生物化学必考大题简答题道
基础生物化学复习题目及答案
第一章核酸一、简答题1、某DNA样品含腺嘌呤15、1%(按摩尔碱基计),计算其余碱基的百分含量。
2、DNA双螺旋结构就是什么时候,由谁提出来的?试述其结构模型。
3、DNA双螺旋结构有些什么基本特点?这些特点能解释哪些最重要的生命现象?4、tRNA的结构有何特点?有何功能?5、DNA与RNA的结构有何异同?6、简述核酸研究的进展,在生命科学中有何重大意义?7、计算(1)分子量为3 105的双股DNA分子的长度;(2)这种DNA一分子占有的体积;(3)这种DNA一分子占有的螺旋圈数。
(一个互补的脱氧核苷酸残基对的平均分子量为618)二、名词解释变性与复性分子杂交增色效应与减色效应回文结构TmcAMPChargaff定律三、判断题1 脱氧核糖核苷中的糖苷3’位没有羟基。
错2、若双链DNA 中的一条链碱基顺序为pCpTpGpGpC,则另一条链为pGpApCpCpG。
错3 若属A 比属B 的Tm 值低,则属A 比属B 含有更多的A-T 碱基对。
对4 原核生物与真核生物的染色体均为DNA 与组蛋白的复合体。
错5 核酸的紫外吸收与pH 无关。
错6 生物体内存在的核苷酸多为5’核苷酸。
对7 用碱水解核苷酸可以得到2’与3’核苷酸的混合物。
对8 Z-型DNA 与B-型DNA 可以相互转变。
对9 生物体内天然存在的DNA 多为负超螺旋。
对11 mRNA 就是细胞种类最多,含量最丰富的RNA。
错14 目前,发现的修饰核苷酸多存在于tRNA 中。
对15 对于提纯的DNA 样品,如果测得OD260/OD280<1、8,则说明样品中含有蛋白质。
对16 核酸变性或降解时,存在减色效应。
错18 在所有的病毒中,迄今为止还没有发现即含有RNA 又含有DNA 的病毒。
对四、选择题4 DNA 变性后(A)A 黏度下降B 沉降系数下降C浮力密度下降 D 紫外吸收下降6 下列复合物中,除哪个外,均就是核酸与蛋白质组成的复合物(D)A 核糖体B 病毒C端粒酶 D 核酶9 RNA 经NaOH 水解的产物为(D)A 5’核苷酸B2’核苷酸C3’核苷酸 D 2’核苷酸与3’核苷酸的混合物10 反密码子UGA 所识别的密码子为(C)A、ACUB、ACTC、UCA D TCA13 反密码子GψA 所识别的密码子为(D)A、CAUB、UGCC、CGU D UAC五、填空题1 核酸的基本结构单位就是核苷酸。
生物化学试题及答案(期末用)
生物化学试题及答案(期末用)生物化学试题及答案维生素一、名词解释1、维生素二、填空题1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。
2、维生素按溶解性可分为和。
3、水溶性维生素主要包括和VC。
4、脂脂性维生素包括为、、和。
三、简答题1、简述B族维生素与辅助因子的关系。
【参考答案】一、名词解释1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子有机物。
二、填空题 1、辅因子;2、水溶性维生素、脂性维生素;3、 B族维生素;4、 VA、VD、VE、VK;三、简答题 1、V 需要该因子的酶生化作用有机辅因子名称及符号 B 1脱羧酶转移羧基 TPP(焦磷酸硫胺素) B 2FMN(黄素单核苷酸)氧化酶传递氢(电子) FAD(黄素腺嘌呤二核苷酸) CoA-SH(CoA) B 3酰化酶转移酰基 acylcarrier protein (ACP) (酰基载体蛋白) +NAD(烟酰胺腺嘌呤二核苷酸、CoⅠ) B 5各种脱氢酶传递氢(电子) +NADP(烟酰胺腺嘌呤二核苷酸磷酸、CoⅡ) B 6转氨酶、脱羧酶转移氨基 PLP(磷酸吡哆醛/胺PMP) B 7各种羧化酶参与CO固定 2BCCP(生物素羧基载体蛋白) B 11转移甲基、亚甲基一碳单位代谢的各种酶类亚胺甲基、甲酰基 FH或THFA(四氢叶酸) 4B 12变位酶转移甲基脱氧腺苷钴胺素生物氧化一、名词解释1.生物氧化2.呼吸链3.氧化磷酸化4. P/O比值二、填空题1.生物氧化是____ 在细胞中____,同时产生____ 的过程。
3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。
4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。
5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。
生物化学复习题(简答题+答案)
⽣物化学复习题(简答题+答案)⽣物化学复习题第⼀章绪论1.简述⽣物化学的定义及⽣物化学的研究范围。
(P1)答:定义:⽣物化学就是从分⼦⽔平上阐明⽣命有机体化学本质的⼀门学科。
研究范围:第⼀⽅⾯是关于⽣命有机体的化学组成、⽣物分⼦,特别的⽣物⼤分⼦的结构、相互关系及其功能。
第⼆⽅⾯是细胞中的物质代谢与能量代谢,或称中间代谢,也就是细胞中进⾏的化学过程。
第三⽅⾯是组织和器官机能的⽣物化学。
2.简述⽣物化学的发展概况(了解)答:⽣物化学经历了静态⽣化—动态⽣化—机能⽣化这⼏个历程。
⽣物化学的发展经历了真理与谬误⽃争的曲折道路,同时也是化学、微⽣物学、遗传学、细胞学和其他技术科学互相交融的结果。
展望未来,以⽣物⼤分⼦为中⼼的结构⽣物学、基因组学和蛋⽩质组学、⽣物信息学、细胞信号传导等研究显⽰出⽆⽐⼴阔的前景。
现代⽣物化学从各个⽅⾯融⼊⽣命科学发展的主流当中,同时也为动物⽣产实践和动物疫病防治提供了必不可缺的基本理论和研究技术。
3、简述⽣物化学与其他学科的关系。
(了解)答:⽣物化学的每个进步与其他学科,如物理学、化学等的发展紧密联系,先进的技术和研究⼿段,如电⼦显微镜,超离⼼、⾊谱、同位素⽰踪、X-射线衍射、质谱以及核磁共振等技术为⽣物化学的发展提供了强有⼒的⼯具。
4.简述动物⽣物化学与动物健康和动物⽣产的关系。
答:1)在饲养中,了解畜禽机体内物质代谢和能量代谢状况,掌握体内营养物质间相互转变和相互影响的规律,是提⾼饲料营养作⽤的基础。
2)在兽医中可有效防治疾病,如:代谢的紊乱可导致疾病,所以了解紊乱的环节并纠正之,是有效治疗疾病的依据;通过⽣化的检查,可帮助疾病的诊断。
第⼆章蛋⽩质1.蛋⽩质在⽣命活动中的作⽤有哪些?(了解)答:1.催化功能。
2.贮存于运输功能。
3.调节功能.。
4.运动功能。
5.防御功能。
6.营养功能。
7.作为结构成分。
8.作为膜的组成成分。
9.参与遗传活动2.何谓简单蛋⽩和结合蛋⽩?(P23-24)答:简单蛋⽩:(⼜称单纯蛋⽩质)经过⽔解之后,只产⽣各种氨基酸。
生物化学简答题及答案
1.说明动物体内氨的来源、转运和去路。
答:(一)体内氨的来源1.氨基酸脱氨氨基酸脱氨基作用产生的氨是体内氨的主要来源。
2.肠道吸收的氨一是肠道细菌通过腐败作用分解蛋白质和氨基酸产生氨,二是血中尿素扩散入肠道后经细菌尿素酶作用下水解产生氨。
3.肾小管上皮细胞分泌氨在肾小管上皮细胞内,谷氨酰胺酶催化谷氨酰胺水解生成谷氨酸和氨。
肠道和原尿中的pH对氨的来源有一定的影响,NH3易吸收入血,NH+4不易透过生物膜,在碱性环境中,NH+4易转变为NH3,所以肠道pH 偏碱时,氨的吸收增加。
