OCB ∠+∠=︒,∴90PCQ OCB ∠+∠=︒, ∴PC ⊥OC ,∴点P 的纵坐标为4,当4y =时,有2134442x x -++=, 解得:16x =或20x =(舍去);∴点P 的坐标为(6,4);当AOC ∆∽CQP ∆时,则此时BC 垂直平分OP ,作PG ⊥y 轴,垂足为G ,如上图, ∴90CQP AOC ∠=∠=︒,∴AC ∥OP ,∴∠ACO =∠POG ,∵90PGO AOC ∠=∠=︒,∴AOC ∆∽PGO ∆,∴AO OC PG GO=, 设点P 为(x ,213442x x -++), ∴PG x =,213442GO x x =-++, ∴22413442x x x =-++, 解得:171x =, ∵点P 在第一象限, ∴171x =,∴2134217242x x -++=,∴点P 的坐标为(171-,2172-);综合上述,点P 的坐标为:(6,4)或(171-,2172-);(3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,如图:∵CE 是∠ACB 的角平分线,∴EI =EJ , ∵EI ∥CN ,EJ ∥CM ,∴△MEI ∽△MNC ,△NEJ ∽△NMC ,∴EI ME NC MN =,EJ NE MC MN =, ∴1EI EJ ME NE NC MC MN MN +=+=, ∴1EI EI NC MC +=, ∴111NC MC EI+=, ∵△ACO ∽△AEI , ∴12AI AO EI CO ==, ∵222425AC =+∵AC AI IC AI EI =+=+,2512EI -=, 解得:45EI =∴11135NC MC EI +== ∴11NC MC+是一个定值. 【点睛】本题考查了二次函数的综合应用,求二次函数的解析式,二次函数的性质,相似三角形的判定和性质,解一元二次方程,角平分线的性质定理等知识,解题的关键是熟练掌握题意,正确的作出辅助线,运用数形结合的思想进行解题.6.(1)(﹣1,﹣5),y =x ﹣4;(2)①a 的值为a =﹣2. 【解析】【分析】(1)由“伴随直线”的定义即可求解; (2)①先求y =a (x −1)2−4a 的伴随直线为y =ax −5a ,再联立方程组2(1)45y a x a y ax a ⎧=--⎨=-⎩,求出A (1,−4a ),B (2,−3a ),C (−1,0),D (3,0),由于当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,即可求a 的值;②先求直线BC 解析式为y =−ax −a ,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,则P [x ,a (x −1)2−4a ],Q (x ,−ax −a ),23127()228PBC S a x a ∆=--,即可求面积的最大值,进而求a 的值.【详解】(1)∵抛物线y =(x +1)2﹣5,∴顶点坐标为(﹣1,﹣5),“伴随直线”为y =x ﹣4,故答案为:(﹣1,﹣5),y =x ﹣4;(2)①由“伴随直线”定义可得:y =a (x ﹣1)2﹣4a 的伴随直线为y =ax ﹣5a , 联立2(1)45y a x a y ax a ⎧=--⎨=-⎩, 解得14x y a =⎧⎨=-⎩或23x y a =⎧⎨=-⎩, ∴A (1,﹣4a ),B (2,﹣3a ),在y =a (x ﹣1)2﹣4a 中,令y =0可解得x =﹣1或x =3,∴C (﹣1,0),D (3,0),∴AC 2=4+16a 2,BC 2=9+9a 2,∵当△ABC 为等腰三角形时,只存在一种可能为AC =BC ,∴AC 2=BC 2,即4+16a 2=9+9a 2,解得=a ∵抛物线开口向下,∴a =∴若△ABC 为等腰三角形时,a 的值为 ②设直线BC 的解析式为y =kx +b ,∵B (2,﹣3a ),C (﹣1,0),∴200k b k b +=⎧⎨-+=⎩,解得k a b a =-⎧⎨=-⎩,∴直线BC 解析式为y =﹣ax ﹣a ,如图,过P 作x 轴的垂线交BC 于点Q ,设点P 的横坐标为x ,∴P [x ,a (x ﹣1)2﹣4a ],Q (x ,﹣ax ﹣a ),∵P 是直线BC 上方抛物线上的一个动点, ∴22219(1)4(2)()24PQ a x a ax a a x x a x ⎡⎤=--++=--=--⎢⎥⎣⎦, ∴23127()228PBC S a x a ∆=--, ∴当12x =时,△PBC 的面积有最大值278-a , ∴S 取得最大值274时,即272784-=a ,解得a =﹣2.【点睛】本题考查二次函数的综合应用,熟练掌握二次函数的图象及性质,理解新定义,将所求问题转化为直线与抛物线的知识是解题的关键.7.(1)y =239344x x --;(2)点P 的坐标为:13313-13313-或(3,3);(3)⊙N 的半径为163或83或1. 【解析】【分析】(1)代入点A 、C 的坐标求出解析式;(2)先求出直线OD 的解析式,再和二次函数为的解析式y =239344x x -+联立即可求解;(3)先求出直线BC 的解析式,设N (m ,3m 34-),则M (m ,239344m m --),求出MN 的距离,最后利用“当⊙N 与y 轴相切时,MN =m ”,得出结果.【详解】解:(1)将点A (-1,0),C (0,3)代入抛物线的解析式得,9043a c c ⎧++=⎪⎨⎪=-⎩, 解得343a c ⎧=⎪⎨⎪=-⎩, 故二次函数的解析式为y =239344x x --; (2)∵抛物线y =239344x x --=23325()423x --, ∴抛物线的顶点E 的坐标为(325,23-), ∵DF 平分∠ODE ,∴∠ODF =∠FDE ,∵EH ∥y 轴,∴∠FDE =∠OFD ,∴OD =OF ,∵(0,F , ∴OD =OF设D (32,m ),则OD ²=223()2m +,即2(=223()2m +,解得:m =-32或32, ∴D (32,32-)或(32,32), 设直线OD 的解析式为y =kx , ∴32-=32k 或32=32k ,解得:k =-1或k =1, ∴直线OD 的解析式为:y =x 或y =-x , 联立239344y x y x x =⎧⎪⎨=--⎪⎩或239344y x y x x =-⎧⎪⎨=--⎪⎩, 解得:x舍去);或x =3或43-(舍去); ∴y3, ∴点P 的坐标为:或(3,3);(3)由(1)得二次函数为:y =239344x x --, 当y =0时,239344x x --=0,解得:121,4x x =-=, ∴B (4,0),设直线BC 为:y =kx +b ,经过点C (0,-3),则有043k b b =+⎧⎨=-⎩, 解得:343k b ⎧=⎪⎨⎪=-⎩ , ∴直线BC 为:y=334x -, 设N (m ,3m 34-),则M (m ,239344m m --), ∴MN =M N y y -=239333444m m m ---+=2334m m - 当⊙N 与y 轴相切时,MN =m , ∴2334m m -=m , 解2334m m -=m ,得m =163或0(舍去), 解2334m m -=-m ,得m =83或0(舍去), ∴⊙N 的半径为163或83; 当⊙N 与x 轴相切时,MN =334m -+, ∴2334m m -=334m -+,解2334m m -=334m -+,得m =4(舍去)或-1(舍去), 解2334m m -=3m 34-,得m =4(舍去)或1, ∴⊙N 的半径为1;综上,⊙N 的半径为163或83或1.【点睛】本题考查了待定系数法求二次函数及一次函数的解析式,两点之间的距离公式,圆的切线的性质,解本题的关键用方程的思想解决问题.8.