系统工程-第三章

合集下载

系统工程第三章系统的预测

系统工程第三章系统的预测

第三章 系统预测3.1 基本概念系统预测就是根据系统过去和现在的发展变化规律,通过一定的科学理论和方法及手段,对系统事物未来发展趋势和状况进行推测、估计和分析,形成科学的假设和判断。

系统预测是系统工程的重要内容,是系统决策和系统设计的基础。

常用的预测方法可分为定性预测、时间序列分析预测和因果关系预测三大类型。

定性预测方法主要依靠人们的经验和判断分析能力,对系统事物的发展变化作出判断。

时间序列预测方法是根据系统对象随时间变化的历史资料,考虑系统变量随时间的发展变化规律,对其未来状态作出预测的方法。

时间序列预测方法主要包括移动平均法、指数平滑法、趋势外推法以及Box -Jenkins 方法等。

因果关系预测方法主要是针对系统变量之间存在的某种前因后果关系,找出影响某种结果的一个或几个因素,建立起它们之间的数学模型,然后根据自变量的变化来预测结果变量的变化的预测方法。

因果关系预测方法主要有线性回归分析法、马尔可夫法、状态空间预测法、计量经济预测法以及系统动力学方法。

3.2 定性预测方法定性预测方法主要用于缺乏历史统计数据的系统对象。

这类方法主要有特尔菲(Delphi )法、主观概率法和领先指标法等。

下面介绍其中的特尔菲(Delphi )法。

特尔菲法就是专家调查法,即根据所要预测的问题和必要的背景材料,拟好调查表,用通信的形式征询有关专家的意见。

得到答复后,把各种意见经过综合归纳、整理后再反馈给专家,进一步征询意见。

如此反复多次(一般需要进行4轮),直到预测的问题得到较为满意的结果。

在调查过程中,专家互不见面,并以匿名方式回答问题,因此可以消除相互间的影响。

选择合适的专家、科学地提出预测问题并制定出合理的调查表是实施特尔菲法的关键步骤。

此外,要根据预测问题的性质,采取科学的统计分析方法对调查结果进行定量处理。

主观概率法和记分法是2种常用的方法。

主观概率法是由专家对某一方案作出概率估计,然后计算其数学期望值。

第三章安全系统工程

第三章安全系统工程

第三章安全系统工程第一讲安全系统工程基础与事故的致因理论[教学目的] 通过本讲的学习,使同学们了解安全系统工程内容与发展概况。

掌握工伤事故的定义、构成要素、发展阶段,掌握多米诺骨牌理论、轨迹交叉论以及事故原因分析。

理解事故因果类型、系统理论。

[教学重点]1.工伤事故2.事故的致因理论3.事故原因分析[教学难点]1.工伤事故的定义2.事故原因分析第一节安全系统工程基础一、概念及内容(一)概念安全系统工程就是应用系统工程的原理和方法、分析,评价及消除系统中的各种危险,实现系统安全的一整套管理程序和方法体系。

(二)内容主要内容包括以下四个方面:1、系统安全分析充分认识系统的危险性。

可以分析到不同程度,可以是初步的或详细的,也可以是定性的或定量的。

2、系统安全预测3、系统安全评价4、安全管理措施根据评价结果,对照已经确定的安全目标,对系统进行调整,对薄弱环节和危险因素增加有效的安全措施,使系统的安全性达到安全目标所要求的水平。

二、发展概况1、二战时,“曼哈顿计划”中使用系统工程方法;2、1957年,哥德和迈克尔合著“系统工程学”一书;3、1962年,BSD第62-41文“发展空军弹道导弹的系统安全工程”;4、1965年,西雅图召开安全系统工程学术讨论会;5、1977年,MIL-STD-882A,成为所有系统安全程序都须遵守的标准;6、1982年,我国劳动部召开安全系统工程座谈会。

第二节事故的致因理论一、工伤事故1、定义企业的职工为了生产和工作,在生产时间和生产活动区域内,由于受生产过程中存在的危险因素的影响,或虽然不在生产和工作岗位上,但由于企业的环境、设备或劳动条件等不良,致使身体受到伤害,暂时地或长期地丧失劳动能力的事故。

2、构成要素三项要素:伤害部位、伤害种类、和伤害程度。

3、类别20类4、主要影响因素(1)人的原因(2)物的原因(3)管理的原因(4)环境的原因5、发展阶段(1)孕育阶段事故处于无形阶段,人们可以感觉到它的存在,不能指出具体形式。