(二)氨的转运1.丙氨酸一葡萄糖循环肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝。
在肝中,丙氨酸通过联合脱氨基作用,释放出氨,用于合成尿素。
转氨基后生成的丙酮酸可经糖异生途径生成葡萄糖,葡萄糖由血液输送到肌组织,沿糖分解途径转变成丙酮酸,后者再接受氨基而生成丙氨酸。
这一途径称为丙氨酸一葡萄糖循环。
通过这个循环,即使肌肉中的氨以无毒的丙氨酸形式运输到肝。
2.谷氨酰胺的生成作用在脑、心脏及肌肉等组织中,谷氨酸与氨由谷氨酰胺合成酶催化生成谷氨酰胺。
谷氨酰胺生成后可及时经血液运向肾、小肠及肝等组织,以便利用。
在肾由谷氨酰胺酶水解为谷氨酸与氨,氨被释放到肾小管腔中和肾小管腔的H’以增进机体排泄多余的酸。
所以,谷氨酰胺是氨的解毒产物,也是氨的储存及运输的形式。
(三)氨的去路1.尿素合成这是氨的主要代谢去路。
肝是合成尿素最主要的器官,通过鸟氨酸循环过程完成的。
首先NH3和CO2在ATP、Mg2+及N\|乙酰谷氨酸存在时,合成氨基甲酰磷酸,氨基甲酰磷酸在线粒体中与鸟氨酸氨在鸟氨酸氨基甲酰基转移酶催化下,生成瓜氨酸,然后瓜氨酸与另一分子的氨结合生成精氨酸,最后在精氨酸酶的作用下,水解生成尿素和鸟氨酸。
鸟氨酸再重复上述反应。
尿素合成是一个耗能过程,每生成一分子尿素需要4个高能键,尿素中的两个氮原子,一个来自氨基酸脱氨基生成的氨,另一个则来自天冬氨酸。
生物化学简答题必背分享-20
生物化学简答题必背分享-201、蛋白质合成过程中如何保持忠实性的2、真核生物和原核生物分别是如何选择正确的翻译起点的3、以热休克蛋白、伴侣素为例说明分子伴侣的功能4、信号肽是什么,有什么的特点。
信号识别体是什么。
5、以细胞色素C为例说明蛋白质的转运6、简述基因表达调控的基本原理答案解析1、蛋白质合成过程中如何保持忠实性的(2015年-713生化B原题)(忠实性=正确性)(两个因素:氨基酰-tRNA合成酶、核糖体)【答案解析】:(1)氨基酸活化成为氨基酰:tRNA的过程由氨基酰-tRNA_合成酶催化,该酶对底物氨基酸和tRNA都有高度特异性,此外还有校正活性即将任何错误的氨基酰-AMP-E或氨基酰-tRNA 的酯键水解,再换上与密码子相对应的氨基酸。
这样使氨基酰-tRNA分子中tRNA的反密码子通过碱基配对识别mRNA分子上的密码子,使氨基酸按mRNA信息的指导“对号入座”,保证了从核酸到蛋白质的遗传信息传递的准确性。
( 2)核糖体对氨基酰-tRNA的进位有校正作用。
只有正确的氨基酰-tRNA能发生反密码子–密码子适当配对而进入A位。
反之,错误的氨基酰-tRNA因反密码子–密码子配对不能及时发生而从A位解离。
这是维持蛋白质生物合成的高度保真性的另一重要机制。
2、真核生物和原核生物分别是如何选择正确的翻译起点的【答案解析】:真核生物:①帽子结合蛋白与mRNA_的帽子结合.在_elF-2和其他起始因子参与下,Met-tRNAi Met、40S小亚基与mRNA的5'-末端形成43S前起始复合物然后由ATP供给能量,完成从5端向3端的起始密码子的扫描定位,Met-tRNAi Met 的反密码子与AUG配对结合,形成48S前起始复合物。
帽子结合蛋白帮助结合mRNA5-帽子结构,避免将ORE内的AUG误认为起始密码子..②此外,核糖体中的rRNA和蛋白质亦参与对起始密码子周围序列的识别以决定真正的肽链合成起始点。
生物化学简答题必背分享-12
生物化学简答题必背分享-121、糖酵解的生理意义2、磷酸戊糖途径的生理意义3、糖异生的调节4、糖的代谢途径5、简述糖酵解、磷酸戊糖途径、糖异生途径之间是如何联系的6、请说明葡萄糖与谷氨酸在代谢上的联系答案解析1、糖酵解的生理意义【答案解析】:(1)糖酵解主要的生理意义是迅速提供能量,这对肌收缩更为重要。
(2)糖酵解可产生少量能量;1分子葡萄糖经糖酵解净生成2分子ATP,糖原中的每1分子葡萄糖残基经糖酵解净生成3分子ATP,这对某些组织及一些特殊情况下组织的供能有重要的生理意义。
(3)如成熟红细胞仅依靠糖酵解供应能量;机体在进行剧烈和长时间运动时,骨骼肌处于相对缺氧状态,糖酵解过程加强,以补充运动所需的能量;神经、白细胞、骨髓等代谢极为活跃,即使不缺氧也常由糖酵解提供能量2、磷酸戊糖途径的生理意义【答案解析】:(1)为核酸的生物合成提供核糖(2)提供NADPH作为供氢体参与多种代谢反应。
NADPH与NADH不同,它携带的氢不是通过电子传递链氧化以释放出能量,而是参与许多代谢反应,发挥出不同的功能。
(2.1)NADPH是体内许多合成代谢的供氢体(2.2)NADPH参与体内羟化反应:有些羟化反应与生物合成有关。
例如:从鲨烯合成胆固醇,从胆固醇合成胆汁酸、类固醇激素等。
(2.3)NADPH用于维持谷胱甘肽(GSH)的还原状态:谷胱甘肽是一个三肽。
(3)途径中的赤藓糖、景天酮糖等用于芳香族氨基酸的合成、碱基合成、多糖合成。
3、糖异生的调节【答案解析】:答:(1)糖异生的限速酶主要有以下4个酶:丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶、果糖二磷酸酶和葡萄糖磷酸酶(2)激素对糖异生的调节作用对维持机体的恒稳状态十分重要,激素对糖异生调节实质是调节糖异生和糖酵解这两个途径的调节酶以及控制供应肝脏的脂肪酸,更大量的脂肪酸的获得使肝脏氧化更多的脂肪酸,也就促进葡萄糖合成,胰高血糖素促进脂肪组织分解脂肪,增加血浆脂肪酸,所以促进糖异生;而胰岛素的作用则正相反。
生物化学必考大题——简答题38道
1酮体生成和利用的生理意义。
(1) 酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。
酮体分子小,易溶于水,容易透过血脑屏障。
体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。
2试述乙酰CoA在脂质代谢中的作用.在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。
3试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。
4酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高108~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。
5距离说明酶的三种特异性(定义、分类、举例)。
一种酶仅作用于一种或一种化合物,或一定化学键,催化一定的化学反应,产生一定的产物,这种现象称为酶作用的特异性或专一性。
根据其选择底物严格程度不同,分为三类:①绝对特异性:一种酶只能作用于一种专一的化学反应,生成一种特定结构的产物,称为绝对特异性.如:脲酶仅能催化尿素水解产生CO2 和NH3,对其它底物不起作用;②相对特异性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,对底物不太严格的选择性,称为相对特异性。
如各种水解酶类属于相对特异性;举例:磷酸酶对一般的磷酸酯键都有水解作用,既可水解甘油与磷酸形成的酯键,也可水解酚与磷酸形成的酯键;③立体异构特异性:对底物的立体构型有要求,是一种严格的特异性。