(1)见解析;(2)①见解析;②202【解析】【分析】(1)利用SAS 证明△ACD ≌△BCE ,从而利用全等三角形的性质即可得出结论;(2)①过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,首先证明△ACT ≌△BCG 及△DCH ≌△ECT ,得到CT =BG ,CT =DH ,通过等量代换得出DH =BG ,再证明△DHF ≌△BGF ,则可证明结论;②首先利用等腰三角形的性质和ASA 证明△AOM ≌△COF ,则有OM =OF ,然后利用等腰直角三角形的性质得出FK 2,然后利用三角形的面积得出OF×BF =2,最后利用平方的非负性和完全平方公式求解即可.【详解】证明:(1)∵△ABC 是等腰直角三角形,AC =BC ,∴∠ACB =90°,∵CD ⊥CE ,∴∠ACB =∠DCE =90°,∴∠ACD +∠BCD =∠BCE +∠BCD ,即∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴AD =BE ;(2)①如图2,过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,∵CF ⊥AE ,∴∠ATC =∠ATF =90°,∴∠ACT +∠CAT =90°,又∵∠ACT +∠BCG =90°,∴∠CAT =∠BCG ,在△ACT 和△CBG 中,90CAT BCG ATC CGB AC CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ACT ≌△CBG (AAS ),∴CT =BG ,同理可证△DCH ≌△ECT ,∴CT =DH ,∴DH =BG ,在△DHF 和△BGF 中,90DFH BFG DHF BGF DH BG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△DHF ≌△BGF (AAS ),∴DF =BF ;②如图3,过点F 作FK ⊥BC 于K , ∵等腰Rt △ABC ,CA =CB ,点O 是AB 的中点, ∴AO =CO =BO ,CO ⊥AB ,∠ABC =45°, ∴∠OCF +∠OFC =90°,∵AT ⊥CF ,∴∠ATF =90°,∴∠OFC +∠FAT =90°,∴∠FAT =∠OCF ,在△AOM 和△COF 中,90MAO FCO OA OCAOM COF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△AOM ≌△COF (ASA ),∴OM =OF ,又∵CO ⊥AO ,∴∠OFM =∠OMF =45°,222MF OF OM =+, ∴∠OFM =∠ABC ,MF, ∴MF //BC ,∴∠MFK =∠BKF =90°,∵∠ABC =45°,FK ⊥BC ,∴∠ABC =∠BFK =45°,∴FK =BK ,∵222BF FK BK =+,∴FK=22BF,∵S△FMN=52,∴12×MF×FK=52,∴2OF×22BF=102,∴OF×BF=102,∵(BF﹣OF)2≥0,∴BF2+OF2﹣2BF×OF≥0,∴BF2+OF22=2∴BF2+OF2的最小值为2.【点睛】本题主要考查全等三角形的判定及性质,等腰直角三角形的性质与判定,平行线的性质与判定,三角形面积,完全平方公式等等,掌握等腰直角三角形的性质与判定和全等三角形的判定方法及性质是解题的关键.9.(1)证明见解析;(2)证明见解析,(3)157 BF=【解析】【分析】(1)连接OA并延长AO交BC于E,证明∠BAC=2∠BAE和∠ABD=∠BAE即可得结论,(2)利用直角三角形两锐角互余、圆周角定理进行导角,得出MCG△和△FCG是等腰三角形,得出BM=MC=FG=CG,MH=HG,进而由BF=BM+MH-FH=FG-FH+HG,得出结论;(3)过O点作OP⊥AC,由垂径定理得出12PD=,再由52ABOADOS AB BOS AD OD===和平行线分线段成比例定理求出7724DH DP==,由勾股定理进而可求BH,再利用相似三角形对应边成比例求出HG,即可得BF长.【详解】解:(1)连接OA并延长AO交BC于E,∵AB=AC,∴AB AC=,∵AE过圆心O,∴AE BC⊥,BE EC=,∴∠BAC=2∠BAE,∵OA=OB,∴∠ABD=∠BAE,∴∠BAC=2∠ABD;(2)如解图(2),连接OA并延长AO交BC于E,AE交BF于M,连接MC,设2BACα∠=,则ABD BAE EACα∠=∠=∠=∵AE=EC,AE⊥BC,∴BM=MC,∴∠MBC=∠MCB,∵BG⊥AC,AE⊥BC,∴∠EAC+∠ACE=90°,∠HBC+∠ACE=90°,∴EAC HBC MCBα∠=∠=∠=,∴2CMG MBC MCBα∠=∠+∠=,∵BC BC=,∴2G BACα∠=∠=,∴∠G=∠CMG,∴CG =CM =BM ,∵AC ⊥BG ,∴MH =HG ,∵OA =OC ,∴ACO EAC α∠=∠=∴9090CFG ACO α∠=︒-∠=︒-,∵180FCG CFG G ∠=︒-∠-∠,即180(90)290FCG ααα∠=︒-︒--=︒-,∴FCG CFG ∠=∠,∴FG =CG ,∴BM =MC =FG =CG ,又∵MH =HG ,∴BF =BM +MH -FH =FG -FH +HG ,∴BF =2HG .(3)过O 点作OP ⊥AC ,如解图(3)∵AO 是∠BAC 的角平分线,∴点O 到AB 、AC 的距离相等, ∴ABO ADO SAB BO S AD OD==, ∵AD =2,CD =3,∴AB =AC =5, ∴5=2BO OD ,即:2=7OD BD , ∵OP ⊥AC , ∴52AP PC ==,12PD =, ∵BH AC ⊥, ∴OP //BH ,∴27DP OP OD DH BH BD ===, ∴7724DH DP ==, ∴154AH AD DH =+=,5-4HC DC DH ==,∵在Rt ABH中,BH==∵BAH G∠=∠,AHB GHC∠=∠,∴AHB GHC△△,∴AH BHHG CH=即:AH HC BH HG=,51544=⨯,∴HG=,由(2)得BF=2HG,∴BF=【点睛】本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90°;(2)可以,旋转中心为为等边△ABC三边垂直平分线的交点O,理由见解析;(3)11CD≤≤【解析】【分析】问题背景(1)根据等腰直角三角形的性质,以及旋转的性质确定即可;尝试应用(2)首先通过证明△ABD和△CAE全等说明点A和点B对应,点C和点A对应,从而作AB和AC的垂直平分线,其交点即为旋转中点;拓展创新(3)首先确定出D点的运动轨迹,然后结合点与圆的位置关系,分别讨论出CD 最长和最短时的情况,并结合勾股定理进行求解即可.【详解】解:问题背景(1)如图所示,作AO⊥BC,交BC于点O,由等腰直角三角形的性质可知:∠AOC=90°,OA=OC,∴点A是由点C绕点O逆时针旋转90°得到,同理可得,点B是由点A绕点O逆时针旋转90°得到,点D是由点E绕点O逆时针旋转90°得到,∴△ABD可以由△CAE通过旋转变换得到,旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90°;尝试应用(2)∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°,∵∠DAC =∠DAB +∠BAC =∠AEC +∠EAC ,∠BAC =∠AEC =60°,∴∠DAB =∠ECA ,在△ABD 和△CAE 中,BDA AEC DAB ECA AB CA ∠⎪∠⎧=∠∠=⎪⎨⎩= ∴△ABD ≌△CAE (AAS ),∴△ABD 的A 、B 、D 三点的对应点分别为△CAE 的C 、A 、E 三点,则AC 、AB 分别视作两组对应点的连线,此时,如图所示,作AC 和AB 的垂直平分线交于点O ,∵△ABC 为等边三角形,∴由等边三角形的性质可知,OC =OA =OB ,∠AOC =120°,∴△ABD 可以由△CAE 通过旋转变换得到,旋转中心为为等边△ABC 三边垂直平分线的交点O ;拓展创新(3)由(1)知,在直线l 旋转的过程中,总有∠ADB =90°,∴点D 的运动轨迹为以AB 为直径的圆,如图,取AB 的中点P ,连接CP ,交⊙P 于点Q ,则当点D 在CP 的延长线时,CD 的长度最大,当点D 与Q 点重合时,CD 的长度最小,即CQ 的长度,∵AB =AC ,AB =2,∴AP =1,AC =2,在Rt △APC 中,225CP AP AC =+=,由圆的性质,PD =AP =1,∴PD =PQ =1,∴51CD CP PD =+=+,51CQ CP PQ =-=-,∴CD 的长的取值范围为:5151CD -≤≤+.