系统工程第三章系统建模方法

系统工程第三章系统建模方法

聚集性
节点倾向于形成紧密的集群或 社区。
鲁棒性与脆弱性
网络对随机攻击具有鲁棒性, 但对针对性攻击表现出脆弱性。
复杂网络的建模过程
确定网络节点与边 构建网络拓扑结构
分析网络特性 建立网络动态模型
识别系统中的实体作为节点,确定实体间的相互作用或关系作 为边。
根据节点和边的定义,构建网络的拓扑结构,包括节点的连接 关系和边的权重等。
目的
系统建模的主要目的是为了更好地理 解和分析系统的结构和行为,预测系 统的性能,以及为系统的优化设计和 控制提供决策支持。
系统建模的基本原则
准确性原则
模型应能准确地反映实际系统的本质特征和 主要行为。
可操作性原则
模型应具有可操作性和可计算性,以便进行 数值仿真和实验验证。
简明性原则
模型应尽可能地简单明了,避免不必要的复 杂性和冗余信息。
数据流图
使用数据流图描述系统中数据的流动和处理过程, 清晰地表达系统功能和数据之间的关系。
3
数据字典
对数据流图中的每个元素进行详细定义和描述, 形成数据字典,为系统分析和设计提供准确的数 据基础。
结构化设计方法
模块化设计
01
将系统划分为若干个功能模块,每个模块完成特定的功能,模
块之间通过接口进行通信。
多态是指允许使用父类类 型的指针或引用来引用子 类的对象,并可以在运行 时确定实际调用的子类对 象的方法。
面向对象的建模过程
识别对象
从问题领域中识别出实体和概念,将它们抽 象为对象。
定义类
根据对象的共同特征定义类,包括类的属性 和方法。
建立类之间的关系
通过继承、关联、聚合等方式建立类之间的 关系,形成类的层次结构。

系统工程导论 第三章 系统模型

系统工程导论 第三章 系统模型

第3章系统模型考生必做六件事1.记笔记2.下载课件3.及时复习课件和笔记4.落课的话及时看重播5.按时完成作业和随堂考6.记得给老师打分噢!《系统工程导论》第3章系统模型(重点)P61-P100第三章,大纲考核知识点和考核目标:(一)系统模型概述理解:模型的概念和分类、模型的构建3.1 系统模型概述P62-P66《系统工程导论》3.1.1模型的概念和分类(理解)P62-P641. 模型的概念模型:对现实世界某些属性的抽象。

而系统工程最常用的是数学模型,即分析模型。

Y=aX+bYX系统模型具有以下三个特征:(1)它是对现实世界部分的抽象或模仿。

(2)它由与分析问题有关的因素构成。

(3)它表明了有关因素间的相互关系。

3.1.1模型的概念和分类(理解)P62-P64在构造模型时,要兼顾它的现实性和易处理性。

3.1.1模型的概念和分类(理解)P62-P642. 模型的分类模型的分类图形与实物模型➢实物模型有城市规划模型和作战沙盘➢图形模型包括:1.不严格图:图画、草图、框图,没有严格的规定,用来表示那些还不太清楚的问题。

2.严格图:图论图、逻辑图、工程图。

有严格确定的结构形式和规范。

分析模型数学关系式表达变量间关系,应用在自然科学和工程技术仿真模型用“伪实验”预测行动的各种后果,实验对象不是真实世界而是仿真模型。

通常指计算机仿真。

3.1.1模型的概念和分类(理解)P62-P642. 模型的分类模型的分类博弈模型“人的行为导向”。

人的试验规则和计算机试验程序构成了博弈模型判断模型会议讨论,它的缺陷较多,影响处理问题的质量。

德尔菲法(专家调查法)。

3.1.1模型的概念和分类(理解)P62-P64例题单项选择题:系统工程人员常常用()表示那些还不太清楚的问题,如描述效能原理、系统组态和宏观过程等。

A.框图B.图论图C.逻辑图D.工程图3.1.1模型的概念和分类(理解)P62-P64答案解析答案:A解析:P62图画、草图和框图为不严格图,即没有严格确定的规范,作图者常常需要附加文字说明。

计算机科学与技术专业课_系统工程导论(第三章p140)

计算机科学与技术专业课_系统工程导论(第三章p140)

系统工程导论(第三章)
17
其中,
1 aij = Si对Sj有影响
0
Si对Sj无影响
因为邻近矩阵是布尔矩阵,所以运算法则为: A、B都是( n * n )布尔矩阵,则A、B的逻辑和: A ∪ B = C
系统工程导论(第三章) 18
Cij = aij ∪ bij = max{ aij,bij }
即: aij 与 bij中最大的一个, 只要两个中有一个是1,Cij就是1; aij,bij全为0时, Cij为0。
系统工程导论(第三章) 21
邻接矩阵A的性质: ①邻接矩阵和系统结构模型一一对应,有了图,邻接 矩阵唯一确定了,反之亦然;
②邻接矩阵A转置后得出的矩阵AT,是结构模型所有 箭头反过来之后的图所对应的邻接矩阵;
系统工程导论(第三章)
22
③邻接矩阵中若有一列元素(如第i列)全是另, 则Si是系统的源点; 若有一行元素(如第k行)全是另, 则Si是系统的汇点; ④若从Si出发,经K段支路到达S,则Si与Sj之间 “长度”为K的通路存在。
作为厂长的工作需要,上图结构已经能满足,但对于 车间管理人员,这一结构是不能满足的,还需把车间中的 每个工段作为一个单独实体。
系统工程导论(第三章)
10
二.构模的基本步骤 ①明确构模的目的和要求; ②对系统进行一般语言描述; ③确定模型的结构; ④弄清系统中的主要因素及其相互关系; ⑤估计模型中的参数; ⑥实验研究; ⑦必要修改。
第三章
系统模型与仿真
第一节 系统模型 模型在系统工程中占有相当重要的地位,了解什么 是模型,模型的作用,模型的分类等,这些对于构造和 使用模型相当重要。
系统工程导论(第三章)
1
一.模型的定义 模型是实际系统的理想化的抽象化的或简化的一种 表示,描绘了现实世界的某些主要特点。

