2016-17-1华南农业大学大学数学2试卷(2)
2016年全国2卷数学答案及解析
2016年全国2卷数学答案及解析1) The format errors in the article have been removed.2) ___.3) ___.Part I1.Multiple Choice: This n contains 12 ns。
each worth 5 points。
Choose the one n that best answers the n from the four provided.1) Given z = (m+3) + (m-1)i。
where z corresponds to a point in the fourth quadrant of the complex plane。
what is the range of possible values for m?A) (-3,1) (B) (-1,3) (C) (1,∞) (D) (-∞,-3)Answer] AAnalysis] To ensure that the point corresponding to z is in the fourth quadrant。
we need to satisfy the n that:m+3>0m-1<0Solving this system of inequalities yields -3 < m < 1.so the answer is A.Concept] Geometric n of complex numbersInsight] Problems involving the n of complex numbers and the n of corresponding points can be ___ real and imaginary parts of the complex number must ___ the complex number to algebraic form and write a system of ns (inequalities) for the real and imaginary parts.2) Given sets A = {1,2,3}。
(2021年整理)2016年新课标全国卷2高考理科数学试题及答案
(完整)2016年新课标全国卷2高考理科数学试题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2016年新课标全国卷2高考理科数学试题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2016年新课标全国卷2高考理科数学试题及答案的全部内容。
一、选择题(本大题共12小题,共60。
0分)1。
已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(—3,1)B。
(—1,3) C.(1,+∞) D.(-∞,—3)2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=()A。
{1} B.{1,2}C.{0,1,2,3}D.{—1,0,1,2,3}3.已知向量=(1,m),=(3,—2),且(+)⊥,则m=()A.-8 B。
-6 C.6 D.84.圆x2+y2-2x—8y+13=0的圆心到直线ax+y—1=0的距离为1,则a=()A.-B。
-C。
D。
25。
如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24 B。
18 C。
12 D。
96.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC。
28π D.32π7.若将函数y=2sin2x的图象向左平移个单位长度,则平移后的图象的对称轴为()A。
x=-(k∈Z)B。
x=+(k∈Z)C。
x=—(k∈Z) D.x=+(k∈Z)8.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A。
2016年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)
2016年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.==25﹣【解答】解:(2x+)5的展开式中,通项公式为:T r+1r,令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年高考理科数学全国卷2(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{0}1,2M =,2{|320}N x x x =-+≤,则M N = ( )A .{1}B .{2}C .{0,1}D .{1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )A .5-B .5C .4i -+D .4i -- 3.设向量a ,b 满足|a +b||a -b|=则a b =( )A .1B .2C .3D .5 4.钝角三角形ABC △的面积是12,1AB =,BC =,则AC =( )A .5BC .2D .15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.456.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59 C .1027D .137.执行如图的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .7 8.设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a =( ) A .0 B .1 C .2D .39.设x ,y 满足约束条件70,310,350,x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥则2z x y =-的最大值为( )A .10B .8C .3D .210.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,O 为坐标原点,则OAB △的面积为 ( )ABC .6332D .94 11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成角的余弦值为( )A .110B .25 CD12.设函数π()3sin x f x m,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.10()x a +的展开式中,7x 的系数为15,则a = (用数字填写答案). 14.函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为 .15.