生物化学简答题必背分享-15
生物化学简答题必背分享-151、泛素是什么,细胞内蛋白质降解机制,细胞内蛋白质降解过程2、举例说明氨基酸脱羧作用3、嘌呤与密啶的分解过程4、嘌呤核苷酸的合成途径5、氨甲酰磷酸在代谢中的作用6、简述核苷酸的主要生物学作用答案解析1、泛素是什么,细胞内蛋白质降解机制,细胞内蛋白质降解过程【答案解析】:(1)泛素是一种由76个氨基酸构成的多汰,分子量为8.45KD,它在细胞中以自由的方式或通过共价键与蛋白质牢固结合,蛋白质一旦被它标记上就会被送到细胞内的“垃圾处理厂”进行降解。
(2)降解机制,第一阶段:多个泛素分子与靶蛋白共价结合。
首先泛素经泛素活化酶(E1)活化,泛素上76位的Gly与泛素活化酶上特殊的Cys残基形成一个高能硫酯键,并伴有ATP水解;然后,通过转酯作用,泛素从泛素活化酶转移到泛素结合酶(E2)的Cys上,形成泛素结合酶-泛素;最后,在泛素连接酶(E3)参与下,泛素又从泛素结合酶转移到受体蛋白(靶蛋白)的Lys残基上,形成泛素-靶蛋白,使靶蛋白泛素化,第二阶段:靶蛋白在26S蛋白酶体的作用下,由泛素介导的蛋白水解过程。
经泛素活化的底物蛋白被展平后,通过两个狭孔,进入26S蛋白酶体的底物蛋白质被多次切割,最后形成3-22个氨基酸残基的小肽。
(3)降解过程①E1酶激活泛素分子,此过程需要消耗以ATP形式存在的能量;②泛素分子被转移到E2酶上;③E3酶识别待降解的靶蛋白,E2-泛素复合物结合到靶蛋白附近,泛素标记物从E2转移到靶蛋白上;④E3酶释放已被泛素标记的蛋白;⑤重复最后一步,直至蛋白质上连接的多个泛素形成一条链;⑥泛素短链在蛋白酶体开口处被识别,泛素标记物被切除,蛋白质被切割成小片段。
2、举例说明氨基酸脱羧作用【答案解析】:(1)谷氨酸的脱羧作用,谷氨酸脱羧酶在脑组织活性特别高。
谷氨酸在谷氨酸脱羧酶的作用下生成的γ-氨基丁酸(GABA)对中枢神经系统有普遍的抑制作用,是一种神经系统的主要抑制性递质(2)组氨酸脱羧生成组织胺,亦称组胺。
生物化学题库及参考答案
生物化学题库及参考答案一、单选题(共100题,每题1分,共100分)1.tRNA的三级结构是( )A、三叶草叶形结构B、倒L形结构C、双螺旋结构D、发夹结构正确答案:B2.甲亢患者不会出现( )A、耗氧增加B、ATP生成增多C、ATP分解减少D、ATP分解增加E、基础代谢率升高正确答案:C3.蛋白质变性后将会产生下列后果( )A、大量氧基酸游离出来B、等电点变为零C、大量肽碎片游离出来D、空间结构改变E、一级结构破坏正确答案:D4.酶分子中使底物转变为产物的集团称为( )A、催化基团B、结合基团C、酸性基团D、碱性基团E、疏水基团正确答案:A5.对挥发酸进行缓冲的最主要系统是 ( )A、蛋白质缓冲系统B、有机磷酸盐缓冲系统C、碳酸氢盐缓冲系统D、血红蛋白缓冲系统E、无机磷酸盐缓冲系统正确答案:D6.脂肪酰CoA在肝脏中进行β氧化的酶促反应顺序为D( )A、脱氢、加水、硫解、再脱氢B、加水、脱氢、硫解、再脱氢C、脱氢、硫解、再脱氢、加水D、脱氢、加水、再脱氢、硫解E、以上均不对正确答案:D7.含有金属元素的维生素是( )A、叶酸B、维生素B1C、维生素B2D、维生素B6E、维生素B12正确答案:E8.丙酮酸转变成乙酸辅酶A的过程是:( )A、α-单纯脱酸B、β-单纯脱酸C、α-氧化脱酸D、β-氧化脱酸E、以上都不是正确答案:C9.糖原合成时,葡萄糖直接供体是( )A、G-6-PB、G-1-PC、UPPGAD、UDPGE、GDPG正确答案:D10.细胞内编码20种氨基酸的密码子总数为( )A、64B、16C、61D、20正确答案:C11.血氨升高的主要原因是:( )A、肝功能障碍B、肾功能障碍C、肠道氨吸收增加D、食物蛋白质摄入过多E、体内氨基酸分解增加正确答案:A12.关于竞争性抑制作用的叙述,错误的是( )A、抑制剂虽与酶结合,但不能被酶催化生成反应物B、抑制剂与底物结构相似C、抑制剂与酶结合的部位也是底物与酶结合的部位D、抑制作用的强弱完全取决于它与酶的亲和力E、抑制剂与底物一样,与酶活性中心的结合是可逆的正确答案:D13.维持蛋白质二级结构稳定的主要因素是 ( )A、氢键B、静电作用力C、疏水键D、范德华作用力正确答案:A14.在一个DNA分子中,若T所占的摩尔比是28.2%,则C的摩尔比是( )A、21.8%B、28.2%C、43.6%D、14.1%E、56.4%正确答案:A15.脂肪大量动员时肝内生成的乙酰 CoA主要转变为( )A、葡萄糖B、胆固醇C、脂肪酸D、酮体E、丙二酰CoA正确答案:D16.正常人血浆NaHCO3与H2CO3之比是( )A、10:1B、15:1C、20:1D、25:1E、30:1正确答案:C17.变性蛋白质分子结构未改变的是:( )A、二级结构B、四级结构C、空间结构D、三级结构E、一级结构正确答案:E18.合成磷脂时需消耗( )A、ADPB、TTPC、CTPD、UTPE、GTP正确答案:C19.脂溶性维生素吸收障碍可引起的疾病是( )A、口角炎B、佝偻病C、坏血病D、癞皮病E、巨幼细胞贫血正确答案:B20.尿素生成是在下列哪个阶段( )A、精氨酸到鸟氨酸B、鸟氨酸到瓜氨酸C、氨基甲酰磷酸到瓜氨酸D、瓜氨酸到精氨酸代琥珀酸E、精氨酸代琥珀酸到精氨酸正确答案:A21.Tm是指什么情况下的温度?( )A、双螺旋DNA达到完全变性时B、双螺旋DNA开始变性时C、双螺旋DNA结构失去1/2时D、双螺旋结构失去1/4时正确答案:C22.下列关于DNA的双螺旋二级结构稳定的因素中哪一项是不正确的?( )A、3',5'-磷酸二酯键B、互补碱基对之间的氢键C、碱基堆积力D、磷酸基团上的负电荷与介质中的阳离子之间形成的离子键正确答案:A23.下列关于尿素循环的叙述正确的是( )A、分解尿素提供能量B、全部在线粒体内发生C、将有毒的物质转变为无毒的物质D、用非细胞的能量将人体内的NH3转变成尿正确答案:C24.参与糖原合成的核苷酸是( )A、ADPB、GTPC、CTPD、UTPE、dTTP正确答案:D25.下列哪种胆汁酸是次级胆汁酸( )A、牛磺胆酸B、甘氨胆酸C、甘氨鹅脱氧胆酸D、牛磺鹅脱氧胆酸E、脱氧胆酸正确答案:E26.变性的蛋白质分子结构未改变的是:( )A、空间结构B、四级结构C、二级结构D、三级结构E、一级结构正确答案:E27.下列哪种物质是肝细胞特异合成的( )A、ATPB、蛋白质C、糖原D、尿素E、脂肪正确答案:D28.生物氧化的特点不包括:( )A、遂步放能B、有酶催化C、常温常压下进行D、能量全部以热能形式释放E、可产生ATP正确答案:D29.关于极低密度脂蛋白的论述,错误的是( )A、富含三脂酰甘油B、肝中合成C、运输脂肪到肝D、运输脂肪从肝到脂肪组织E、合成障碍导致脂肪肝正确答案:C30.胆固醇是下列哪种物质的前体( )A、维生素EB、维生素KC、胆色素D、肾上腺素E、胆汁酸正确答案:E31.蛋白质等电点是指( )A、蛋白质溶液的pH=7.0时溶液的pH值B、蛋白质溶液的pH=7.4时溶液的pH值C、蛋白质分子呈正离子状态时溶液的pD、值E、蛋白质分子呈负离子状态时溶液的pF、值G、蛋白质分子呈兼性离子状态时溶液的pH、值正确答案:E32.