【点睛】本题主要考查旋转三要素的确定,以及旋转的性质,主要涉及等腰直角三角形和等边三角形的性质,全等三角形的判定与性质,以及动点最值问题,掌握旋转的性质,确定出动点的轨迹,熟练运用圆的相关知识点是解题关键.11.(1)正方形;(2)α+β=180°;(3)α=96°;(4)能,α的值为120°,AP 的长为221.【解析】【分析】(1)由旋转的性质得到AO =AO ′,∠OAO ′=90°,由菱形的性质得到∠POA =∠AO ′P =90°,可以推出四边形AOPO ′为正方形;(2)利用旋转的性质推出∠AEP +∠AEG =∠AEP +∠ABD =180°,再结合四边形的内角和即可推出结论;(3)结合已知条件可分别先求出各部分角度,然后结合旋转的性质推出∠BPG 的度数,再结合(2)的结论求解即可;(4)利用勾股定理即可求得AO 的长,根据菱形的性质推出BD 是AC 的垂直平分线,证明△PAC 是等边三角形,即可求解.【详解】:(1)当α=90°时,四边形AOPO ′的形状为正方形.∵菱形AEFG 是菱形ABCD 旋转得到的,且点O ,O ′是对角线的交点,∴AO=AO′,∠OAO′=90°,∠POA=∠AO′P=90°,∴四边形AOPO′为正方形,故答案为:正方形;(2)由题意△BAD≌△EAG,∴∠ABD=∠AEG,∵射线BD,GE交于点P,∴∠AEP+∠AEG=∠AEP+∠ABD=180°,在四边形ABPE中,∠BAE+∠BPG=360°-(∠AEP+∠ABD)=180°,∴∠BAE=a,∠BPG=β,∴α+β=180°;(3)由菱形的性质知,AB=AD,△ABD为等腰三角形,∴当∠BAD=42°时,∠ABD=∠ADB=69°,∵PA=PB,∴∠ABP=∠BAP=69°,∴∠BPA=42°,∵AO=AO′,∴PA平分∠BPG,即:∠BPA=∠GPA=42°,∴∠BPG=84°,即:β=84°,由①知:α +β=180°,∴α=180°-84°=96°;(4)能,理由如下:连接PA,∵四边形ABCD 是菱形,且对角线交点为O ,AB =5,BD =4,∴BO =DO =2,AO =CO ,∠BOA =90°,∴AO =CO 2221AB BO -=∴AC 21 同理:21,AF 由旋转对称性可得,PC PF =∴ 当30CPB ∠=︒时,2221,PC CO PF ===∴ 四边形AFPC 是菱形,∵四边形ABCD 是菱形,∴BD 是AC 的垂直平分线,∴PC =PA ,∴△PAC 是等边三角形,∴PA =PC 21PAC =60°,∴∠CAF =120°,即α的值为120°,AP 的长为21【点睛】本题是四边形综合题,考查了菱形的性质,旋转的性质,勾股定理,等腰三角形的性质,等边三角形的判定和性质等,解答时灵活运用菱形的性质和旋转变化的性质是解题关键.12.(1)y =3x -3;(2)(-2,3);(3)Q 的坐标为(-72,0)或(0,74)或(0,132) 【解析】【分析】(1)根据算术平方根的非负性及偶次方的非负性得到a +3=0,p -1=0,求出a ,p ,得到点P ,A 的坐标,设直线AP 的解析式为y=kx+b ,利用待定系数法求出函数解析式;(2)过M 作MD交x 轴于D ,连接AD ,由MD ,△MAP 的面积等于6,顶点△DAP 的面积等于6,求出DP ,得到点D 坐标,求出直线DM 的解析式,即可求出M 的坐标;(3)设B (t ,3t -3),分三种情况,①当点Q 在轴负半轴时,过B 作BE ⊥x 轴于E ,证明△BEQ ≌△QNC (AAS ),得到O Q=QE-OE=ON+QN ,即4-t =2+3-3t ,求出t 值即可;②当Q在y轴正半轴上时,过C作CF⊥y轴于F,过B作BG⊥y轴于G,证明△CQF≌△QBG(AAS),得到O Q=OG-QG=OF-QF,即3t-3-2=4-t,求出t即可;③当Q在y轴正半轴上时,过点C作CF⊥y轴于F,过B作BT⊥y轴于T,同②可证△CFQ≌△QTB(AAS),得到OQ=OT+QT=OF+QF,即3t-3+2=4+t,求出t值即可.(1)解:∵+(p﹣1)2=0.∴a+3=0,p-1=0,解得a=-3,p=1,∴P(1,0),A(0,-3),设直线AP的解析式为y=kx+b,∴,解得,∴直线AP的解析式为y=3x-3;(2)解:过M作MD交x轴于D,连接AD,∵MD,△MAP的面积等于6,∴△DAP的面积等于6,∴,即,∴DP=4,∴D(-3,0)设直线DM的解析式为y=3x+c,则,∴c=9,∴直线DM的解析式为y=3x+9,令x=-2,得y=3,∴M(-2,3);(3)解:存在设B(t,3t-3),。
初三中考数学压轴题精选100题(含答案)
初三中考数学压轴题精选100题(含答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.7.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.8.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.9.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.11.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A 类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.14.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.19.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.20.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.。
中考数学压轴题100题精选(41-50题)答案
中考数学压轴题100题精选(41-50题)答案【041】(1)如图 (3分)······· (5分) (3)如图,设直线AB 的解析式为11y k x b =+,图象过(40)(6150)A B ,,,, 1111406150.k b k b +=⎧∴⎨+=⎩,1175300.k b =⎧∴⎨=-⎩,75300y x =-.① ···················································· (7分) 设直线CD 的解析式为22y k x b =+, 图象过(70)(5150)C D ,,,,2222705150.k b k b +=⎧∴⎨+=⎩,2275525.k b =-⎧∴⎨=⎩,∴75525y x =-+.② ·············································· (7分) 解由①、②组成的方程组得 5.5112.5.x y =⎧⎨=⎩,∴最后一次相遇时距离乌鲁木齐市的距离为112.5千米. (12分) 【042】解:(1)∵点D 是OA 的中点,∴2OD =,∴OD OC =. 又∵OP 是COD ∠的角平分线,∴45POC POD ∠=∠=°, ∴POC POD △≌△,∴PC PD =. ··················································································· 3分 (2)过点B 作AOC ∠的平分线的垂线,垂足为P ,点P 即为所求.