已知偶函数()f x 在[0,)+∞上单调递减,(2)0f =,若(1)0f x ->,则x 的取值范围是 .16.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是 .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足11a =,131n n aa +=+.(Ⅰ)证明:1{}2n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1211132n a a a ++⋅⋅⋅+<.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设二面角D AE C --为60,1AP =,AD =求三棱锥E ACD -的体积.19.(本小题满分12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i ni i tt y y bt t ==--=-∑∑,ˆˆay bt =-.20.(本小题满分12分)设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左、右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数()e e 2x xf x x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时填写试题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,π0,2θ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y +垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 132016年普通高等学校招生全国统一考试(全国新课标卷2)【解析】集合A B {0,1,2,3}=A B 的值.【解析】向量a(4,m),b(3,2)-,a b (4,m ∴+=-又(a b)b +⊥,12∴-【提示】求出向量a b +的坐标,根据向量垂直的充要条件,构造关于m 的方程,解得答案.【解析】输入的数学试卷第10页(共39页)数学试卷第11页(共39页)数学试卷第12页(共39页)5 / 13:πcos 4⎛- ⎝:π2cos 4⎛⎫-α= ⎝【提示】方法1:利用诱导公式化22π1n 1,π∴=解得e 2=.1数学试卷第16页(共39页)数学试卷第17页(共39页)数学试卷第18页(共39页)(Ⅰ)某保险的基本保费为7 / 13数学试卷 第22页(共39页)数学试卷 第23页(共39页) 数学试卷 第24页(共39页)(Ⅰ)ABCD 是菱形,AC BD ⊥,则,AC 6=,AEOD 1AO=,则, ,又OHEF H =,为坐标原点,建立如图所示空间直角坐标系,AB 5=,C(1,3,0),D (0,0,3)',AB (4,3,0)=,AD (1,3,3)'=-,AC (0,6,0)=,设平面的一个法向量为n (x,y,z)=11n AB 0n AD 0⎧=⎪⎨'=⎪⎩,得3y 03y 3z 0=⎧⎨+=3=,得n (3,4,5)∴=-同理可求得平面AD '的一个法向量n (3,01)=,的平面角为θ,122n n 9255210n n +==,∴二面角9 / 13为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到AB 、AD '、AC的一个法向量n 、n ,设二面角221234k +,由2212121k 413k 341kk =+⎛⎫++- ⎪⎝⎭,由AM =22212121k434k 3k k=+++, 整理可得2(k 1)(4k k 4)0--+=,由24k -212144134⎫=⎪+⎭轴对称,由MA ⊥数学试卷 第28页(共39页)数学试卷 第29页(共39页) 数学试卷 第30页(共39页)226t 3tk +,26t t 3k k+, AN ,可得2226t 6t 21k 1kt 3tk 3k k+=+++, 整理得26k 3kt -=,由椭圆的焦点在x 轴上,11 / 13 当2)(2,)-+∞2)和(2,-+∞x 2e f (0)=2>x 2e a 2⎫+⎪⎭a ∈x x 2(x)e 2-=的值域为t 2e a 2=-,只需t 2e 02≤0,可得t ∈t t 2e e 2t 2=+t e (t +22.【答案】(Ⅰ)DF CE ⊥,Rt DFC Rt EDC ∴△∽△,DF CF ED CD∴=, DE DG =,CD BC =,DF CF DG BC∴=,又GDF DEF BCF ∠=∠=∠, GDF BCF ∴△∽△,CFB DFG ∴∠=∠,GFB GFC CFB GFC DFG DFC 90∴∠=∠+∠=∠+∠=∠=,GFB GCB 180∴∠+∠=,B ∴,C ,G ,F 四点共圆;(Ⅱ)E 为AD 中点,A B 1=,1DG CG DE 2∴===,数学试卷 第34页(共39页)数学试卷 第35页(共39页) 数学试卷 第36页(共39页)∴在Rt DFC △中,1GF CD GC 2==,连接GB ,Rt BCG Rt BFG △≌△, BCG BCGF 111S 2S =21=222∴=⨯⨯⨯△四边形.【提示】(Ⅰ)证明B ,C ,G ,F 四点共圆可证明四边形BCGF 对角互补,由已知条件可知BCD 90∠=,因此问题可转化为证明GFB 90∠=;(Ⅱ)在Rt DFC △中,1GF CD GC ==,因此可得BCG BFG △≌△,则BCG BCGF S 2S =△四边形,据此解答.(Ⅰ)圆,22x ρ=+(Ⅱ)直线x α, l C (6,0)-,13 / 13 【考点】圆的标准方程,直线与圆相交的性质24.【答案】(Ⅰ)当1x 2<-时,不等式f (x)2<可化为:11x x 222---<,解得x 1>-, 11x 2∴-<<-, 当11x 22-≤≤时,不等式f (x)2<可化为:11x x 1222-+-=<,此时不等式恒成立, 11x 22∴-≤≤,当1x 2>时,不等式f (x)2<可化为:11x x 222++-<,解得x 1<, 1x 12∴<<,综上可得M (1,1)=-; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,即2222a b 2ab 1a 2ab b +++>++, 即22(ab 1)(a b)+>+,即a b ab 1+<+.【提示】(Ⅰ)分当1x 2<-时,当11x 22-≤≤时,当1x 2>时三种情况,分别求解不等式,综合可得答案; (Ⅱ)当a ,b M ∈时,22(a 1)(b 1)0-->,即2222a b 1a b +>+,配方后,可证得结论. 【考点】绝对值不等式的解法。
华南农业大学 数学2 试卷
2 SX n1 1 SY2 n2 1 1 1 n1 n2 2 n1 n2
服从(
D
)
2