一分子乙酰CoA经三羧酸循环彻底氧化后产物是:( )A、草酰乙酸B、草酰乙酸和CO2C、CO2+H2OD、CO2,NADH和FADH2正确答案:C33.生物转化中第一相反应最主要的是( )A、水解B、还原C、加成D、脱羧E、氧化正确答案:E34.辨认DNA复制起始点主要依靠的酶是( )A、DNA聚合酶B、DNA连接酶C、引物酶D、拓扑异构酶E、解链酶正确答案:C35.关于细胞色素的叙述哪项是正确的( )A、均为递氢体B、均为递电子体C、都可与一氧化碳结合并失去活性D、辅基均为血红素E、只存在于线粒体正确答案:B36.血浆中缓冲能力最大的缓冲对是( )A、血红蛋白缓冲对B、血浆蛋白缓冲对C、血浆磷酸盐缓冲对D、血浆碳酸氢盐缓冲对E、红细胞缓冲对正确答案:D37.正常成年男性体液含量约占体重的 ( )A、70%B、40%-50%C、60%D、50%E、40%正确答案:C38.RNA是( )A、核糖核蛋白体B、脱氧核糖核苷酸C、脱氧核糖核蛋白体D、核糖核酸E、核糖核苷正确答案:D39.盐析沉淀蛋白质的原理是 ( )A、调节蛋白质溶液的等电点B、降低蛋白质溶液的介电常数C、中和电荷,破坏水化膜D、与蛋白质结合成不溶性蛋白盐E、使蛋白质溶液的pH值等于蛋白质等电点正确答案:C40.联合脱氨基作用是:( )A、嘌呤核苷酸循环与鸟氨酸循环偶联B、谷丙转氨酶与谷草转氨酶偶联C、转氨酶与谷氨酸脱氢酶偶联D、氨基酸氧化酶与谷氨酸脱氢酶偶联E、氨基酸氧化酶与转氨酶偶联正确答案:C41.DNA的二级结构形式主要是( )A、α-螺旋B、β-片层C、β-转角D、双螺旋结构E、超螺旋结构正确答案:D42.关于蛋白质四级结构的论述,哪项是正确的( )A、由多个相同的亚基组成B、由多个不同的亚基组成C、由种类相同而数目不同的亚基组成D、由种类不同而数目相同的亚基组成E、亚基的种类和数目均可不同正确答案:E43.转运外源性三脂酰甘油的脂蛋白是( )A、CMB、VLDLC、LDLD、HDLE、IDL正确答案:A44.呼吸链中可被一氧化碳抑制的成分是( )A、FADB、FMNC、铁硫蛋白D、细胞色素aa3E、细胞色素c正确答案:D45.催化反应 RH+NADPH+H++O2 → ROH+NADP++H2O 的酶是:( )A、混合功能氧化酶B、过氧化物酶C、SODD、过氧化氢酶E、以上都不是正确答案:A46.DNA复制时,子代DNA的合成方式是( )A、两条链均为不连续合成B、两条链均为连续合成C、两条链均为不对称转录合成D、两条链均为5′→3′合成E、一条链5′→3′合成,另一条链3′→5′合成正确答案:D47.关于酶的叙述哪项是正确的:( )A、所有的酶都含有辅基或辅酶B、只能在体内起催化作用C、大多数酶的化学本质是蛋白质D、酶活性与溶液的PH无关E、每一种酶只能催化一种底物发生反应正确答案:C48.肝脏生物转化作用( )A、即为激素的作用B、与生物氧化同义C、包括氧化、还原、水解和结合反应D、有大量能量生成E、只包括氧化和还原反应正确答案:C49.线粒体氧化磷酸化解偶联是指:( )A、线粒体内膜ATP酶被抑制B、线粒体能利用氧但不能生成ATPC、抑制电子传递D、CN—为解偶联剂E、甲状腺素亦为解偶联剂正确答案:B50.下列各体液中K+浓度最高的是( )A、血浆B、细胞间液C、细胞内液D、淋巴液E、唾液正确答案:C51.甲状旁腺素对钙磷代谢的影响为( )A、使血钙-,血磷+B、使血钙+,血磷+C、使尿钙+,尿磷+D、使血钙-,血磷-E、使血钙+,血磷-正确答案:E52.在核酸中占9%—10%,可用其计算核酸含量的元素是( )A、磷B、碳C、氢D、氮E、氧正确答案:A53.可使血钙升高而血磷降低的激素是( )A、降钙素B、醛固酮C、甲状旁腺素D、1,25-(OH) 2-D3E、甲状腺素正确答案:C54.加热后酶活性降低或消失的主要原因是( )A、亚基脱落B、辅基脱落C、酶水解D、辅酶脱落E、酶蛋白的变性正确答案:E55.下列哪一个不是终止密码? ( )A、UAAB、UACC、UAGD、UGA正确答案:B56.唾液淀粉酶经透析后,水解淀粉的能力显著降低,其原因是( )A、蛋白质变性B、失去了辅酶C、消耗了ATPD、失去了CLE、酶含量显著减少正确答案:B57.糖原分解过程中磷酸化酶催化磷酸分解的键是( )A、(-1,6-糖苷键B、(-1,4-糖苷键C、(-1,4-糖苷键D、(-1,6-糖苷键正确答案:B58.下列哪种物质不是由酪氨酸代谢生成?( )A、去甲肾上腺素B、苯丙氨酸C、肾上腺素D、黑色素E、多巴胺正确答案:B59.ALT活性最高的组织是:( )A、血清B、心肌C、脾D、肝脏E、肺正确答案:D60.tRNA的作用是 ( )A、把一个氨基酸连到另一个氨基酸上B、将mRNA连到rRNA上C、增加氨基酸的有效浓度D、把氨基酸带到mRNA的特定位置上正确答案:D61.L-谷氨酸脱氢酶的辅酶是:( )A、NAD+C、FMND、CoA正确答案:A62.调节氧化磷酸化作用中最主要的因素是:( )A、ATP/ADPB、FADH2C、NADHD、Cytaa3E、以上都不是正确答案:A63.下列关于酶特性的叙述哪个是错误的?( )A、都有辅因子参与催化反应B、专一性强C、作用条件温和D、催化效率高正确答案:A64.tRNA分子上3′端的序列功能为( )A、形成局部双键B、供应能量C、提供-OH基与氨基酸结合D、辨认mRNA的密码子E、被剪接的组分正确答案:C65.DNA复制中的引物是( )A、由DNA为模板合成的DNA片段B、由RNA为模板合成的RNA片段C、由DNA为模板合成的RNA片段D、由RNA为模板合成的DNA片段E、引物仍存在于复制完成的DNA链中正确答案:C66.机体生命活动的能量直接供应者是( )A、葡萄糖B、蛋白质C、乙酰CoAE、脂肪正确答案:D67.多食糖类需补充( )A、维生素B1B、维生素B2C、维生素PPD、维生素B6E、维生素B12正确答案:A68.糖酵解中,不可逆反应是( )A、烯醇化酶催化的反应B、丙酮酸激酶催化的反应C、磷酸甘油酸激酶催化的反应D、3-磷酸甘油醛脱氢酶催化的反应E、醛缩酶催化的反应正确答案:B69.关于一碳单位代谢描述错误的是:( )A、一碳单位不能游离存在B、四氢叶酸是一碳单位代谢辅酶C、N5一CH3一FH4是直接的甲基供体D、组氨酸代谢可产生亚氨甲基E、甘氨酸代谢可产生甲烯基正确答案:E70.绝大多数真核生物mRNA的5’端有 ( )A、帽子结构B、PolyAC、起始密码D、终止密码正确答案:A71.下列脂肪酸中属必需脂肪酸的是( )A、甘碳酸B、软脂酸C、亚油酸D、硬脂酸正确答案:A72.S-腺苷甲硫氨酸的重要作用是 ( )A、生成腺嘌呤核苷B、提供甲基C、合成四氢叶酸D、补充甲硫氨酸正确答案:B73.转录需要的酶有( )A、引物酶B、依赖DNA的DNA聚合酶(DDDP)C、依赖DNA的RNA聚合酶(DDRP)D、依赖RNA的DNA聚合酶(RDDP)E、依赖RNA的RNA聚合酶(RDRP)正确答案:C74.糖原分解过程中磷酸化酶催化磷酸分解的键是( )A、α-1,6-糖苷键B、α-1,4-糖苷键C、α-1,6-糖苷键D、α-1,4-糖苷键正确答案:B75.电子按下列各式传递,能偶联磷酸化的是:( )A、Cytaa3B、琥珀酸C、DD、CoQE、SH2F、以上都不是正确答案:A76.