易知点F 的坐标为(2,2),故2BF =,作PM BF ⊥∵PBF △是等腰直角三角形,∴112PM BF ==,∴点P 的坐标为(3,3).∵抛物线经过原点,∴设抛物线的解析式为2y ax bx =+又∵抛物线经过点(33)P ,和点(20)D ,,∴有93420a b a b +=⎧⎨+=⎩ 解得2b ⎨=-⎩∴抛物线的解析式为22y x x =-. ·························································································· 7分 (3)由等腰直角三角形的对称性知D 点关于AOC ∠的平分线的对称点即为C 点.连接EC ,它与AOC ∠的平分线的交点即为所求的P 点(因为PE PD EC +=,而两点之间线段最短),此时PED △的周长最小. ∵抛物线22y x x =-的顶点E 的坐标(11)-,,C 点的坐标(02),,设CE 所在直线的解析式为y kx b =+,则有12k b b +=-⎧⎨=⎩,解得32k b =-⎧⎨=⎩.∴CE 所在直线的解析式为32y x =-+.点P 满足32y x y x =-+⎧⎨=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,故点P 的坐标为1122⎛⎫ ⎪⎝⎭,.PED △的周长即是CE DE +=(4)存在点P ,使90CPN ∠=°.其坐标是1122⎛⎫⎪⎝⎭,或(22),. ······································ 14分【043】解(Ⅰ)212120y x y x bx c y y ==++-=,,,()210x b x c ∴+-+=.········································································································ 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,, 解得1166b c ==,.∴函数2y 的解析式为2y 25166x x =-+. ······································ 3分(Ⅱ)由已知,得6AB =,设ABM △的高为h ,31121212ABM S AB h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ·························································································· 6分 (Ⅲ)由已知,得222b c b c T t bt cαααβββ=++=++=++,,.()()T t t b ααα∴-=-++,()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<<,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ····································································································· 10分 【044】(1) 配方,得y =12(x –2)2–1,∴抛物线的对称轴为直线x =2,顶点为P (2,–1) . 取x =0代入y =12x 2–2x +1,得y =1,∴点A 的坐标是(0,1).由抛物线的对称性知,点A (0,1)与点B 关于直线x =2对称,∴点B 的坐标是(4,1). 2分设直线l 的解析式为y =kx +b (k ≠0),将B 、P 的坐标代入,有 14,12,k b k b =+⎧⎨-=+⎩解得1,3.k b =⎧⎨=-⎩∴直线l 的解析式为y =x –3.3分 (2) 连结AD 交O ′C 于点E ,∵ 点D 由点A 沿O ′C 翻折后得到,∴ O ′C 垂直平分AD .由(1)知,点C 的坐标为(0,–3),∴ 在Rt△AO ′C 中,O ′A =2,AC =4,∴ O ′C .据面积关系,有 12×O ′C ×AE =12×O ′A ×CA ,∴ AE AD =2AE作DF ⊥AB 于F ,易证Rt △ADF ∽Rt △CO ′A ,∴AF DF ADAC O A O C=='', ∴ AF =AD O C '·AC =165,DF =AD O C '·O ′A =85,5分又 ∵OA =1,∴点D 的纵坐标为1–85= –35,∴ 点D 的坐标为(165,–35).(3) 显然,O ′P ∥AC ,且O ′为AB 的中点,∴ 点P 是线段BC 的中点,∴ S △DPC = S △DPB . 故要使S △DQC = S △DPB ,只需S △DQC =S △DPC .过P 作直线m 与CD 平行,则直线m 上的任意一点与CD 构成的三角形的面积都等于S △DPC ,故m 与抛物线的交点即符合条件的Q 点.容易求得过点C (0,–3)、D (165,–35)的直线的解析式为y =34x –3,据直线m 的作法,可以求得直线m 的解析式为y =34x –52.令12x 2–2x +1=34x –52,解得 x 1=2,x 2=72,代入y =34x –52,得y 1= –1,y 2=18, 因此,抛物线上存在两点Q 1(2,–1)(即点P )和Q 2(72,18),使得S △DQC = S △DPB . 【045】(1)将A (0,1)、B (1,0)坐标代入212y x bx c =++得1102c b c =⎧⎪⎨++=⎪⎩解得321b c ⎧=-⎪⎨⎪=⎩∴抛物线的解折式为213122y x x =-+…(2分) (2)设点E 的横坐标为m ,则它的纵坐标为213122m m -+ 即 E 点的坐标(m ,213122m m -+)又∵点E 在直线112y x =+上 ∴213111222m m m -+=+ 解得10m =(舍去),24m = ∴E 的坐标为(4,3)……(4分) (Ⅰ)当A 为直角顶点时过A 作AP 1⊥DE 交x 轴于P 1点,设P 1(a,0) 易知D 点坐标为(-2,0) 由Rt △AOD ∽Rt △POA 得DO OA OA OP =即211a =,∴a =21 ∴P 1(21,0)……(5分) (Ⅱ)同理,当E 为直角顶点时,P 2点坐标为(112,0)……(6分)(Ⅲ)当P 为直角顶点时,过E 作EF ⊥x 轴于F ,设P 3(b 、3)由∠OPA+∠FPE =90°,得∠OPA =∠FEP Rt △AOP ∽Rt △PFE由AO OP PF EF =得143bb =- 解得13b =,21b = ∴此时的点P 3的坐标为(1,0)或(3,0)……(8分)综上所述,满足条件的点P 的坐标为(21,0)或(1,0)或(3,0)或(112,0)(Ⅲ)抛物线的对称轴为32x =…(9分)∵B 、C 关于x =23对称 ∴MC =MB要使||AM MC -最大,即是使||AM MB -最大由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时||AM MB -的值最大.易知直线AB 的解折式为1y x =-+∴由132y x x =-+⎧⎪⎨=⎪⎩ 得3212x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴M (23,-21)……(11分) 【046】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.