A 自由度为 n1 n2 1的 t 分布 C 自由度为 n1 n2 1的 t 分布
A
n 1
B 自由度为 n1 n2 2 的 t 分布 D 自由度为 n1 n2 2 的 t 分布
y bx a ,在计算公式 a bX Lxy 6、求随机变量 Y 与 X 的线性回归方程 Y b L xx
中, Lxx xi x
i 1 n
2
, Lxy
1
。
二、单项选择题(每小题 2 分,共 2¥6=12 分)
1、设 A,B 是两个随机事件,则必有( )
7、 某厂生产某种产品使用了 3 种不同的催化剂 (因素 A) 和 4 种不同的原料 (因 素 B) ,各种搭配都做一次试验测得成品压强数据。由样本观察值算出各平方 和分别为:SSA=25.17,SSB=69.34,SSE=4.16,SST=98.67,试列出方差分析 表, 据此检验不同催化剂和不同原料在检验水平 =0.05 下对产品压强的影响 有没有统计意义? ( F0.05 (2,6) 5.14, F0.05 (3,6) 4.76, F0.05 (4,6) 4.53 )
五、综合实验(本题 8 分,开卷,解答另附于《数学实验报告》中)
6
华南农业大学期末考试试卷(A 卷)
2006 学年第二学期
考试类型: (闭卷) 学号 题号 得分 评阅人 一 姓名 二 三 四
考试科目:
应用数学(解答)
考试时间:120分钟 年级专业 五 总分
11学年第二学期大学数学2试卷(A卷)-参考答案
2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3. 518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分) 则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分)(2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分) 2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为 (5分) (3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分)3. 解(1)111011{1}{11}12x x P X P X e dx e dx e ---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20x x F y P X y P X dx dx --=<=<== (8分)所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他(3分)(2){}(,)y x P Y X f x y dxdy <<=⎰⎰3300[]x y edy dx -=⎰⎰ (6分) 330(1)x e dx -=-⎰3390181()333xx e e --=+=+()9183e -=+ (8分)(3)解:由密度函数可知~(0,3),~(3)X U Y E (10分) 所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+= (14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分) 依题意,取统计量:222(1)~(1)n S n χχσ-=-,15n =. (3分) 查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分) 计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86y x =-+ (8分)。
2016年-2017年普通高等学校招生全国统一考试数学文试题(全国卷2,参考版解析)
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
中国农业大学高数(A)期中考试带答案解析2016-17
中国农业大学2016~2017学年秋季学期(2017.01) 高等数学A (上)试题(A 卷)参考答案一、填空题(本题共有5道小题,每小题3分,满分15分),请将答案填在横线上 . 1. 0ln(1)lim1cos x x x x→+-= 2 .2. 设函数2()5x f x e =+,则函数()f x 的微分dy =22xe dx .3. 函数()f x 在区间(,)a b 内可导,则在(,)a b 内()0f x '>是函数()f x 在区间(,)a b 内单调增加的 充分 条件.4. 不定积分s sin co x x e dx ⎰= s co x e C -+.5. 广义积分220(1)xdxx +∞=+⎰12.二、单项选择题(本题共有5道小题,每小题3分,满分15分),请将答案填在括号内.1. 当0x →时,变量211sin x x是 ( D ).(A) 无穷小 (B) 有界但不是无穷小量 (C) 无穷大 (D) 无界但不是无穷大2. 若在(,)a b 内函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( D ).(A) 单调减少,曲线是凹的 (B) 单调减少,曲线是凸的 (C) 单调增加,曲线是凹的 (D) 单调增加,曲线是凸的 3. 设()F x 是连续函数()f x 的一个原函数,则必有 ( B ).(A) ()F x 是奇函数⇔()f x 是偶函数 (B) ()F x 是偶函数⇔()f x 是奇函数 (C) ()F x 是周期函数⇔()f x 是周期函数 (D) ()F x 是单调函数⇔()f x 是单调函数4. 设()f x 是[ 1 , 1]-上连续的偶函数,则[1(sin )]xf x dx ππ-+⎰= ( C ).(A)2π(B) π ( C) 2π ( D) 0 5. 设()f x 与()g x 在[0,1]上连续且()()f x g x ≤,则对任意(0,1)C ∈有 ( D ).(A) 1122()()CCf t dtg t dt ≥⎰⎰ (B)1122()()CCf t dtg t dt ≤⎰⎰(C)11()()CCf t dtg t dt ≥⎰⎰ (D)11()()CCf t dtg t dt ≤⎰⎰三、求解下列各题(本题共有3道小题,每小题6分,满分18分). 1. 求极限0(1)lim sin xt x e dt x x→-⎰解:02(1)(1)lim limsin xxt t x x e dt e dt x xx →→--=⎰⎰ 01lim 2x x e x →-= 01lim 22x x e →-==-.2. 设2cos 4sin x t y t =⎧⎨=-⎩,求22d ydx .解:4cos 2cot 2sin dy t t dx t -==-, 22232csc 12sin sin d y t dx t t -==-, 3. 求微分方程440y y y '''-+=的通解. 解:特征方程为2440r r -+=,解得1,22r =,所以微分方程的通解212()x Y C C x e =+. 