蛋白质的一级结构和高级结构决定于( )A、分子内部疏水键B、分子中的盐键C、氨基酸的组成和顺序D、分子中的氢键E、氨基酸残基的性质正确答案:C77.辅助治疗小儿惊厥和妊娠呕吐选用下列哪种维生素( )A、维生素B1B、维生素B2C、维生素B6D、维重型纱B12E、维生素C正确答案:C78.在肝脏生物转化的结合反应中,最常见的是( )A、与GSH结合B、与甲基结合C、与乙酰基结合D、与硫酸结合E、与葡萄糖醛酸结合正确答案:E79.正常生理状态下,机体的主要供能物质是 ( )A、蛋白质B、脂肪C、糖D、水和无机盐E、维生素正确答案:C80.下面关于原核细胞翻译过程的叙述哪一个是正确的? ( )A、肽链的形成是释放能量的过程B、肽链合成的方向是从N端向C端的C、核糖体上肽酰tRNA移动所需的能量来自于ATPD、翻译是直接把DNA分子中的遗传信息转变为氨基酸的排列顺序正确答案:B81.一碳单位的载体是( )A、二氢叶酸B、四氢叶酸C、TPPD、生物素E、COA-SH正确答案:B82.可防治癞皮病的物质是( )A、视黄醇B、生物素C、烟酰胺D、核黄素E、吡哆醛正确答案:C83.完全食肉的个体,下列哪种维生素可能缺乏?( )A、TPP+B、烟酸C、钴胺素D、VitCE、泛酸正确答案:C84.某底物脱下的2H氧化时P/O比值约为3.0,应从何处进入呼吸链:( )A、FADB、NAD+C、CoQD、CytbE、Cytaa₃正确答案:B85.缺乏维生素B12可引起下列哪种疾病( )A、巨幼细胞贫血B、癞皮病C、坏血病D、佝偻病E、脚气病正确答案:A86.下列有关脂溶性维生素叙述正确的是( )A、都是构成辅酶的成分B、摄入不足会引起缺乏症C、易被消化道吸收D、是一类需要量很大的营养素E、体内不能储存,多余者都由尿排出正确答案:B87.酶具有高效催化能力的原因是( )A、酶能降低反应的活化能B、酶能改变化学反应的平衡点C、酶能催化热力学上不能进行的反应D、酶能提高反应物分子的活化能正确答案:A88.鸟氨酸循环中,尿素生成的氨基来源有:( )A、瓜氨酸B、精氨酸C、鸟氨酸D、天冬氨酸正确答案:B89.呼吸链中可被一氧化碳抑制的成分是( )A、FADB、FMNC、铁硫蛋白D、细胞色素aa₃E、细胞色素c正确答案:D90.辅酶磷酸吡哆醛的主要功能是( )A、传递一碳基因B、传递氢C、传递二碳基团D、传递氨基正确答案:D91.由琥珀酸脱下一对氢,经呼吸链氧化可产生( )A、1分子ATP和一分子水B、3分子ATPC、3分子ATPD、2分子ATP和一分子水E、2分子ATP和2分子水正确答案:D92.DNA受热变性时( )A、多核苷酸链水解成寡核苷酸链B、在260nm波长处吸收值下降C、碱基对以共价键连接D、溶液黏度增加E、出现增色效应正确答案:E93.低血钾是指血钾浓度(mmol/L)低于( )A、4.1B、3.5C、4D、5E、5.5正确答案:B94.对固定酸进行缓冲的主要系统是 ( )A、氧合血红蛋白缓冲系统B、还原血红蛋白缓冲系统C、血浆蛋白缓冲系统D、碳酸氢盐缓冲系统E、磷酸盐缓冲系统正确答案:D95.下面关于Watson-Crick DNA双螺旋结构模型的叙述中哪一项是正确的? ( )A、两条单链的走向是反平行的B、碱基A和G配对C、碱基之间共价结合D、磷酸戊糖主链位于双螺旋内侧正确答案:A96.肌肉中氨基酸脱氨的主要方式是 ( )A、嘌呤核苷酸循环B、鸟氨酸循环C、L-谷氨酸氧化脱氨作用D、联合脱氨作用E、转氨作用正确答案:A97.血钙指( )A、血浆中的结合钙B、血浆中的磷酸钙C、血浆中的离子钙D、血浆中的碳酸钙E、血浆中的总钙量正确答案:E98.肝脏生成乙酰乙酸的直接前体是( )A、乙酰乙酰辅酶B、β-羟-β-甲基戊二酸单酰辅酶C、β-羟丁酸D、甲羟戊酸E、β-羟丁酰辅酶A正确答案:B99.将蛋白质的PH调节到其等电点时( )A、可使蛋白质稳定性降低,易于沉淀B、可使蛋白质表面的净电荷减少C、可使蛋白质表面净电荷不变D、可使蛋白质稳定性增加E、可使蛋白质表面净电荷增加正确答案:A100.帕金森氏病(Parkinson’s diseae)患者体内多巴胺生成减少,这是由于:( )A、蛋氨酸代谢异常B、胱氨酸代谢异常C、精氨酸代谢异常D、酪氨酸代谢异常正确答案:D。
生物化学简答题和论述题
1、从以下几方面对蛋白质及DNA进行比较:①分子组成;②一、二级结构;③主要生理功能答:1.分子组成相同点:都含有碳、氢、氧、氮元素不同点:蛋白质主要由碳、氢、氧、氮、硫组成,基本组成单位是氨基酸DNA的基本组成单位是脱氧核糖核苷酸2.一、二级结构相同点:都含有一、二级结构蛋白质的一级结构:氨基酸排列顺序。
蛋白质二级结构: 是指蛋白质分子中某一段肽键的局部空间结构DNA一级结构:碱基序列。
DNA二级结构:双螺旋结构。
不同点:蛋白质还含有三、四级结构DNA有超螺旋结构3.主要生理功能蛋白质:生理功能多种多样,具有催化作用,代谢调控功能;物质转运功能;运动功能;抗体具有免疫功能;凝血功能;调节血液酸碱平衡功能等等。
DNA:是生物遗传信息的载体,并为基因复制和转录提供了模板,用来保持生物体系遗传的相对稳定性;是遗传信息的物质基础。
联系:DNA通过转录、翻译合成蛋白质2、简述DNA双螺旋结构模式的要点①DNA是平行反向、右手螺旋结构。
②脱氧核糖基和磷酸骨架位于双螺旋的外侧,碱基位于双螺旋内侧,两条链的碱基之间以氢键相接触。
③遵守碱基互补原则:T—A G—C○4维系DNA双螺旋结构稳定:横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。
3、什么是酶?酶与一般催化剂有何区别?酶:酶是由活细胞合成的对其特异底物起高效催化作用的蛋白质。
区别:1高效性2特异性。
3可调节性4不稳定性。
4、磺胺是抗菌药物,试述磺胺抗菌的机理抑制剂和酶的底物在结构上相似,可与底物竞争结合酶的活性中心,从而阻碍酶与底物形成中间底物,这种抑制作用称为竞争性抑制作用。
磺胺类药物抑菌的机制属于对酶的竞争性抑制作用。
磺胺类药物与对氨基苯甲酸的化学结构相似,竞争性结合二氢叶酸合成酶的活性中心,抑制二氢叶酸以至于四氢叶酸合成,干扰一碳单位代谢,进而干扰核酸合成使细菌的生长受到抑制。
5、人体生成ATP的方式有哪几种?请举例说明1、氧化磷酸化(偶联磷酸化)例:在呼吸链电子传递过程中偶联ADP磷酸化、生成ATP,是机体内ATP生成的主要方式。
生物化学问答题(含答案)
蛋白质化学1.蛋白质:是一类生物大分子,有一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定的序列以肽键连接形成。
蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。
2.标准氨基酸:是可以用于合成蛋白质的20种氨基酸。