······························ (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ················································· (3分) ∴111263622ABC C S AB y ==⨯⨯=△·. ···································································· (4分)(2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,. ∴D 点坐标为()88,.(5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,.. ∴E 点坐标为()48,.(6分)∴8448OE EF =-==,.(7分) (3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =.Rt Rt AFH AMC △∽△, ∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.(图3)(图1) (图2)即241644333S t t =-++.【047】解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···························································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =.3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=,222DM DE EM +=,∴2222AM AB DM DE +=+.······························································································ 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ∴15AM BN =. ······················································· 7分方法二:同方法一,54BN =. ······························································································ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,.在BCE △与NGM △中N 图(1-1)A BC DEF M N图(1-2)A BC DEFMG90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ································· 5分∵114AM AG MG AM =--=5,=.4∴15AM BN =. ··············································· 7分 类比归纳25(或410);917; ()2211n n -+ 2222211n m n n m -++······················································ 12分 【048】解:(1)由题意得 6=a(-2+3)(-2-1),∴a=-2,∴抛物线的函数解析式为y=-2(x +3)(x -1)与x 轴交于B (-3,0)、A (1,0) 设直线AC 为y=kx +b ,则有0=k +b ,6=-2k +b ,解得 k=-2,b=2, ∴直线AC 为y=-2x +2(2)①设P 的横坐标为a(-2≤a ≤1),则P (a ,-2a +2),M (a ,-2a 2-4a +6) ∴PM=-2a 2-4a +6-(-2a +2)=-2a 2-2a +4=-2a 2+a +14+92 =-2a+122+92,∴当a=-12时,PM 的最大值为926分 ②M1(0,6)M2-14,678【049】解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ································································· 3分 (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则32k b b -+⎧⎨=-⎩∴此直线的表达式为23y x =-把1x =-代入得43y =-∴P (3)S 存在最大值,理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴333322OE m AE OE m =-==,,方法一:连结OP ,OED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭(第24题图)=23342m m -+,∵304-<∴当1m =时,333424S =-+=最大 ······················ 9分 方法二:OAC OED AEP PCD S S S S S =---△△△△ =()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+,∵304-<∴当1m =时,34S =最大 ··························· 9分 【050】解:(1)∵PE AB ∥∴DE DPDA DB=.而10DE t DP t ==-,, ∴10610t t -=,∴154t =.∴当15(s)4t PE AB =,∥. (2)∵EF 平行且等于CD , ∴四边形CDEF 是平行四边形.∴DEQ C DQE BDC ∠=∠∠=∠,.∵10BC BD ==,∴DEQ C DQE BDC ∠=∠=∠=∠.∴DEQ BCD △∽△.∴DE EQ BC CD =.104t EQ =.∴25EQ t =. 过B 作BM CD ⊥,交CD 于M ,过P 作PN EF ⊥,交EF 于N .BM ==ED DQ BP t ===,∴102PQ t =-.又PNQ BMD △∽△,PQ PN BD BM =,10210t -=15t PN ⎫=-⎪⎭,211212255PEQ t SEQ PN t ⎫==⨯⨯-=+⎪⎭△.(3)11422BCD S CD BM ==⨯⨯=△ 若225PEQ BCD S S =△△,则有2225=⨯,解得1214t t ==,. (4)在PDE △和FBP △中,10DE BP t PD BF t PDE FBP PDE FBP ==⎫⎪==-⇒⎬⎪∠=∠⎭,,△≌△,∴PDE PFCDE PFCD S S S =+△五边形四边形FBP PFCD S S =+△四边形BCD S ==△. ∴在运动过程中,五边形PFCDE 的面积不变.。
初三数学压轴题100题
1.一个等腰三角形的底边长为10厘米,腰长为13厘米,求这个三角形的面积。
答案:底边上的高为12厘米,面积为60平方厘米。
2.解方程:2x^2 - 5x + 2 = 0。
答案:x1 = 1/2, x2 = 2。
3.一个圆的半径是7厘米,求这个圆的周长和面积。
答案:周长约为43.98厘米,面积约为153.94平方厘米。
4.一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,求它的体积和表面积。
答案:体积为192立方厘米,表面积为192平方厘米。
5.一个数的2/3加上15等于这个数的1/2,求这个数。
答案:这个数是60。
6.一个班级有40名学生,其中女生占全班的5/8,求男生的人数。
答案:男生有15人。