四、(本题满分10分))求2 22 1()()x t f x x t e dt -=-⎰的单调区间与极值.解:22222222111()()x x x t t t f x x t edt xedt tedt ---=-=-⎰⎰⎰,221()2x t f x x e dt -'=⎰,令()0,10,1f x x x x '==-==得 , ,故在(, 1][0 , 1]-∞-上()0f x '<,所以()f x 在(, 1][0 , 1]-∞-上单调减少, 在[ 1 , 0][1, +)-∞上()0f x '>, 所以()f x 在[ 1 , 0][1, +)-∞上单调增加.所以,11x x =-=, 为()f x 的极小值点,极小值为 (1)0f ±=;0x =为()f x 的极大值点,极大值为11(0)(1)2f e -=-.五、(本题满分10分)已知sin xx是()f x 的一个原函数,求3()x f x dx '⎰. 解:根据条件,有2sin cos sin ()x x x xf x x x '-⎛⎫== ⎪⎝⎭, 所以,3()x f x dx '⎰333()()()x d f x x f x f x dx ==-⎰⎰32()3()x f x x f x dx =-⎰32sin ()3()xx f x x d x=-⎰ 22sin 2sin cos sin 3()x x xx x x x x dx x x=---⎰ 2cos 4sin 6cos x x x x x C =--+ 六、(本题满分10分)设连续函数()y f x =满足方程20()2()x f x f t dt x +=⎰,求()f x . 解: 方程两边同时求导得:()2()2f x f x x '+=,或x y y 22=+')2()(22C dx xe e x f dxdx +⎰⎰=⎰-)2(22C dx xe e x x +=⎰-))((22C e d x e x x +=⎰-)(222C dx e xe e x x x +-=⎰-))2(21(222C x d e xe e xx x +-=⎰- )21(222C e xe e x x x +-=-x Ce x 221-+-=,由题意知, (0)0f =,12C =,所求函数为x e x x f y 22121)(-+-==.七、(本题满分12分)求由22y x x =-,3x =与x 轴在03x ≤≤所围成的平面图形的面积,并求该图形绕y 轴旋转一周所得旋转体的体积.解:2222104(02)(2)3S x x dx x x dx =-+=-=⎰⎰. 32224(2)3S x x dx =-=⎰, 所以12448333S S S =+=+=.平面图形1S 绕y 轴旋转一周所得的体积为:221118(1(13V dy dy πππ--=-=⎰⎰,平面图形2S 绕y 轴旋转一周所得的体积为:232204333(16V dy πππ=⋅⋅-+=⎰, 旋转体的体积为1284359366V V V πππ=+=+=,或22210082()2(2)3V xf x dx x x x dx πππ==-=⎰⎰,332222432()2(2)6V xf x dx x x x dx πππ==-=⎰⎰, 旋转体的体积为1284359366V V V πππ=+=+=.八、 (本题满分10分)设函数()f x 在[,]a b 上连续,(,)a b 内可导,且|()|f x M '≤,()0f a =,求证2()()2b aMf x dx b a ≤-⎰. 解:设2()()()2x aMF x f t dt x a =--⎰, 则 ()()()F x f x M x a '=--,()()0F x f x M '''=-≤,又()0F a '=,所以,()0F x '≤,且()0F a =,推出,()0F x ≤,所以()0F b ≤, 即2()()2b aMf x dx b a ≤-⎰.。
华南农业大学大学数学期末考试试卷 2011至2012学年第1学期
华南农业大学期末考试试卷(A 卷)2011-2012学年第 1 学期 考试科目: 大学数学Ⅰ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、选择题(本大题共 5 小题,每小题 3 分,共 15 分) 1. 当0x →时,与x 是等价无穷小的是( ).A .B . 2(1)x x + C . ln(1)x + D .1-2.10sin lim (1)limxx x x x x-→→∞++=( ).A . 11e -+B . 1e +C . eD . 1e -3.已知方阵33()ij A a ⨯=的第1行元素分别为111=a ,212=a ,113-=a ,且知A 的伴随矩阵*732537425A --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则A =( ). A . 0 B . -1 C . 1 D . 以上答案都不对4. 设,,A B C 都是n 阶方阵,且0A ≠,则下列命题中不正确的是( )A . 若AB =0,则B =0. B . 若BA =CA ,则B =CC . 若A B C A =,则B C =. D . 若0AB =,则0B = 5. 若方阵A 的行列式0=A ,则( ) A . A 的行向量组和列向量组均线性相关B . A 的行向量组线性相关,列向量组线性无关C . A 的行向量组和列向量组均线性无关A二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1. 函数()y y x =由参数表达式sin ,cos t t x udu y udu==⎰⎰确定,则一阶导数dy dx=________ ___.2. 设2()231f x x x =+-在[1,5]上满足拉格朗日中值定理的条件,则其中使该定理成立时的ξ= ___.3. 微分方程23x yy e +'=的通解为__________________________.4. 设arctany z x=,则dz =__________________________.5. 若()110,,I dx f x y dy -=⎰⎰则交换积分次序后得I =__________________.6. 若矩阵X 满足21125324X ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭,则X= .三、 解答题(本大题共 8 小题,第1~6小题每小题 6 分,第7, 8小题每小题 7分,共50分)1.求极限1ln 1lim .arc cot x x x →+∞⎛⎫+ ⎪⎝⎭2. 求隐函数1yy xe=+的二阶导数.y ''3. 求不定积分2223x dxxx +++⎰.4. 求广义积分20xxedx+∞-⎰.5. 设()21,yz xy =+求,zz xy ∂∂∂∂.6. 计算二重积分22Dx d yσ⎰⎰,其中D 是由2,x y x ==和1xy =所围成的区域.7. 