《系统工程》结构模型

《系统工程》结构模型


25
西南交大物流学院
SWJTU
1.区域划分
• 系统要素Si的可达集R(Si) 、先行集A(Si) 、共同集C (Si) 之间的关系如图所示:
26
西南交大物流起始集B(S)和终止集E(S)。系统要素集合S的起始集是在S中 只影响(到达)其他要素而不受其他要素影响(不被其他要素到 达)的要素所构成的集合,记为B(S)。 B(S)中的要素在有 向图中只有箭线流出,而无箭线流入,是系统的输入要素。其定 义式为: B(S)= { Si | Si ∈S, C(Si)= A(Si), i= 1,2,…,n } 如在于前有向图所对应的可达矩阵中, B(S)={S3,S7}。 当Si为S的起始集(终止集)要素时,相当于使前图中的阴影部分 C(Si)覆盖到了整个 A(Si)( R(Si))区域。 这样,要区分系统要素集合S是否可分割,只要研究系统起始集B (S)中的要素及其可达集(或系统终止集E(Si)中的要素及其 先行集要素 )能否分割(是否相对独立)就行了。
两两判断认为:S2影响S1,S3影响S4,S4影响S5,S7影 响S2,S4和S6相互影响。这样,该系统的基本结构可用 要素集合S和二元关系集合Rb来表达,其中: • S = {S1,S2,S3,S4,S5,S6,S7}
Rb = {(S2,S1),(S3,S4),(S4,S5),
(S7,S2),(S4,S6),(S6,S4)}
(3)选择模型方法;
(4)确定模型结构; (5)估计模型参数; (6)对模型进行实验研究; (7)对模型进行必要修正。
8
西南交大物流学院
SWJTU
二.解释结构模型(ISM)
(一)系统结构模型化基础
1.概念
结构→结构模型→结构模型化→结构分析

《系统工程》作业习题参考答案

《系统工程》作业习题参考答案

《系统工程》作业习题参考答案第三章:初步系统分析1、设有5个销售员w 1、w2、w3、w4、w 5,他们的销售业绩由二维变量v 1、v 2描述,如下表所示,使用绝对值距离来测量点与点之间的距离,用最长距离法来测量类解:第一步:计算样本点与样本点之间的距离,得到距离矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡04042055306641054321w w w w w第二步:将距离最近的样本点w 1和w 2合并为类h 6,在新分类情况下计算距离: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡06064044206543h w w w 第三步:将距离最近的样本点w 3和w 4合并为类h 7,继续计算距离:⎥⎥⎦⎤⎢⎢⎣⎡060460765h h w 第四步:合并w 5和h 7为类h 8,最后计算h 6与h 8的距离为6。

第五步:123452、设有5个环境区域Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ,各区域环境污染状况由4个指标衡量,即空气、水、土、作物中污染物含量的超限度。

具体各区域污染物超限度数见下表所示:依次对这5个区进行模糊聚类。

解:(1)建立模糊相容关系和模糊等价关系(2)给定聚类水平,对样本进行聚类 ① λ=0.93时② λ=0.95时③ λ=0.98时(3)结合本问题的背景,第二种分类,即分为三类更为合适,其中Ⅰ、Ⅲ为重度污染区域,Ⅱ为较重污染区域,Ⅳ、Ⅴ为轻度污染区域。

⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==⇒⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=195.0193.093.0189.089.089.0193.093.098.089.01~~195.0183.091.0189.086.082.0188.093.098.081.01~84R R R }{{}ⅡⅤⅣⅢⅠ;,,,1110111101111010001011101~4⇒⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=R }{{}}{ⅤⅣⅡⅢⅠ,;;,1100011000001010001000101~4⇒⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=R }{{}{}{}ⅤⅣⅡⅢⅠ;;;,1000001000001010001000101~4⇒⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=R第五章:系统仿真1、一家小邮局的经理认为,由于镇上店铺的增多,邮局提供的一个窗口的服务已经不够用了。