7.一个三角形的两边长分别是8厘米和6厘米,夹角为90度,求这个三角形的面积。
答案:面积为24平方厘米。
8.一个圆柱的底面半径是5厘米,高是10厘米,求这个圆柱的体积。
答案:体积约为785.4立方厘米。
9.一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个梯形的面积。
答案:面积为32平方厘米。
10.一个数的1/4减去5等于这个数的1/8,求这个数。
答案:这个数是40。
11.一个班级有50名学生,其中2/5是女生,求男生的人数。
答案:男生有30人。
12.一个三角形的两边长分别是9厘米和12厘米,夹角为60度,求这个三角形的面积。
答案:面积约为27.71平方厘米。
13.一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。
答案:体积约为37.68立方厘米。
14.一个梯形的上底是5厘米,下底是7厘米,高是3厘米,求这个梯形的面积。
答案:面积为18平方厘米。
15.一个数的3/5加上10等于这个数的2/3,求这个数。
答案:这个数是75。
16.一个班级有60名学生,其中1/3是男生,求女生的人数。
答案:女生有40人。
17.一个三角形的两边长分别是7厘米和5厘米,夹角为30度,求这个三角形的面积。
答案:面积约为5.92平方厘米。
中考数学压轴题100题精选[含答案解析]
中考数学压轴题100题精选【含答案】【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE经过点C 时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。
初三中考数学压轴题精选100题
初三中考数学压轴题精选100题一、中考压轴题1.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.2.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.4.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.6.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.7.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.8.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.10.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.11.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【解答】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【点评】主要用到的解题思想是把梯形问题转化成三角形问题,利用三角形相似比列方程来求未知线段的长度.12.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.13.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.14.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.15.如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.【分析】连接OA交MN于点G,则OA⊥BC,由三角形的中位线的性质可得MN的长,易证得△BMD≌△AMN,有DM=MN,由相交弦定理得ME•MF=MA•MB,就可求得EM,DE的值.【解答】解:∵M,N分别是边AB,AC的中点∴MN∥BC,MN=BC=1又∵BD∥AC∴∠DBA=∠A=60°∵BM=AM,∠BMD=∠AMN∴△BMD≌△AMN∴DM=MN=1连接OA交MN于点G,则OA⊥BC∴OA⊥EF∴EG=FG,MG=FN由相交弦定理得:ME•MF=MA•MB∴EM(EM+1)=1解得EM=(EM=不合题意,舍去)∴DE=DM﹣EM=∴DE(3﹣DE)=1解得DE=(DE=不合题意,舍去).【点评】本题利用了三角形的中位线的性质,等边三角形的性质,全等三角形的判定和性质,一元二次方程的解法求解.16.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.17.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.18.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.19.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.20.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.21.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.22.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.23.如图,AD是⊙O的直径.。
中考数学压轴题100题含答案解析
中考数学压轴题100题精选【含答案】【001】如图,已知抛物线y a(x 3 3( a z 0)经过点A2 °),抛物线的顶点为D , 过O作射线OM // AD •过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC •(1)求该抛物线的解析式;(2)若动点P从点0出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s) •问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若0C °B,动点P和动点Q分别从点0和点B同时出发,分别以每秒1个长度单位和2 个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动•设它们的运动的时间为t (s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.【002】如图16,在Rt A ABC中,/ C=90 , AC = 3 , AB = 5 .点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1) 当t = 2时,AP = ,点Q到AC的距离是:(2) 在点P从C向A运动的过程中,求△ APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3) 在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;(4) 当DE经过点C时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (4, 0)、C ( 8, 0)、D ( 8,8) •抛物线y=ax2+bx过A、C两点.(1) 直接写出点A的坐标,并求出抛物线的解析式;(2) 动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒•过点P作PE丄AB交AC于点E,①过点E作EF丄AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△ CEQ是等腰三角形?请直接写出相应的t值。
中考数学压轴题100题精选及答案(全)
(1)求点 的坐标(用 表示);
(2)求抛物线的解析式;
(3)设点 为抛物线上点 至点 之间的一动点,连结 并延长交 于点 ,连结 并延长交 于点 ,试证明: 为定值.