7.氨基酸的等电点:氨基酸在溶液中的解离程度受PH值的影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,在溶液中的氨基酸以间性离子形式存在,且净电荷为0,此时溶液的PH值成为该氨基酸的等电点9.缀合蛋白质:含有非氨基酸成分的蛋白质10.蛋白质的辅基:缀合蛋白所含有的非氨基酸成分12.肽键:存在与蛋白质和肽分子中,是有一个氨基酸的ɑ-羧基与另外一个氨基酸的ɑ-氨基缩合时形成的化学键14.肽:是指由2个或多个氨基酸通过肽键连接而成的分子15.氨基酸残基:肽和蛋白质中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸残基16.多肽:由10个以上氨基酸通过肽键连接而成的肽18.生物活性肽:是指具有特殊生理功能的肽类物质,它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代谢调节、神经传导。
食物蛋白质的消化产物也有生物活性肽,它们可以被直接吸收。
20.蛋白质的一级结构:通常叙述为蛋白质多肽链种氨基酸的链接顺序,简称为氨基酸序列,蛋白质的一级结构反应蛋白质分子的共价键结构21.蛋白质的二级结构:是指蛋白质多肽链局部片段的构象,该片段的氨基酸序列式连续的,主链构象通常是规则的23.蛋白质的超二级结构:又称模体基序,是指几个二级结构单元进一步聚合和结合形成的特定构象单元,如ɑɑ、βɑβ、ββ、螺旋-转角-螺旋、亮氨酸拉链等24.蛋白质的三级结构:是指蛋白质分子整条肽链的空间结构,描述其所有原子的空间分布,蛋白质三级结构的形成是肽链在二级结构的基础上进一步折叠的结果。
26.蛋白质的亚基:许多蛋白质分子可以用物理方法分离成不止一个结构单位,每个结构单位可以有不止一条肽链构成,但都有特定且相对独立的三级结构,且是由一个共价键连接的整体,该结构单位称为该蛋白质的一个亚基27.蛋白质的四级结构:多亚基蛋白的亚基与亚基通过非共价键结合,形成特定的空间结构,这一结构层次称为该蛋白质的四级结构35.变构蛋白:具有下列特性蛋白质的统称:它们有两种或多种构象,有两个或多个配体结合位点,配体与其中一个结合位点结合导致蛋白质变构,及从一种构象转换成另一种构象,这种变构影响到其他配体结合位点与配体的结合36.变构剂:导致变构蛋白变构的物质,多为小分子42.蛋白质的等电点:蛋白质是两性的电解质其解离状态受溶液的PH值影响,在某一PH值条件下,蛋白质的净电荷为0,该PH值称为该蛋白质的等电点44.蛋白质变性:由于稳定蛋白质构象的化学键被破坏,造成其四级结构三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变,变性导致蛋白质理化性质改变,生物活性丧失。
关于生物化学简答题
生化习题简答题1.试简三羧酸循环的意义是氧化功能的主要代谢途径,是三大物质(糖,脂肪,氨基酸)代谢相互联系的枢纽,是三大物质代谢最终的共同通道。
2.与酶高效催化作用有关的因素有哪些?1).邻近定向效应2).底物的形变和诱导契合3).亲核催化/亲电催化(共价催化4).酸碱催化5).微环境的影响3.酶的辅因子按照化学本质可分哪几类,请举例说明?1)无机金属元素,如镁离子,己糖激酶的辅因子2)小分子有机物,如NAD+,脱氢酶的辅因子3)蛋白质类辅酶,如硫氧还蛋白,而磷酸核糖核苷酸还原酶的辅因子4.请列举遗传密码的基本特点,并分别予以解释。
1)连续性:mRNA的读码方向从5'端至3'端方向,两个密码子之间无任何核苷酸隔开。
mRNA链上碱基的插入、缺失和重叠,均造成框移突变。
2)简并性:指一个氨基酸具有两个或两个以上的密码子。
密码子的第三位碱基改变往往不影响氨基酸翻译。
3)摆动性:mRNA上的密码子与转移RNA(tRNA)J上的反密码子配对辨认时,大多数情况遵守间几乎不配对原则,但也可出现不严格配对,尤其是密码子的第三位碱基与反密码子的第一位碱基配对时常出现不严格碱基互补,这种现象称为摆动配对。
4)通用性:不论高等或低等生物,从细菌到人类都拥有一套共同的遗传密码5.真核细胞与原核细胞DNA复制过程的主要区别有哪些?1)真核生物有多个复制起始位点——复制原点,而原核只有一个复制原点。
2)真核生物复制一旦启动,在完成本次复制前,不能在再启动新的复制,而原核复制起始位点可以连续开始新的复制,特别是快速繁殖的细胞。
3)真核生物和原核生物的复制调控不同。
原核生物的调控集中在复制子(一个复制单位)水平的调控,而真核生物不但有复制子水平的调控还有染色体水平的调控和细胞水平的调控。
4)原核的DNA聚合酶III复制时形成二聚体复合物,而真核的聚合酶保持分离状态。
5)真核生物的聚合酶没有5'-3'外切酶活性,需要一种叫FEN1的蛋白切除5'端引物,原核的DNA聚合酶I具有5'-3'外切酶活性。
生物化学简答题整理
⽣物化学简答题整理⽣物化学简答题⼀、糖类化合物1、糖类物质在⽣物体内起什么作⽤?(1)糖类物质是异氧⽣物的主要能源之⼀,糖在⽣物体内经⼀系列的降解⽽释放⼤量的能量,供⽣命活动的需要。
(2)糖类物质及其降解的中间产物,可以作为合成蛋⽩质脂肪的碳架及机体其它碳素的来源。
(3)在细胞中糖类物质与蛋⽩质核酸脂肪等常以结合态存在,这些复合物分⼦具有许多特异⽽重要的⽣物功能。
(4)糖类物质还是⽣物体的重要组成成分。
2、⾎糖正常值是 3.89~6.11mmol/L ,机体是如何进⾏调节的?⑴肝脏调节:⽤餐后⾎糖浓度增⾼是,肝糖原合成增加,是⾎糖⽔平不致因饮⾷⽽过度升⾼;空腹时肝糖原分解,提供葡萄糖;饥饿或禁⾷,肝脏的糖异⽣作⽤加强,提供葡萄糖。
⑵肾脏调节:肾⼩管重吸收葡萄糖,但是不要超过肾糖阈。
⑶神经调节:⽤电刺激交感神经系的视丘下部腹内侧核或内脏神经,能促使肝糖原分解,⾎糖升⾼;⽤电刺激副交感神经系的视丘下部外侧或迷⾛神经时,肝糖原合成增加,⾎糖浓度升⾼。
⑷激素调节:若是⾎糖浓度过⾼,则胰岛素起作⽤,若⾎糖浓度过低,有肾上腺素、胰⾼⾎糖素、糖⽪质激素、⽣长素、甲状腺激素等起作⽤。
3、简述⾎糖的来源和去路。
⑴⾎糖的来源:①⾷物经消化吸收的葡萄糖;②肝糖原分解;③糖异⽣⑵⾎糖的去路:①糖酵解或有氧氧化产⽣能量;②合成糖原;③转变为脂肪及某些⾮必需氨基酸;④进⼊磷酸戊糖途径等转变为其它⾮糖类物质。
4、试述成熟红细胞糖代谢特点及其⽣理意义。
⑴成熟红细胞不仅⽆细胞核,⽽且也⽆线粒体、核蛋⽩体等细胞器,不能进⾏核酸和蛋⽩质的⽣物合成,也不能进⾏有氧氧化,不能利⽤脂肪酸。
⾎糖是其唯⼀的能源。
红细胞摄取葡萄糖属于易化扩散,不依赖胰岛素。
成熟红细胞保留的代谢通路主要是葡萄糖的酵解和磷酸戊糖通路以及2.3⼀⼆磷酸⽢油酸⽀路。
⑵通过这些代谢提供能量和还原⼒(NADH,NADPH)以及⼀些重要的代谢物,对维持成熟红细胞在循环中约120的⽣命过程及正常⽣理功能均有重要作⽤。
生物化学简答题答案
生物化学简答题1. 产生ATP的途径有哪些?试举例说明。
答:产生ATP的途径主要有氧化磷酸化和底物程度磷酸化两条途径。
氧化磷酸化是需氧生物ATP生成的主要途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程。
例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反响,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,经过呼吸链递氢和递电子,可有2.5个ADP磷酸化生成ATP的偶联部位,这就是通过氧化磷酸化产生了ATP。
底物程度磷酸化是指干脆与代谢底物高能键水解相偶联使ADP磷酸化的过程。