已知100110,021A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭131011,002B ⎛⎫⎪=- ⎪ ⎪⎝⎭求2T A B A -.8. 已知()03,3,1η'=-是线性方程组123123123441624x x x x kx x x x x ++=⎧⎪-++=⎨⎪-+=-⎩的一个特解,求该方程组的通解(用其对应的齐次线性方程组的基础解系表示).四、应用题(本大题共2小题,其中第1小题9分, 第2小题8分,共17分)1. 已知曲线2y x =,求(1) 曲线上当1x =时的切线方程;(2) 求曲线2y x =与此切线及x 轴所围成的平面图形的面积,以及其绕x 轴旋转而成的旋转体的体积x V .2. 试确定,,a b c 的值, 使32y x ax bx c =+++在点(1,1)-处有拐点,且在0x =处有极大值1,并求此函数的极小值.华南农业大学期末考试试卷(A 卷)2010-2011学年第 2 学期 考试科目: 大学数学Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共6小题,每小题2分,共12分)1. 设A 、B 、C 为三个随机事件,则A 、B 、C 都不发生可表示为 , A 、B 、C 中至少有一个发生可表示为 。
2017高等数学下精彩试题及参考问题详解
标准文档实用文案华南农业大学期末考试试卷(A卷)2016~2017学年第2 学期考试科目:高等数学AⅡ考试类型:(闭卷)考试考试时间:120 分钟学号姓名年级专业评阅人一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)zyx???的定义域为。
2. 设向量(2,1,2)a?,(4,1,10)b??,cba???,且ac?,则??。
3.经过(4,0,2)?和(5,1,7)且平行于x轴的平面方程为。
4.设yz ux?,则du?。
5.级数11(1)npn n????,当p满足条件时级数条件收二、单项选择题(本大题共5小题,每小题3分,共15分)1.微分方程2()'xyxyy??的通解是()A.2x yCe? B.22x yCe?C.22y yeCx? D.2y eCxy?2.求极限(,)(0,0)24lim xy xyxy????()A.14 B.12? C.14? D.123.直线:327xyzL???和平面:32780xyz?????的位置关系是()A.直线L平行于平面? B.直线L在平面?上得分得分2C.直线L垂直于平面? D.直线L与平面?斜交4.D是闭区域2222{(,)|}xyaxyb???,则22D xyd?????()A33()2ba?? B332()3ba?? C334()3ba?? D 333()2ba??5.下列级数收敛的是()A11(1)(4)n nn????? B2111n nn????? C? D11n1121n n???三、计算题(本大题共7小题,每小题7分,共49分)1. 求微分方程'x yye??满足初始条件0x?,2y?的特解。
2. 计算二重积分22D xydxdyxy????,其中22{(,)1,1}Dxyxyxy?????。
3.设(,)zzxy?为方程2sin(23)43xyzxyz?????确定的隐函数,求zzxy?????。
华农-17-18年第1学期高等数学上试卷及答案修改版本80学时
华南农业大学期末考试试卷(A 卷)2017~2018学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分) 1.函数1lg(3)y x =+-的定义域是 。
2.设arctan y =dy = 。
3.3sin 0lim(1)xx x →+= 。
4.定积分222||2x x dx x -++⎰= 。
5.反常积分221(ln )dx x x +∞⎰= 。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.当0x →时,sin x x -是2x 的 ( )A .高阶无穷小B .低阶无穷小C .等价无穷小D .同阶但非等价无穷小 2.曲线2sin y x x =+在点(,1)22ππ+处的切线方程为 ( )A .1y x =-B .2y x π=+C .1y x =+D .12y x π=++3.设在[0,1]上,''()0f x <,则下列选项正确的是 ( )A .'(1)'(0)(1)(0)f f f f <<-B .'(1)(1)(0)'(0)f f f f <-<C .(1)(0)'(1)'(0)f f f f -<<D .'(0)(1)(0)'(1)f f f f <-<4.设()f x 的一个原函数是cos x ,则'(2)xf x dx =⎰ ( )A .11sin 2cos 224x x x C -+B .11sin 2cos 224x x x C --+C .11cos 2sin 224x x x C -+D .11cos 2sin 224x x x C --+5.设()f x 为连续函数,则下列函数为偶函数的是 ( )A .0[()()]x t f t f t dt --⎰ B .20[()]x tf u du dt ⎰⎰C .0sin [()()]x x f t f t dt ⋅--⎰ D .20()xf t dt ⎰三、计算题(本大题共7小题,每小题7分,共49分)1. 求极限 1[(1)]lim x x x e →∞-。
2016年高考文科数学全国卷2(含详细答案)
数学试卷 第1页(共33页) 数学试卷 第2页(共33页) 数学试卷 第3页(共33页)绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、辽宁、新疆、内蒙古、青海、甘肃、重庆、陕西、西藏本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共6页.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4. 作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}123A =,,,{}2|9B x x =<,则A B =( ) A. {2,1,0,1,2,3}--B. {2,1,0,1,2}--C. {1,2,3}D. {1,2}2. 设复数z 满足3z i i +=-,则=z ( )A. 12i -+B. 12i -C. 32i +D. 32i -3. 函数()sin y A x ωϕ=+的部分图像如图所示,则A. 2sin(2)6y x π=-B. 2sin(2)3y x π=-C. 2sin()6y x π=+D. 2sin()3y x π=+4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A. 12πB. 323πC. 8πD. 4π5. 