第三章 系统工程方法论

第三章 系统工程方法论
6. 准则:目标的具体化、S价值的量度,以评价方案优劣;
7. 结论:SA得到的结果,具体形式有报告、建议或意见等。
国防科技大学信息系统与管理学院
S5.NUDT
二、系统分析的要素
七个要素组成的SA要素结构图
目标 A2 A1 A3 A4 A5 A2 模型 A4 效果
(+)
A5
准则
费用
(-)
A1 A3
结论
国防科技大学信息系统与管理学院
S5.NUDT
一、霍尔“三维结构”模型
20世纪60~70年代具有代表性的SE方法论。 1、霍尔的三维结构(1969年提出) 将系统的整个管理过程分为前后紧密相连 的六个阶段和七个步骤,并同时考虑到为完成 这些阶段和步骤的工作所需的各种专业管理知 识。三维结构由时间维、逻辑维、知识维组成, 如图示:
• 确定原则:
长远性 总体性 可行性 单义性 具体性 标准性 一致性 有序性
• 如:改善整个地区的医疗保健 改善公共交通安全状况
国防科技大学信息系统与管理学院
S5.NUDT
• 评价指标:合理的评价指标能反映达到目标的程度。
通过设定权重变多指标为单一指标
• 约束条件:对备选方案、后果和目标的限制。
系统的模型就是对系统特征的概括和描述 模型是对系统这一实体的抽象 系统模型帮助人们对系统加深理解,进行评价、决策
• 建模技术
结构模型:描述系统结构 分析模型:理想模型 仿真模型:模仿真实对象 博弈模型:加入人的因素的模型 判断模型:讨论结果(情景分析法)
国防科技大学信息系统与管理学院
环境的不确定性导致系统工程的“不确定性”
“情景分析”是解决环境问题的最佳方法

系统工程答案

系统工程答案

第三章 系统模型与模型化21. 给定描述系统基本结构的有向图,如图3-16a 、b 所示。

要求:(1)写出系统要素集合S 及S 上的二元关系集合Rb 。

(2)建立邻接矩阵A 、可达矩阵M 及缩减矩阵M ’。

解:a)(1) 51234{S ,,,,}S S S S S =55551212334234{(S ,),(,),(,),(,),(,),(,),(,S )}b R S S S S S S S S S S S S =(2)0100100100000100000001110A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦= 1100101100001100001001111A I ⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎣⎦231111101110()()001100001001110A I A I M ⎡⎤⎢⎥⎢⎥⎢⎥+==+=⎢⎥⎢⎥⎢⎥⎣⎦具有强连接要素用一个要素来代替得'M M =b) (1) {1,2,3,4,5,6}S ={(1,3),(1,5),(2,4),(4,2),(4,6),(5,2),(5,1)}b R =2S 34Sa)b)图3-16 题21图(2)001010000100000000010001110000000000A⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦101010010100001000010101110010000001A I⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦2111010010101001000()010101111110000001A I⎡⎤⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦3411111111111001000()()0000001010101010111A I A I M⎡⎤⎢⎥⎢⎥⎢⎥+==+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦11110101'00100001M⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦22. 请依据图3-171P9解:V表示行要素直接影响列要素,A表示列要素直接影响行要素,X表示行列两要素相互影响。

《系统工程》第三章系统模型与模型化知识点

《系统工程》第三章系统模型与模型化知识点

第三章系统模型与模型化1、模型是实现系统的理想化抽象或简洁表示,描绘了现实系统的某些主要特点,是为了客观地研究系统而发展起来的。

模型的三个特点:(1)它是现实世界部分的抽象或模仿(2)它是由那些与分析的问题有关的因素构成的(3)它表明了有关因素间的互相关系2、模型的作用与地位 P36作用:(1)模型本身是人们对客体系统一定程度研究结果的表达。

这种表达是简洁的、形式化的。

(2)模型提供了脱离具体内容的逻辑演绎和计算的基础,这会导致对科学规律、理论、原理的发现。

(3)利用模型可以进行“思想”试验。

3、模型的分类P364、构造模型的一般原则书P37:(1)建立方框图(2)考虑信息相关性(3)考虑准确性(4)考虑集结性课件:1.现实性 2.简洁性 3.适应性 4.强壮性5、建模的基本步骤P38(1)明确建模的目的和要求,以便使模型满足实际要求,不致产生太大偏差。

(2)对系统进行一般语言描述。

(3)弄清系统中的主要因素(变量)及其相互关系(结构关系和函数关系),以便使模型准确地表示现实系统。

(4)确定模型的结构(5)估计模型的参数(6)实验研究(7)必要修改课件:1.形成问题 2.选定变量 3.变量关系的确定4.确定模型的数学结构及参数辨识5.模型真实性检验6、模型的简化方法 P40(1)减少变量,减去次要变量(2)改变变量性质(3)合并变量(集结)(4)改变函数关系(5)改变约束条件7、系统结构模型化------计算题P41-54结构模型是定性表示系统构成要素以及它们之间存在着的本质上相互依赖,相互制约和关联情况的模型。