例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反响中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动 ADP磷酸化生成ATP,这就是通过底物程度磷酸化产生了ATP。
2.简述酶作为生物催化剂与一般化学催化剂的共性及其特性。
(1)共性:用量少而催化效率高;仅能改变更学反响速度,不能改变更学反响的平衡点,酶本身在化学反响前后也不变更;可降低化学反响的活化能。
(2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,简单失活,活力受条件的调整限制,活力与协助因子有关。
3.什么是乙醛酸循环,有何生物学意义?乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组织中尚未发觉。
乙醛酸循环反响分为五步(略)。
总反响说明,循环每转1圈须要消耗两分子乙酰辅酶A,同时产生一分子琥珀酸。
琥珀酸产生后,可进入三羧酸循环代谢,或者转变为葡萄糖。
乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。
(2)乙醛酸循环是微生物利用乙酸作为碳源建立自身机体的途径之一。
(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。
4. 简述氨基酸代谢的途径。
生物化学-简答题总结
1生物化学-简答题总结(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.什么是蛋白质的一级结构为什么说蛋白质的一级结构决定其空间结构答:蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。
因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。
2.什么是蛋白质的空间结构蛋白质的空间结构与其生物功能有何关系答:蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。
蛋白质的空间结构决定蛋白质的功能。
空间结构与蛋白质各自的功能是相适应的。
3.蛋白质的α- 螺旋结构有何特点?答:(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有个氨基酸残基,螺距为,氨基酸之间的轴心距为.。
(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O形成氢键。
(3)天然蛋白质的α-螺旋结构大都为右手螺旋。
4.蛋白质的β- 折叠结构有何特点?答:β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。
(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。
(2)氨基酸之间的轴心距为(反平行式)和(平行式)。
(3)β-折叠结构有平行排列和反平行排列两种。
5.举例说明蛋白质的结构与其功能之间的关系。
答:蛋白质的生物学功能从根本上来说取决于它的一级结构。
蛋白质的生物学功能是蛋白质分子的天然构象所具有的属性或所表现的性质。
一级结构相同的蛋白质,其功能也相同,二者之间有统一性和相适应性。
6.什么是蛋白质的变性作用和复性作用蛋白质变性后哪些性质会发生改变答:蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导致其性质和生物活性改变的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学必考大题-简答题道————————————————————————————————作者:————————————————————————————————日期:ﻩ根据老师所画的重点,我把生化大题全打成了电子档,希望能帮助大家的复习!!DNA双螺旋模型要点(1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。
主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。
主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。
所谓双螺旋就是针对二条主链的形状而言的。
(2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。
同一平面的碱基在二条主链间形成碱基对。
配对碱基总是A与T和G与C。
碱基对以氢键维系,A与T间形成两个氢键。
(3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。
小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。
这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。
在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。
ﻫ(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。
生物学意义:揭示了DNA复制时两条链可以分别作为模板生成新的子代互补链,从而保持遗传信息的稳定传递。
2、酶与一般催化剂相比具有哪些特点?(1)催化效率高:对于同一反应,酶催化反应的速率比非催化反应速率高10^2—10^20倍,比一般催化剂催化反应的反应高10^7—10^13倍(2)高度专一性或特异性:与一般催化剂不同,酶对具有催化的底物具有较严格的选择性,即一种酶只能作用于一种或一类底物或一定的化学键,催化一定的化学反应并生成一定的产物,按照其严格程度可以区分为绝对专一性和相对专一性,另外还有立体异构专一性和光学异构专一性。
(3)酶活性的不稳定性:酶是蛋白质,对热不稳定,对反应的条件要求严格(4)酶催化活性的可调节性:酶促反应或酶的活性受到多种体外因素的调节,酶的调节包括酶活性和酶含量的调节。
3、何谓酶的不可逆抑制作用?试举例说明某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。
4、试述竞争性抑制作用的特点,并举例其临床应用①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。
说明底物和酶的亲和力明显下降。
举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物5、何谓酶原及酶原激活?简述其生理意义有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。
酶原激活实际上是酶的活性中心形成或暴露的过程。
生理意义:可视为有机体对酶活性的一种特殊调节方式,保证酶在需要时在适当部位,适当的时间发挥作用,避免在不需要时发挥活性而对组织细胞造成损伤,酶原还可以视为酶的一种储存形式6、什么叫同工酶?简述其存在的部位,来源及临床意义?同工酶是指催化的化学反应相同,而酶蛋白的氨基酸组成分子结构,理化性质乃至免疫学性质等不同的组酶。