设F 为抛物线C :24y x =的焦点,曲线0ky k x =>()与C 交于点P ,PF x ⊥轴,则=k( )A.12 B. 1 C. 32D. 26. 圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则=a( )A. 43-B. 34-C.D. 27. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积( )A. 20πB. 24πC. 28πD. 32π8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 ( )A. 710B. 58C. 38D. 3109. 中国古代有计算多项式值得秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的2x =,2n =,依次输入的a 为2,2,5,则输出的s = ( )A. 7B. 12C. 17D. 3410. 下列函数中,其定义域和值域分别与函数lg 10x y =的定义域和值域相同的是 ( )A. y x =B. lg y x =C. 2x y =D. 1y x=11. 函数() = cos26cos()2f x x x π+-的最大值为( )A. 4B. 5C. 6D. 712. 已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图象的交点为11x y (,),22x y (,),…,m m x y (,),则1mi i x =∑=A. 0B. mC. 2mD. 4m姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共6页) 数学试卷 第5页(共6页) 数学试卷 第6页(共6页)第Ⅱ卷本卷包括必考题和选考题两部分.第13~12题为必考题,每个试题考生都必须作答.第22~24为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分. 13. 已知向量a ()4m =,,b ()32=-,,且a ∥b ,则m =________.14. 若x ,y 满足约束条件10,30,30,x y x y x -++--⎧⎪⎨⎪⎩≥≥≤则2z x y =-的最小值为________.15. ABC ∆的内角A B C ,,的对边分别为a b c ,,,若4cos 5A =,5cos 13C =,1a =,则b =________.16. 有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)等差数列{}n a 中,344a a +=,576a a +=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]0=,[2.6]2=.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(Ⅰ)记A 为事件:“一续保人本年度的保费不高于基本保费”。
高等数学下试题及参考答案
华南农业大学期末考试试卷(A 卷)2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.二元函数2ln(21)z y x =-+的定义域为 。
2. 设向量(2,1,a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。
3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。
4.设yz u x =,则du = 。
5.级数11(1)np n n∞=-∑,当p 满足 条件时级数条件收敛。
二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()x yx y y +=的通解是( )A .2x y Ce =B .22x y Ce =C .22y y e Cx =D .2y e Cxy = 2.求极限(,)(0,0)limx y →= ( )A .14 B .12- C .14- D .123.直线:327x y zL ==-和平面:32780x y z π-+-=的位置关系是 () A .直线L 平行于平面π B .直线L 在平面π上C .直线L 垂直于平面πD .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤,则Dσ=( )A .33()2b a π-B .332()3b a π-C .334()3b a π-D .333()2b a π-5.下列级数收敛的是( )A .11(1)(4)n n n ∞=++∑ B .2111n nn ∞=++∑ C .1121n n ∞=-∑ D.1n ∞=三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特解。
2. 计算二重积分22Dx ydxdy x y++⎰⎰,其中22{(,)1,1}D x y x y x y =+≤+≥。
华南农业大学2015-2016数学分析BII参考答案
一、填空题1.x e x sin -2.2ln3.2sin 2x xe x4.3325.[]2,0 二、计算题(1)解:⎰xdx arctandx x x x x ⎰+-=21arctan ………………………………………………………….2分 ()2211121arctan x d xx x ++-=⎰…………………………………………….….4分 ()C x x x ++-=21ln 21arctan …………………………………………………...6分 (2)解:dx x ⎰-1 0 21 令⎪⎭⎫ ⎝⎛≤≤=20sin πt t x ,则 tdt t dx x ⎰⎰-=-2 0 21 0 2cos sin 11π……………………………………………3分 dt t ⎰+=2 02cos 121π…………………………………………………4分 42sin 212120ππ=⎪⎭⎫ ⎝⎛+=t t ………………………………………….6分 (3)解:⎰dx e e x x sin 2 ()x x x x e t tdt t e d e e ===⎰⎰sin )(sin ………………………………………….2分 C t t t ++-=sin cos …………………………………………………………….4分 C e e e x x x ++-=sin cos ……………………………………………………....6分(4)dx e x ⎰+1 0 11 dx e e e xxx ⎰+-+=1 0 11………………………………………………………………2分 dx e e dx x x ⎰⎰+-=10 10 1………………………………………………………….4分 e++=12ln 1……………………………………………………………………6分 (5)求心形线)cos 1(2θ+=r 的周长解:θθθππd d r r s ⎰⎰+=+= 0 2 0 22)cos 1(82'……………….