邻接矩阵(A)是表示系统要素间基本二元关系或直接联系情况的方阵。

邻接矩阵A的元素a ij可以定义如下:a ij= 1 S i R S j R表示S i与S j有关系0 S i R S j R表示S i与S j没关系可达矩阵R是指用矩阵形式来描述有向连接图各节点之间,经过一定长度的通路后可以到达的程度。

第三章系统工程方法论

第三章系统工程方法论

第三章系统工程方法论系统工程方法论是一种科学的方法论体系,旨在理解和解决复杂系统的设计、开发和运营过程中的问题。

系统工程方法论的核心理念是将复杂系统划分为不同的组成部分,并从整体的角度考虑系统的设计和运营。

系统工程方法论有许多不同的阶段和步骤,以下是其中的一些重要内容:首先,系统工程方法论要求对系统进行全面的分析和理解。

这包括对系统目标、需求、功能、性能和约束条件的明确和详细的定义。

通过这一步骤,系统工程师能够清楚地了解系统应该做什么,以及它需要满足哪些要求。

其次,系统工程方法论强调对系统进行综合设计。

在这一阶段,系统工程师需要将各个组成部分和子系统组合在一起,以满足系统的整体功能和性能要求。

这需要对不同组成部分的协调和集成,以确保整个系统能够正常运行。

然后,系统工程方法论要求对系统进行详细的设计和开发。

这包括对系统的各个方面进行具体的规划和实施,包括系统架构的设计、软件和硬件的开发、系统测试和验证等。

通过这一步骤,系统工程师能够确保系统能够按照预期的方式工作并满足用户的需求。

最后,系统工程方法论要求对系统进行有效的运营和维护。

这包括对系统的监控和故障排除,以确保系统能够持续地运行和提供所需的功能和性能。

此外,系统工程师还需要对系统进行定期的更新和升级,以适应不断变化的需求和技术。

系统工程方法论的主要目标是提高系统的质量和可靠性,降低系统的成本和风险。

通过将系统分解为不同的组成部分,并从整体的角度进行设计和开发,系统工程方法论可以帮助系统工程师更好地理解和解决系统的复杂性问题。

此外,系统工程方法论还可以提供一种结构化的方法来管理项目和资源,以确保项目的顺利进行和成功交付。

总之,系统工程方法论是一种重要的工程方法论,可以帮助系统工程师理解和解决复杂系统的设计、开发和运营问题。

通过全面的分析和理解、综合的设计、详细的开发和有效的运营,系统工程方法论可以提高系统的质量和可靠性,降低系统的成本和风险。

系统工程方法论的应用可以帮助组织和团队更好地管理和实施复杂系统项目,从而提高项目的成功率和效率。

系统工程教案--中国矿大第三章

系统工程教案--中国矿大第三章

系统⼯程教案--中国矿⼤第三章第三章系统⼯程⽅法论第⼀节系统⼯程基本⼯作过程⼀、霍尔三维结构A ·D ·霍尔(A ·D ·Hall)三维结构是由美国学者A ·D ·霍尔等⼈在⼤量⼯程实践基础上,于1969年提出的,其内容反映在可以直观展⽰系统⼯程各项⼯作内容的三维结构图中,具体如图3—1所⽰。