【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。
(1) 求证:BE=AD;
(2)求证:AC是线段ED的垂直平分线;
(3)△DBC是等腰三角形吗?并说明理由。
【009】一次函数 的图象分别与 轴、 轴交于点 ,与反比例函数 的图象相交于点 .过点 分别作 轴, 轴,垂足分别为 ;过点 分别作 轴, 轴,垂足分别为 与 交于点 ,连接 .
(1)求证:梯形 是等腰梯形;
(2)动点 、 分别在线段 和 上运动,且 保持不变.设 求 与 的函数关系式;
(3)在(2)中:①当动点 、 运动到何处时,以点 、 和点 、 、 、 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当 取最小值时,判断 的形状,并说明理由.
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。
中考数学压轴题含答案
中考数学压轴题含答案一、选择题1、下列图形中,既是轴对称图形,又是中心对称图形的是()A.菱形B.平行四边形C.矩形(答案:C)2、如果一个三角形的三条边的平方相等,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形(答案:A)3、下列说法正确的是()A.所有的质数都是奇数B.所有的偶数都是合数C.一个数的因数一定比它的倍数小D.自然数一定是正数(答案:A)二、填空题1、若a-b=2,a+b=7,则a²-b²=(答案:14)2、我们学过的数有整数和分数,整数的运算律在分数运算中(答案:同样适用)。
3、一个长方形的周长是20cm,长和宽的比是3:2,则长方形的面积是(答案:60平方厘米)。
三、解答题1、一个圆柱体底面半径为r,高为h,它的体积是多少?(答案:πr²h)2、有一块三角形的土地,底边长为120米,高为90米,这块土地的面积是多少?(答案:5400平方米)3、对于一个给定的整数n,如果它是3的倍数,那么我们就称它为“三的倍数”,否则我们就称它为“非三的倍数”。
现在有一个整数n,它是“三的倍数”,我们可以得出哪些结论?(答案:n+1、n+2、n+3、...、2n都是“三的倍数”,因为它们都可以被3整除。
)中考数学压轴题100题及答案在中考数学考试中,压轴题往往是最具挑战性和最能检验考生数学能力的题目。
为了帮助同学们更好地理解和掌握中考数学的压轴题,本文将分享100道经典的中考数学压轴题及其答案。
一、选择题1、在一个等边三角形中,边长为6,下列哪个选项的面积最接近这个等边三角形的面积?A. 20B. 25C. 30D. 35答案:B解析:等边三角形的面积可以通过计算得出,边长为6的等边三角形的面积为:436293约为28.2,因此选项B最接近。
2、如果一个多边形的内角和是外角和的2倍,那么这个多边形的边数是多少?A. 4B. 6C. 8D. 10答案:C解析:根据多边形的内角和公式和外角和为360度,可列出方程求解。
中考数学压轴题100题精选及答案全3篇
中考数学压轴题100题精选及答案全第一篇:数与代数1.下列各组数中,哪一组数最大?A. \frac{1}{2} ,\frac{2}{3},\frac{3}{4},\frac{4}{5}B. 0.99,0.999,0.9999,0.99999C. \sqrt{2},\sqrt{3},\sqrt{5},\sqrt{7}D. 1,10^2,10^3,10^42. 一个整数,十位数与各位数的和为9,再去掉该整数中的各位数,十位数与剩下的数字的和为40,该整数为__________。
A. 45B. 54C. 63D. 723. 已知 a+b=2, ab=-1,求a^2+b^2的值。
A. 3B. 5C. 7D. 94. 解方程 2x-5=3x+1。
A. x=-3.5B. x=-2C. x=2D. x=3.55. 有两个数,各位数字相同,但顺序颠倒,若它们的和为110,这两个数分别是多少?A. 47,74B. 49,94C. 56,65D. 59,956. 若x-3y=-7,x+4y=1,则y的值为__________。
A. -2B. -1C. 0D. 17. 16÷(a-2)=4,则 a 的值为__________。
A. 6B. 8C. 10D. 128. 若a:b=5:3,b:c=7:4,则a∶b∶c=__________。
A. 35:21:12B. 25:15:12C. 25:21:16D. 35:15:169. 若a+3b=5,3a-5b=7,则 a 的值为__________。
A. -2B. -1C. 0D. 110. 已知x+y=3,xy=2,则y的值为__________。
A. 1B. 2C. 3D. 4第二篇:几何图形11. 已知正方形 ABCD 的边长为6,以 BC 为边,画一个正三角形 BCE,连接 AE,AD,请问△ADE 和正方形 ABCD 的面积之比是多少?A. \frac{2}{9}B. \frac{1}{2}C. \frac{4}{9}D.\frac{5}{6}12. 把一张纸平整地放在桌上,在纸的中央画一个圆形,请问可以用多少个直径为5 厘米的圆去覆盖这个圆形(圆覆盖圆)?A. 1B. 2C. 3D. 413. 已知△ABC 是等腰三角形,AB=AC,E是BC中点,DE∥AC,AE=CD=2,求△ABC 的面积。
中考数学压轴题100题精选(1—50题答案)
中考数学压轴题100题精选(1—50题答案)【001】解:(1)Q抛物线2(1)0)y a x a=-+≠经过点(20)A-,,093a a∴=+=-1分∴二次函数的解析式为:2333y x x=-++3分(2)DQ为抛物线的顶点(1D∴过D作DN OB⊥于N,则DN=,3660AN AD DAO=∴==∴∠=,°4分OM ADQ∥①当AD OP=时,四边形DAOP是平行四边形66(s)OP t∴=∴=5分②当DP OM⊥时,四边形DAOP是直角梯形过O作OH AD⊥于H,2AO=,则1AH=(如果没求出60DAO∠=°可由Rt RtOHA DNA△∽△求1AH=)55(s)OP DH t∴=== 6分③当PD OA=时,四边形DAOP是等腰梯形26244(s)OP AD AH t∴=-=-=∴=综上所述:当6t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.7分(3)由(2)及已知,60COB OC OB OCB∠==°,,△是等边三角形则6262(03)OB OC AD OP t BQ t OQ t t=====∴=-<<,,,过P作PE OQ⊥于E,则PE=8分116(62)22BCPQS t∴=⨯⨯⨯-=2322t⎫-+⎪⎝⎭9分当32t=时,BCPQS10分∴此时3339332444OQ OP OE QE PE==∴=-==,=,2PQ∴===11分【002】解:(1)1,85;(2)作QF⊥AC于点F,如图3,AQ = CP= t,∴3AP t=-.由△AQF∽△ABC,4BC==,得45QF t=.∴45QF t=.∴14(3)25S t t=-⋅,即22655S t t=-+.(3)能.①当DE∥QB时,如图4.∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ ∽△ABC,得AQ APAC AB=,即335t t-=.解得98t=.②如图5,当PQ∥BC时,DE⊥BC,A P图4A P图3A P图5AA四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=,即353t t-=. 解得158t =.(4)52t =或4514t =.【注:①点P 由C 向A 运动,DE 经过点C . 方法一、连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】【003】解.(1)点A 的坐标为(4,8) …………………1分将A (4,8)、C (8,0)两点坐标分别代入y=ax2+bx8=16a+4b 得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PE AP=4 8∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8. …………………5分∴EG=-18t2+8-(8-t) =-18t2+t.∵-18<0,∴当t=4时,线段EG最长为2. …………………7分②共有三个时刻. …………………8分t1=163,t2=4013,t3= . 