…….3分 θθπd ⎰= 0 2cos 8……………………………………………………………...5分 16=………………………………………………………………………….6分(6)求由內摆线20),0(sin ,cos 33π≤≤>==t a t a y t a x 绕x 轴旋转所得旋转曲面的面积解:()()⎰+-=2022223cos sin 3sin cos 3sin 4ππdt t t a t t a t a S ……..3分 ⎰=2042cos sin 12ππtdt t a ……………………………………………………5分2512a π=……………………………………………………………………...6分 (7)解:令1-=x u du udx x p p ⎰⎰+∞+∞=-121)1(1……..3分 所以1>p 时,反常积分收敛…………………………………………5分1≤p 时,反常积分发散……………………………………………………...6分 (8)求由曲线sin y x =(0)2x π≤≤, 1y =以及0x =所围成的平面图形绕x 轴旋转而成的旋转体的体积. 解:22(1sin )dV x dx π=-220(1sin )V x dx ππ=-⎰ …………………(4分) 2220cos 4xdx πππ==⎰ ……………………(6分)三、令x x x f sin )(=,2sin cos )('xx x x x f -=, x x x x g sin cos )(-=,0,0sin )('><-=x x x x g)(x g 是单调递减函数,当0>x 时,0)0()(=<g x g ,所以0)('<x f .)(x f 在0>x 上是单调递减的,当20π<<x 时,有1)0()()2(2=<<=f x f f ππ…………………………………………………………4分 有定积分性质有2sin 120ππ<<⎰dx x x ……………………………………………………………………..7分四、(1)12112lim lim 2<=+=∞→∞→n n u nn n n n ………………………………………………..5分 因此级数是收敛的。
高等数学下试题及参考答案华南农业大学
华南农业大学期末考试试卷(A 卷)2013~2014学年第2学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号姓名年级专业一、填空题(本大题共5小题,每小题3分,共15分) 1.微分方程'ln xy y y =的通解。
2.设有向量(4,3,0)a =,(1,2,2)b =-,则数量积a b ⨯=。
3.过点(-1,1,0)且与平面3+2-130x y z -=垂直的直线方程是。
4.设2sin()z xy =,则zy∂=∂。
5.交换积分次序2220(,)y ydy f x y dx ⎰⎰。
二、单项选择题(本大题共5小题,每小题3分,共15分) 1.设L 为直线0,0,1x y x ===及1y =所围成的正方形边界,取正向,则322()()Lx xy dx x y dy +++⎰等于()A .1-B .1C .12D .142.已知a i j k =++,则垂直于a 且垂直于x 轴的单位向量是() A .()i k ±-B .()2j k ±-C .()2j k ±+D.()2i j k ±-+ 3.设ln z xy=(),则11x y dz===()A .dy dx -B .dx dy +C .dx dy -D .04.对于级数1(1)np n n∞=-∑,有()A .当1p >时条件收敛B .当1p >时绝对收敛C .当01p <≤时绝对收敛D .当01p <≤时发散 5.设10(1,2,)n u n n≤<=,则下列级数中必定收敛的是() A .1n n u ∞=∑B .1(1)nn n u ∞=-∑C.1n ∞=.21(1)n n n u ∞=-∑三、计算题(本大题共7小题,每小题7分,共49分) 1.计算二重积分a r c t a n Dyd x σ⎰⎰,其中D 是22{(,)10}x y x y y x +≤≤≤,。
华农往年试卷题
华农往年试卷题 一、填空题 1. 幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R = 。
2. 幂级数21121n n x n +∞=+∑的收敛域为___________,和函数为________________.3.≤______及___________判别法可知1n ∞=在区间__________上一致收敛.4. ()()12x xf x e e -=-在0x =处的泰勒展开式为___________________________,该展开式的收敛域为________________________.5. 设函数21 ,0()1 ,0x f x x x ππ--<≤⎧=⎨+<≤⎩,则其以2π为周期的傅立叶级数在点x π=处收敛于 。
6. 1220lim 1a dxx ααα+→=++⎰_______________.二、判断题1. 设n n n a c b ≤≤,且数项级数n a ∑与n b ∑都收敛,则n c ∑一定收敛. ( )2. 在级数n u ∑的项中任意加括号,不改变级数的敛散性. ( )3. 设函数列(){}n f x 在[],a b 上一致收敛,且对任意n N ∈,()n f x 都是[],a b 上的可微函数,则()n f x '在[],a b 上也一致收敛. ( )4. 若数项级数n a ∑与n b ∑都收敛,则()2n n a b +∑一定收敛 。
( ) 5. 若11n nu u +≥,1,2,n =,则级数n u ∑发散。
( )6. 设n u ∑为正项级数 ,且11n nu u +<,则n u ∑收敛。
( ) 7. 设幂级数1n n n a x ∞=∑在区间I 上收敛于函数()f x ,且对一切n N ∈都有0n a ≠,则()f x 既不是奇函数也不是偶函数。
( )二、计算题1. 设40sin cos (0,1,2,)nn I x xdx n π==⎰,求级数0n n I ∞=∑的和。
华南农业大学2015-2016数学分析BII试卷