霍尔三维结构集中体现了系统⼯程⽅法的系统化、综合化、最优化、程序化和标准化等特点,是系统⼯程⽅法论的重要基础内容。

1、时间维时间维表⽰系统⼯程的⼯作阶段或进程。

系统⼯程⼯作从规划到更新的整个逻辑维时间维划述计题图3—1 霍尔三维结构⽰意图过程或寿命周期可分为以下七个阶段:(1)规划阶段。

根据总体⽅针和发展战略制订规划。

(2)计划阶段。

根据规划提出具体计划⽅案。

(3)分析或研制阶段。

实现系统的研制⽅案,分析、制定出较为详细⽽具体的⽣产计划。

(4)运筹或⽣产阶段。

运筹各类资源及⽣产系统所需要的全部“零部件”,并提出详细⽽具体的实施和“安装”计划。

(5)系统实施或“安装”阶段。

把系统“安装”好,制定出具体的运⾏计划。

(6)运⾏阶段。

系统投⼊运⾏,为预期⽤途服务。

(7)更新阶段。

改进或取消旧系统,建⽴新系统。

其中规划、计划与研制阶段共同构成系统的开发阶段。

2、逻辑维逻辑维是指系统⼯程每阶段⼯作所应遵从的逻辑顺序和⼯作步骤,⼀般分为以下七步:(1)明确问题。

同提出任务的单位对话,明确所要解决的问题及其确切要求,全⾯收集和了解有关问题历史、现状和发展趋势的资料。

(2)确定⽬标并据此设计评价指标体系。

确定任务所要达到的⽬标或各⽬标分量,拟定评价标准。

在此基础上,⽤系统评价等⽅法建⽴评价指标体系,设计评价算法。

(3)系统综合。

设计能完成预定任务的系统结构,拟定政策、活动、控制⽅案和整个系统的可⾏⽅案。

(4)模型化。

针对系统的具体结构和⽅案类型建⽴分析模型,并初步分析系统各种⽅案的性能、特点、对预定任务能实现的程度以及在⽬标和评价指标体系下的优劣次序。

《安全系统工程》第3章

《安全系统工程》第3章
《安全系统工程》第3章
PPT文档演模板
2023/5/13
《安全系统工程》第3章
第三章 危险源辨识
危险源的定义:在触发因素的作用,可使其导致事故的具有能量的物质与行为称 为危险源,具有能量的物质称为固有危险源,具有能量的行为称为人为危险源。
危险源是事故发生的前提,是事故发生的能量主体。 只有识别生产•过。程中的各种具有能量的物质与行为,分析这些能量转化为事故的 转化过程及转化条件、触发因素,才能控制这种具有能量的物质与行为不至于逸散 和失控,才能使危险源不至于转化为事故。 因此,危险辨识是安全系统工程的重要内容,是系统安全分析、评价与控制的基 础,它对于有效地控制作业场所和企业生产过程中潜在的危险因素,确保职工在生 产过程中的安全和健康,保证企业生产顺利进行都具有十分重要的意义。
三、
•过去事故 类别
•潜在事故 类别
•触发 因素
•触发 因素
•现实危 险源
•潜在危 险源
•某类事 故的危 险源
•图3-2 危险源辨识途径
四、危险有害因素辨识方法
•第二节 危险源辨识途径
选用哪种辨识方法要根据分析对象的性质、特点、寿命的不同阶段和分析人员的知识、经 验和习惯来定。常用的危险、有害因素辨识方法有直观经验分析方法和系统安全分析法。 1.直观经验分析方法
所谓固有危险源指物和环境因素,而物的概念是广义 的。所谓人为危险源,指危险行为及管理失误或差错。 这些危险源可能是已知的,也可能是未知的。对于未知 的危险源,我们称其为潜在危险源。潜在危险源需要调 查研究、分析判断,才能确定。
二、危险源的类型
二、危险源的类型
•第二节 危险源辨识途径
1、固有危险源
固有危险源分为:化学危险源、物理危险源、机械危险源、电气危险源和土建设施危 险源,其危险物质与可能的事故见表3-1所示。P25

第三章 系统工程方法论

第三章 系统工程方法论

数学模型的方法
确定预测内容 准备数据资料 确定预测方法,建立数学模型 确定预测方法,
–定性预测法 –时间序列预测法 –因果关系预测法
计算预测值,分析预测误差 计算预测值,
(4)建模和预计后果
每种方案实施后都相应有一系列后果,因 此本阶段的首要工作便是确定应该预计哪 些后果?其中哪些最重要?选定后果项目 后,便可着手建立一个或多个模型预计行 动和后果指标之间的关系. 系统分析的主要模型有图形模型,分析模 型,仿真模型,博弈模型和判断模型
调查学习的基本步骤
不良结构系统现状的表述; 弄清,改善与现状有关的各种因素及其 相互关系; 建立概念模型(结构或语言描述); 改善概念模型; 将模型与问题的表述作比较; 找出可行而满意的途径和方案; 采取行动改善实际问题. 该方法的核心不是寻求最优化,而是调查 比较,从中寻找改善现存系统的途径.
一,系统工程与传统方法的区别
从前面对系统工程的介绍可以看出,系统工程实 质上是方法论的科学,它的目标是通过什么样的 方法可使系统达到最优,而方法论是把设想付诸 实现的过程.对于传统方法,它解决问题的目标 往往是单一的,比如设计一个产品或只强调成本 低或只强调性能高,而系统工程对目标的考虑需 要从系统运行的全过程即时间方面以及在每个阶 段中处理问题的特殊思维过程即逻辑方面,并综 合运用各种专业知识即知识方面来综合考虑.
(一)霍尔(Hall)系统工程方法论 1962年贝尔公司工程师Hall总结公司开展 SE经验,写成《系统工程方法论》一书. 所谓方法论,就是把设想变为实体的具体 过程与步骤.
Hall三维结构分析
知识维
逻辑维 时间维
Hall的SE方法论:是"三维结构方法体系" 即把系统工程活动从时间上分成前后衔接 的"几个阶段";从逻辑上把每个阶段分 成几个环环紧扣的几个步骤;同时也要考 虑完成上面所说的这些阶段和步骤所需要 的各种专业和技术素养.主要靠广泛吸引 各类专业人员参加到SE活动来实现,或者 把他们的知识和建议储存到计算机中随时 备用.