11分【004】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.(2分) 由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,.(3分)∴111263622ABC C S AB y ==⨯⨯=△·.(4分)(2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,. ∴D 点坐标为()88,.(5分)又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,.(6分)∴8448OE EF =-==,.(7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.(图3)(图1)(图2)∴BG RG BM CM =,即36t RG=,∴2RG t =.Rt Rt AFH AMC Q △∽△, ∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.(10分)【005】(1)如图1,过点E 作EG BC ⊥于点G . 1分 ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. 2分∴112BG BE EG ====,即点E 到BC的距离为3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. 4分如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == 图1A D E BF CG图2A D EBFCPNMG H∴3cos302MH PM =︒=g .则35422NH MN MH =-=-=.在Rt PNH △中,PN ===∴PMN △的周长=4PM PN MN ++=. 6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. 7分∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=. 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC ×AB=45,得AB=52,设A (a,0),B(b,0)AB=b -a==52,解得p=32±,但p<0,所以p=32-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
【004】如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移, 设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.【005】如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.A DB EO C F xy1l 2l (G )①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.【006】如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
(1)求该二次函数的关系式; (2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与ΔABC 的外接圆有公共点,求m的取值范围; (3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。
【007】如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.A DEB F C图4(备用)A D EB FC 图5(备用) ADE BF C 图1 图2A D EB FC PN M图3A DEB FCPNM (第25题)【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE ⊥BD。
求证:BE=AD;求证:AC是线段ED的垂直平分线;△DBC是等腰三角形吗?并说明理由。
【009】一次函数y ax b=+的图象分别与x轴、y轴交于点,M N,与反比例函数kyx=的图象相交于点,A B.过点A分别作AC x⊥轴,AE y⊥轴,垂足分别为,C E;过点B分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x =的图象的同一分支上,如图1,试证明:①AEDK CFBKS S =四边形四边形;②AN BM =.(2)若点A B ,分别在反比例函数ky x =2相等吗?试证明你的结论.【010】如图,抛物线23y ax bx =+-与x 轴交于两点,与轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1)求抛物线对应的函数表达式;(2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由; (4)当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论). 【011】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,)G 为DF 中点,连接EG ,CG . (1)求证:EG=CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)【012】如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y轴交于点D ,与直线y x =交于点M N 、,且MANC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.【013】如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标. D 第24题图① D 第24题图② 第24题图③【014】在平面直角坐标中,边长为2的正方形OABC 的两顶点A 、C 分别在y 轴、x 轴的正半轴上,点O 在原点.现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线y x =上时停止旋转,旋转过程中,AB 边交直线y x =于点M ,BC 边交x 轴于点N (如图).(1)求边OA 在旋转过程中所扫过的面积; (2)旋转过程中,当MN 和AC 平行时,求正方形 OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.【015】如图,二次函数的图象经过点D(0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.(第26题)x【016】如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形OECD 的面积1S 与四边形OABD 的面积S 满足:123S S=?若存在,求点E 的坐标;若不存在,请说明理由.【017】如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,两点,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式; (3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.y xOC DBA336yB【018】如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.【019】如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M ,使CM =|CF —EO |,再以CM 、CO 为边作矩形CMNO (1)试比较EO 、EC 的大小,并说明理由(2)令;四边形四边形CNMN CFGH S S m =,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y =mx2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y轴的交点T 的坐标?若不存在,请说明理由。