华南农业大学期末考试试卷(A 卷)2015-2016学年第 2 学期 考试科目: 数学分析BII 考试类型:(闭卷)考试 考试时间: 120 分钟学号__________姓名____________年级__________专业__________一、 填空题(本大题共 5 小题,每小题 3分,共 15 分) 1.设x e x sin +是)(x f 的一个原函数,则=)('x f __________2.=⎪⎭⎫ ⎝⎛+++++∞→n n n n 212111lim L __________ 3.=⎰tdt e dx d x tsin 20__________ 4.由抛物线x y =2与直线032=--y x 所围成平面图形面积等于__________5. 级数∑∞=-12)1(n nn x 的收敛域为__________二、解答题(每题6分,共48分)⎰xdxarctan )1(dx x ⎰-121)2(⎰dx e e x x sin )3(2 dx e x⎰+10 11)4((5)求心形线)cos 1(2θ+=r 的周长(6)求由內摆线20),0(sin ,cos 33π≤≤>==t a t a y t a x 绕x 轴旋转所得旋转曲面的面积(7)讨论反常积分dx x p⎰+∞-2)1(1是否收敛,若收敛求其值.(8)求由曲线sin y x =(0)2x π≤≤, 1y =以及0x =所围成的平面图形绕x 轴旋转而成的旋转体的体积.三、证明不等式2sin 120ππ<<⎰dx x x (本题7分)四、判断下列级数的敛散性(每题6分,共12分)∑∞=⎪⎭⎫ ⎝⎛+1212)1(n nn n ∑∞=1!)2(n n n n n a (0>a )五、求下列幂级数的收敛域并求出和函数(本题10分) ∑∞=⋅14n n nn x六、求函数())1ln(1x x --在0=x 处的幂级数展开式(本题8分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 华南农业大学期末考试试卷(A 卷)
2016-2017学年第 2 学期 考试科目:大学数学2 考试类型:(闭卷)考试 考试时间: 120 分钟
学号 姓名 年级专业________________________
一、选择题(每题3分,共计18分)
1. 设A 、B 为相互独立,()0,()0P A P B >>,则()P A B =( )。
(A) 1()()P A P B - (B) 1()()P A P B + (C) ()()P A P B + (D) 1()P AB -
2. 随机变量X 的密度函数为()f x ,且()()f x f x -=,()F x 是X 的分布函数,
则对任意实数a 有( )
(A) 0()1()a
F a f x dx -=-⎰ (B) 0
1
()()2a F a f x dx -=
-⎰ (C) ()()F a F a -= (D) ()2()1F a F a -=-
3. 二维随机变量(,)X Y 的分布函数为(,)F x y ,则下列不正确的为( )
(A) (
,)
(,)F x y P X x Y y =≤≤ (B) (,)0F y -∞= (C) (,)0F -∞-∞= (D) (,)1F y +∞= 4. 设随机变量X 、Y ,下列( )选项是正确的
(A) ()()()D XY D X D Y = (B) ()()()E XY E X E Y =
2 (C) ()()()E X Y E X E Y +=+ (D) ()()()D X Y D X D Y -=- 5. 若样本12
,n X X X 来自于正态分布总体2(,)N μσ,其中标准差σ已知,则
对于均值μ的置信度为1α-的区间估计为( )
(A) 2
2
[((X t n X t n αα--+-
(B) 2
2
[X X α
αμμ-+
(C) 2
2
[X u X u α
α
-+
(D) [X u X u α
α
-+
6. 若样本12
,n X X X 来自于正态分布总体2(,)N μσ,其中期望μ已知,在假
设检验20:16H σ=与21:16H σ≠中,使用的检验统计量为( )
(A)
2
2
1
16
n
i
i X
μ
=-∑ (B)
2
1
()
16
n
i
i X
μ=-∑
(C)
2
1
()
16
n
i
i X
X =-∑ (D)
22
1
16
n
i
i X
X =-∑
二、填空题(每空3分,共计18分)
1. 已知()P A =0.5,()P B =0.6,(|)P B A =0.8,则()P A B =______________
2. 设随机变量X 服从泊松分布(2)P ,则(2)P X ≤=_____________
3. 连续型随机变量的分布函数2
2
0()00
x a be
x F x x -
⎧⎪+≥=⎨⎪<⎩
,则a =___ _______
b=____________
4. 假设~(1,4)X N -(正态分布),~(2)Y E (指数分布),且,X Y 相互独立,
则(2)D X Y -= _________ 5. 样本12
,n X X X 来自于正态分布总体2(,)N μσ,则样本均值X 服从
___________________ (具体参数及分布)
3
三、计算题(每题8分,共计48分)
1. 中国有两支球队上海上港队和广州恒大队参与亚冠联赛,根据数据分析知,上海
上港队夺冠的概率为0.92,广州恒大队夺冠的概率为0.93。
假设两队夺冠事件不
独立。
在上海上港队失利的条件下,广州恒大队夺冠的概率为0.85,问在广州恒大队失利的条件下,上海上港队夺冠的概率为多少?
2. 已知随机变量X 的密度函数为0()0
x
X e x f x x -⎧≥=⎨
<⎩
(1) 求X 的分布函数
(2) 求X
Y e =的概率密度函数
4 3. 设随机变量(,X Y )的联合概率密度函数为
2
0,0(,)(1)0x xe x y f x y y else
-⎧>>⎪
=+⎨⎪⎩
(1) 求边缘概率密度函数(),()X Y f x f y (2) 判断,X Y 的相互独立性
4. 人寿保险(某一年龄段),在一年的保险期内,每个被保险人需要缴纳保费为a
元,若被保险人意外死亡则保险公司赔付300000元,若被保险人出现非意外死亡则赔付100000元,经统计该年龄段一年内意外死亡的概率为1/10000,非意外死亡的概率为2/10000,保险公司收取的保费a 元需满足什么条件,才能使得保险公司不亏本?
5 5. 设12,n X X X 为来自总体X 的一个样本,其密度函数为
101
()0
x x f x else θθ-⎧<<=⎨
⎩ 求参数θ的矩估计
6. 假设NBA 球星詹姆斯的每场得分服从正态分布2(,)N μσ,2,μσ均未知,现在
随机抽取其16场比赛得分,数据在下表中,其均值为25.625,标准差为7.42
(1) 求其每场平均得分的置信度为95%的置信区间
(2) 假设0H 詹姆斯的每场得分的数学期望为26.5分,请对上述假设进行检验并
解释检验结果(0.10α=)
0.0250.0250.050.05(15) 2.131,(16) 2.120,(15) 1.753,(16) 1.746t t t t ====
6
四、应用题(每题8分,共计16分)
1. 为考察衣服中含棉量与衣服的拉伸力度是否有关系,研究员选择五种不同
含棉量,每种含棉量均挑选五件衣服来进行拉伸测试,共进行了25次试验。
试验数据结果经处理后,得到方差分析表,其中临界值则为0.05α=对应F
分布的临界值
(1)请将方差分析表中数据填写完整。
(2)请写出该试验的假设检验的原假设与备择假设
2. 为了解某纤维材料浓度(x )和缩醛化度(y )之间的相关关系,共做了10次试验
(,)i i x y ,1,210i =,将x 与y 建立回归方程为01y x ββ=+ (1) 请写出01,ββ的数学表达式
(2) 对于回归方程采用F 检验的结果如下表,其中临界值为0.05(1,8) 5.32F =,
请判断该检验结果是否说明x 与y 之间存在线性关系并说明理由。