系统工程第四版第三章课后题答案资料讲解

系统工程第四版第三章课后题答案资料讲解

1 1 0 0 1
0 1 1 0 0
A I 0 0 1 1 0 0 0 0 1 0
0 1 1 1 1
1 1 1 1 1 0 1 1 1 0 (A I )2 0 0 1 1 0 (A I )3 M 0 0 0 1 0 0 1 1 1 0
M' M
(b)(1) S {1, 2,3, 4,5,6}
0 0
0 0
0 0
0 0
L1 5 0 0 1 0 0 0 0
M (L)
3 0 0 1 1 1 0 0
L2 6 0 0 1 1 1 0 0
7
0
0
1
0
0
1
0
L3 1 0 0 1 0 0 1 1
③提取骨架矩阵
E(Si ) 2
4
(P1 ) L1 {2} L2 {4}
E(Si )
(P2 )
5
L1 {5}
0 0 0 0 0 1 1
0
2
0 0
2 1 4 1
0 0

M
(L)
5 3 7
0 0 0
0 1
1 0
4 0 1 0 0 0 0
5 0 0 1 1 1 0
3 0 0 0 1 0 0
①区域划分
Si
R(Si )
A(Si )
1
1,5,7
1
2
2
2,4
3
3,5,6
3,6
4
2,4
4
5
5
1,3,5,6,7
6
3,5,6
3,6
7
5,7
1,7
A(S2 ) A(S5 ) {2,4} {1,3,5,6,7}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

37
2、经过分析讨论,得到各因素之间的关系图
1 2 ○ 3 ∧ ∧ 4 ∧ ∧ ∧ 5 ∧ ∧ ∧ ○ 6 ∧ ∧ ∧ ∧ ○ 7 ○ ○ ∨ ∨ ∨ ∨ 8 ○ ∨ ∨ ∨ ∨ ∨ ○ 9 ○ ○ ∨ ∨ ∨ ∨ ∨ ○ 10 ○ ○ ∨ ∨ ∨ ∨ ∨ ○ ∧ 11 ○ ○ ∨ ∨ ∨ ∨ ∨ ○ ∨ ∨
31
案例一:人口系统


一个人口系统影响总人口增长问题的 解释结构模型 系统要素:总人口、出生率、死亡率、 生育能力、政策、期望寿命、医疗保 健水平、收入水平、环境污染等
32
总人口
出生率
死亡率
国民生育能力 计划生育政策
国民思想风俗
期望寿命
医疗保健水平
食物营养
国民收入
国民素质
环境污染程度
解释结构模型
0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1
39
R(ni)
(ni行中所有元素为1的列 号) 1 2 3 4 5 6 7 8 9 10 11 1,3,4,5,6 2,3,4,5,6 3,4,5,6 4,6 5 6 3,4,5,6,7 2,3,4,5,6,8 3,4,5,6,7,9 3,4,5,6,7,10 1 2,8
10
邻接矩阵示例
S1
0 0 1 A a ij 0 1 1 0 0 0 0 0 汇点 0 1 0 0 0 1 0 0 0 0 S 2 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
源点
汇点
S3
S5
S6
S4
源点
11
邻接矩阵的特性

第三章 结构模型化技术
第一节 结构模型 第二节 解释结构模型法 第三节 案例分析

1
第一节 结构模型

结构模型,是应用有向连接图 来描述系统各要素之间的关系, 以表示一个作为要素集合体的 系统的模型。
2
示例
总人口
节点:系统的元素 有向边:要素间所存在 的关系(影响,先于,需 要,取决于,导致)
ni列中所有元素为1 的行号)
A(ni)
R(ni ) A(ni )
1 2 3 4 5
1,2,3,7,8,9,10,11 1,2,3,4,7,8,9,10,11 1,2,3,5,7,8,9,10,11
33

案例二:关于学生逃课问题的 分析
34
一、确定研究对象
大学生逃课现象日益严重,学生对 逃课习以为常,老师对逃课视而不见。 严重影响了学校的教学质量和学习风 气。学校却没有有效的解决措施。 选择对学生的逃课问题进行分析, 具有重要的实际意义。对整顿学风、 提高教学质量有重大影响。
35
二、系统分析方法与步骤
27
ISM的建立过程
区域 划分 级位 划分 强连接 要素 缩减 去掉 自身 关系 绘图
M
M(P)
(块三角)
M(L)
(区域 块三角)
M`(L)
(区域 下三角)
A`
D(A`)
28
ISM实用化方法原理图
设定 问题 、形 成意 识模 型 找出 影响 要素 要素 关系 分析 (关 系图 ) 建立可 达矩阵 (M)和缩 减 矩阵 ( M /) 矩阵 层次 化处 理 (ML/) 绘制 多级 递阶 有向 图 建立 解释 结构 模型



求可达矩阵是建立结构模型的第一步。 对于有n个要素的系统,必须知道n(n–1) 个矩阵元素,即对n(n–1)个元素成对地 加以检查才能完全决定可达矩阵。 但是,利用可达矩阵的转移特性,由推断 方法可以更有效地决定可达矩阵。这种方 法特别适合于由计算机产生可达矩阵。
17
(b) 按推移律特性建立可达矩阵