同工酶存在于同一种属或同一个体的不同组织器官或同一细胞的不同亚细胞的结构中,它在调节代谢上起着重要作用。
同工酶是长期进化过程中基团分化的产物,同工酶是由不同基团或等位基因编码的多肽链,或同一基团转录生成的不同mRNA翻译的不同多肽链组成的蛋白质,所以同工酶具有不同的的一级结构,生物化学性质和酶动学性质,不同的同工酶在不同的组织器官中含量喝分布比例不同,这主要是不同组织器官中编码不同亚基的基因开放程度不同,编码各亚基的基因表达程度不同,合成的亚基种类和数量不同,形成不同的同工酶谱,不同的同工酶对底物的亲和力不同,使不同组织与细胞具有不同的代谢特点,当某组织器官发生病变时,可能在某些特殊的同工酶释放同工酶谱的改变有助于病的诊断,通过观察人血清中同工酶的电泳图谱辅助诊断哪些器官发生病变。
7、以葡萄糖为例,比较无氧氧化和有氧氧化的异同无氧氧化有氧氧化反应条件在无氧条件下进行在有氧条件下进行反应部位胞液胞液和线粒体反应基本过程①葡萄糖经糖酵解生产丙酮酸①葡萄糖经糖酵解生产丙酮酸②丙酮酸还原为乳液②丙酮酸氧化脱羧生产乙酰CoA③乙酰CoA进入TCA循环④氧化磷酸化终产物乳酸二氧化碳喝水关键酶己糖激酶、6—磷酸果糖激酶-1 己糖激酶、6—磷酸果糖激酶丙酮酸激酶丙酮酸激酶丙酮酸脱氢酶复合体柠檬酸合酶异柠檬酸合酶a酮戊二酸脱氢酶复合体ATP生产方式底物水平磷酸化氧化磷酸化底物水平磷酸化生理意义:①是有机体在缺氧情况下获取能量的有效方式①是有机体获得能量的主要方式②是某些细胞在氧供应正常情况下的重要供能②有氧时糖供能的主要途径途径③三羧酸循环是三大物质彻底氧化分解的共同通路④山羧酸循环是三大代谢互相联系的枢纽8、简述血糖的概念。
、正常值、来源和去路血糖是值血液中的葡萄糖,正常人空腹静脉血糖含量为3.89~6.11mol/L来源:①食物中糖类消化吸收②肝糖原分解③糖异生作用去路:①氧化供能②合成糖原③通过磷酸戊二糖途径转变为其他糖④转变为脂肪,非必需氨基酸等非糖物质9、简述磷酸戊二糖途径的胜利意义主要意义在于为机体提供磷酸核糖和NADPH。
ﻫ1为核酸的生物合成提供核糖。
2 提供NADPH作为供氢体参与多种代谢反应。
ﻫ(1)NADPH是体内许多合成代谢的供氢体。
(2)NADPH参与体内羟化反应。
(3)NADPH还用于维持谷胱甘肽的还原状态。
10、以软脂酸为例,试①反应的组织②亚细胞部位③限速酶④受氢体⑤ADP/ATP比值影响方面比较b—氧化分解和脂酸的合成脂酸b—氧化分解脂酸的合成反应组织除细胞组织外,以肝,肌肉最活跃绝大多数组织亚细胞部位胞液线粒体胞液限速酶肉碱脂酰转移酶工乙酰CoA羧化酶受氢体/供氢体 FAD NAD^+ NADPHADP/ATP比值比值高、促进反应比值低、促进反应11、简述乙酰CoA在体内的来源和去路乙酰coa的来源:由糖,脂肪,氨基酸及酮体分解产生。
乙酰coa的去路:进入三羧酸循环彻底氧化生成co2,h2o并释放能量。
合成脂肪酸,胆固醇及酮体12、胆固醇合成的原料、限速酶是什么?胆固醇在体内可以转变为那些物质?胆固醇合成的原料主要有:乙酰CoA、NADPH+H^+和ATP等,限速酶是HMGCoA还原酶,胆固醇在体内的代谢途径主要有:在肝脏转变为胆汁酸,在肾上腺皮质,睾丸。
卵巢等转化为类固醇激素,在皮肤可转化为维生素D313、电泳法和超速离心法能将血浆脂蛋白分为哪几类?简述各种血浆脂蛋白产生的部位和功能血浆脂蛋白有两种分类法:电泳法分为乳糜微粒。
B—脂蛋白。
前b—脂蛋白和a—脂蛋白。
超速离心法分为:CMVLDL L DL HDK ,CM在小肠黏膜形成,运输外源性甘油三脂和胆固醇,VLDL主要在肝脏小肠,运输内源性甘油三脂和胆固醇,LDL主要在血浆中小肠,运输内源性胆固醇到肝外,HDL在肝肠,血浆中形成,将胆固醇从肝外组织逆向转运到肝脏14、简述体内氨的来源和氨的去路?来源:1、氨基酸脱氨基作用生成的氨2、由肠道吸收的氨,包括食物蛋白质在大肠内经腐败作用生成的氨和尿素在肠道细胞脲酶作用下产生成的氨3、肾脏泌氨,谷氨酰胺在肾小管上皮细胞中的谷氨酰胺酶的催化下生成氨去路:ﻫ1在肾脏内合成尿素,氨在体内的主要去路是在肾脏生成无毒的尿素让后由肾脏排泄,这是集体对氨的一种解毒方式ﻫ2谷氨酰胺的合成,氨与谷氨酸在谷氨酰胺合成酶的作用下合成谷氨酰胺,谷氨酰胺即为解毒产物也是储存于运输形式ﻫ3氨可以是一些a-酮酸经联合脱氨基逆行氨基化而合成相应的非必需氨基酸,4氨还可以参加嘌呤碱和嘧啶碱的合成15、试述丙氨酸在体内彻底分解生产二氧化碳、水和ATP主要代谢途径①经联合脱氨基作用生产丙酮酸②丙酮酸转变为乙酰CoA③乙酰CoA经三羧酸循环生产二氧化碳和水,及NADH和FADHI ④NADH和FADHI经氧化磷酸化作用将其中的氢氧化为水的同时产生ATP16、核苷酸的生物学作用主要有哪些?①作为核酸合成的原料,这是核苷酸最主要的功能②体内能量的利用形式,③参与代谢和生理调节④组成辅酶⑤活化的中间代谢物17、参与大肠杆菌DNA复制的酶及蛋白质因子有哪些?各有什么作用?①DNA聚合酶:催化新链合成催化脱氢核苷酸之间的聚合②引物酶:催化RNA引物合成③解螺旋酶:解开DNA双链④拓扑异构酶:理顺DNA链⑤单链DNA结合蛋白:维持DNA处于单链状态⑥DNA连接酶:连接DNA链内接口18、有哪些措施来保证DNA复制的忠实性?①遵守严格的碱基配对规律②DNA-pol在复制延长中对碱基的选择功能③复制出错时有及时的校读功能19、试述真核生物mRNA的主要加工修饰流程和方式?在细胞核中刚合出来的真核生物mRNA前体,也称hnRNA或初级mRNA转录物,在转录后需要经过一系列的加工修饰,包括5’—末端修饰和3’——末端修饰,即首尾加饰,以及剪接加工,才能成为具有功能的成熟mRNA,进而被转运至核糖体知道蛋白质合成(1)首尾加饰:即5’—加帽和3’—加尾。
①5’—端修饰:值在mRNA的5’—起始端加上T甲基鸟嘌呤的帽子结构,即TmGpppmN②3’—端修饰指在3’—末端加上多聚腺苷酸Poly尾巴,长度为100—200核苷酸之间,和转录终止同时进行。
剪接:即出去mRNA初级转录产物上和内含子对应的序列,把外显子对应的序列连接为成熟mRNAD的过程,该过程需要U系列snRNA与核内蛋白质形成的剪接体参与,通过2次转脂反应完成,有些基因的mRNA还具有选择性剪接的机制,使mRNA更具有多样性编辑:是对基因的编码序列进行转录后加工,如apoB基因经过转录后的mRNA编辑,最终编码生产两种不同的载脂蛋白即细胞中的apoB100和小肠黏膜中的apoB4820、简述蛋白质生物合成体系的组成①氨基酸:蛋白质生物合成的原料②三种RNA:mRNA做蛋白质生物合成的模板,tRNA做氨基酸的运载工具,rRNA 与蛋白质组成核糖体做蛋白质合成的产所③能源物质:ATP和GTP④酶:氨基酰—tRNA合成酶,转肽酶和转位酶⑤蛋白质因子:IFEF RF ⑥无机因子21、简述蛋白质合成后的修饰方式新生的肽通常没有生物活性,必须经过不同的加工修饰过程才能转变为具有活性的蛋白质,主要包括①多肽链的正确折叠②一级结构的修饰:主要有N端的修饰,个别氨基酸的修饰如磷酸化,羧基化,甲基化。