先行集: A(ni ) {n j N | mji 1} 到达要素ni的要素集合 共同集: T {ni N | R(ni ) A(ni ) A(ni )}
共同集合中的元素一定是入度为0,或入度与出度的差小 于等于0
25
2.区域划分 将系统分成若干个相互独立的、没有直接 或间接影响的子系统。 这种划分对于很多的系统来说,可以把系 统分成若干子系统来研究,特别是在用计 算机辅助设计时,这种划分会带来许多方 便。
7
图的有关基本概念





有向连接图 回路 环 树:源点、汇点,没有回路和环 关联树:节点上有加权值W,边上 有关联值r
8
(一)邻接矩阵

对于有n个要素的系统(P1,P2,……Pn), 定义邻接矩阵A:
A [aij ]
aij=

1,当线段从Pi向着Pj(即Pi对Pj有影响时) 0,否则为零
邻接矩阵与有向图间有着一一对应的关系, 即从邻接矩阵可画出唯一的有向图; 反之,根据有向图可写出唯一的邻接矩阵。
9
例如,由下图所示的有向图,可以写出邻接矩 阵A如下:
1 2 3 4 5
P1
P5
P2
P3
P4
有向图示意图
1 0 2 0 A 3 0 4 0 5 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0


20
要素集之间的关系图
B(Si) s D(Si) C(Si) A(Si)
21
(3)可达矩阵的推断
A( S ) A( S ) B(S ) S C (S ) D( S ) RAA RBA 1 RCA RDA
1 1
B( S )
S
C (S ) RAC 0 RBC 0 RCC RDC
0
D( S ) RAD RBD 0 RCD RDD

1 2 3 4 5 6 7 8 9 10
Si × Sj ,即Si与Sj和Sj和Si互有关系, Si○Sj, 即Si与Sj和Sj和Si均无关系, Si∧ Sj, 即Si与Sj有关,Sj和Si无关, Si∨ Sj, 即Si与Sj无关,Sj和Si有关,
38
可达矩阵
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1、分析学生逃课原因 2、确定影响因素体系(ISM); 3、进行因素分析。
36
三、应用ISM进行分析

1、经过小组讨论认为,逃课因素很多:
课程太过容易 课程太过难 对课程不感兴趣 不重视课程 更喜欢自学 睡懒觉 贪玩 老师水平差 老师要求不严格 学习风气不好 学校教学管理不严格

结构模型化技术:建立结构模型的方法论。 采用结构模型化技术的依据 系统结构关系 分解协调思想
5
几种典型的系统模型
1.
2.
3. 4.
5.
ISM(Interpretative Structural Modeling) SS (State Space) SD (System Dynamics) CA (Conflict Analysis)
r-2≠(A+I) r-1=(A+I) r=
(A+I)
M,
r≤n-1
15
缩减可达矩阵



在可达矩阵中存在两个节点相应的行、列 元素值分别完全相同,则说明这两个节点 构成回路集, 此时,只要选择其中的一个节点即可代表 回路集中的其他节点, 这样就可简化可达矩阵,称为缩减可达矩 阵。
可达矩阵的直接建立
期望寿命
死亡率 出生率
医一种几何模型; 结构模型是一种以定性分析为主的模型;

结构模型还可以用矩阵形式来描述,使定性
分析与定量分析相结合;

结构模型介于数学模型形式与逻辑分析形式
之间。 结构模型比较适宜于描述以社会科学为对象 的系统结构的描述
4

结构模型化技术

全零的行所对应的点为汇点(没有线段离开该点), 即系统的输出要素; 全零的列所对应的点为源点(没有线段进入该点), 即系统的输入要素; 对应于每点的行中1的数目就是离开该点的线段数; 对应于每点的列中1的数目就是进入该点的线段数。 邻接矩阵表示了系统的各要素间的直接关系。若该矩 阵中第 i 行第 j 列的元素为 1,则表明从点 Pi 到 Pj 有一长 度为1的通路。也可以说,从点Pi可以到达点Pj。实际 上,邻接矩阵描述了各点间通过长度为 1 的通路相互 可以到达的情况。
14
(a)可达矩阵通过邻接矩阵运算得到


若在上述矩阵A上加一单位矩阵I,即得: A+I。它描述了各点间经长度为0和1(不大 于1)的通路后的可达情况。 (A+I)2描述了各点间经长度不大于2的路的 可达情况。这里所做的加法和乘法运算均为 布尔运算,即1+1=1,1+0=0+1=1,1×1=1, 1×0=0×1=0,依次类推,得到:
12
A [aij ]66
0 0 1 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
13
(二)可达矩阵



可达矩阵(M)表明各点间经长度不 大于n–1的通路的可达情况。对于点 数为n的图,最长的通路不能超过n– 1。 推移律特性:若Pi可达Pj(Pi有一条 路至Pj),Pj可达Pk(Pj有一条路至 Pk),则Pi必可达Pk。 这一特性在建立可达矩阵时要用到。
相关文档
最新文档