光学超材料吸收器

合集下载

基于超材料的宽带高吸收率吸波器研究

基于超材料的宽带高吸收率吸波器研究

波 器 在 x 波 段 雷 达 、电磁 隐 身 等 方 面 有 着 巨大 的 潜 在 应 用 。
ห้องสมุดไป่ตู้
关 键 词 :超 材 料 吸 波 器 ;宽 频 带 ;高 吸 收 率 ;集 总 电 阻
中 图 分 类 号 :TN972+.44
文 献 标 识 码 :A
DOI:10.16157/j.issn.0258—7998.171412
high absorption rate for incident wave wjtl1 wide incidence angle.Finally,the a b sorption mechanism is analyzed by using the sur-
face current and electric field distribution of the absorber.The broadband high absorption metamaterial absorber this paper designed has a huge potential application in the X band radar, electr o magnetic stealth and SO on. Key WOrds: metamaterial absorber;broadband;high ab sor ption;lumped resistance
中文 引 用 格 式 :于榭 彬 ,宋 耀 良 ,范 事成 .基 于超材 料 的宽 带 高吸 收率 吸 波器 研究 【J】.电子技 术 应用 ,2017,43(12):89—91,95. 英 文 引 用 格 式 : Yu Xiebin,Song Yaoliang,Fan Shicheng.Research on broadband and high absorption absorber based Oil metamate‘ rial[J].Application of Electronic Technique,2017,43(12):89—91,95.

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》范文

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》范文

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》篇一一、引言随着科技的发展,太赫兹波在通信、生物医学和安全检测等领域的应用越来越广泛。

超材料吸收器作为太赫兹波应用的关键技术之一,其性能的优化和调控成为研究的热点。

本文提出了一种基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器,旨在通过材料的独特性质实现吸收器的性能优化和可调谐性。

二、石墨烯和二氧化钒的特性1. 石墨烯:石墨烯是一种由单层碳原子构成的二维材料,具有优异的电学、热学和力学性能。

在太赫兹波段,石墨烯具有较高的电导率和可调谐的电学性质,使得其成为超材料吸收器的理想材料。

2. 二氧化钒:二氧化钒是一种相变材料,在特定温度下会发生金属-半导体相变。

在太赫兹波段,二氧化钒的电学性质可调,且具有较高的光学透过率,使其成为超材料吸收器中可调谐元件的理想选择。

三、太赫兹可调谐超材料吸收器的设计本文设计的太赫兹可调谐超材料吸收器以石墨烯和二氧化钒为主要材料,通过将二者结合,实现吸收器的可调谐性。

设计过程中,我们采用了周期性排列的金属-介质-金属结构,其中介质层采用石墨烯和二氧化钒的复合材料。

通过调整石墨烯的电导率和二氧化钒的相变温度,实现吸收器的太赫兹波段的可调谐性。

四、吸收器性能的仿真与分析我们采用时域有限差分法对所设计的太赫兹可调谐超材料吸收器进行仿真分析。

仿真结果表明,该吸收器在太赫兹波段具有较高的吸收率和可调谐性。

通过调整石墨烯的电导率和二氧化钒的相变温度,可以实现吸收峰的频率移动和吸收强度的调节。

此外,该吸收器还具有较高的光学透过率和较低的反射率,有利于提高太赫兹波的应用效率。

五、实验验证与性能优化为了验证仿真结果的准确性,我们进行了实验验证。

通过制备基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器样品,并对其性能进行测试。

实验结果表明,该吸收器具有良好的可调谐性和较高的吸收率,与仿真结果基本一致。

为了进一步提高吸收器的性能,我们进一步优化了金属-介质-金属结构的尺寸和排列方式,以及石墨烯和二氧化钒的复合比例。

超材料的光学性质和应用前景

超材料的光学性质和应用前景

超材料的光学性质和应用前景超材料是一类具有特殊结构的材料,其结构尺度远小于光波长,具有反常的光学性质,可以用于改变光的传播方向、波长和极化等。

因此,超材料在光通信、光电子学、生物医学和能源等领域具有广阔的应用前景。

本文将从超材料的光学性质和应用前景两个方面对其进行探讨。

一、超材料的光学性质超材料的光学性质是由其特殊结构所决定的,即由小尺度结构组成的大尺度材料。

因此,超材料可以作为一种介电常数和磁导率均不为零的人造材料,来控制光的波动方向和极化方向。

1.负折射率超材料具有负折射率,是由其微观结构决定的。

实际上,自然界中的材料均具有正折射率,而超材料却具有负折射率。

当光线进入超材料时,其经过折射后反方向弯曲,即表现为向前传输的光线看起来像是从后面追上来的。

这种光学现象,称为反向法拉第效应,可以实现在纳秒时间尺度内将光线压缩。

2.色散补偿颜色是由光的波长决定的,而不同波长的光线在经过材料时会发生不同的色散。

超材料通过特定的结构设计,可以实现对色散的补偿。

这种色散补偿有助于提高光通信中的通信带宽,也有利于生物医学中的成像。

3.光学吸收超材料对特定波长的光线也有极强的吸收效应,能够将光线的能量转换为热能,从而实现对光谱的调控。

此外,由于超材料对光的吸收能力可以被微观结构所控制,因此,它还可以在太阳能电池和超级电容器等领域得到广泛应用。

二、超材料的应用前景1.光通信超材料可以帮助光波在传输过程中实现更快速、更稳定的信号传输。

超材料元器件还可以用于传输和处理光信号的传感器。

此外,超材料还可以用于光学无源器件的制造,从而实现更高性能的光网络,提高通信的可靠性和灵敏度。

2.生物医学超材料在生物医学中的应用主要体现在成像和治疗方面。

超材料可以制造出高分辨率的显微镜和医学成像设备,对体内组织的生物学和化学变化进行精确定位,并开发出定向送药系统和糖尿病监测器等更智能、便携和低成本的医学设备。

3.能源领域超材料通过在太阳能电池和超级电容器等能源领域应用,可以提高光电子设备的能量转换和存储效率。

超材料在光学领域中的应用研究

超材料在光学领域中的应用研究

超材料在光学领域中的应用研究随着科技的不断进步,超材料作为一种新兴材料,已经引起了科学家们的广泛关注。

超材料具有一些普通材料所没有的特殊性质,这使得它在光学领域中具有广泛的应用前景。

本文将介绍超材料在光学领域中的应用研究。

首先,超材料在光学透镜方面的应用已经取得了重要进展。

传统的透镜受到折射率的限制,而超材料透镜可以通过调整其结构来实现对光的折射率的精确控制。

这使得超材料透镜可以实现更高的分辨率和更大的焦距范围。

此外,超材料透镜还可以实现对光的聚焦和分散,从而在光学成像和光谱分析等领域中发挥重要作用。

其次,超材料在光学传感器方面的应用也备受关注。

传统的光学传感器通常依赖于材料的吸收、散射或发射等特性来实现对光信号的检测。

而超材料可以通过调整其结构和组分来实现对光信号的高度敏感性检测。

这使得超材料在生物传感、环境监测和光学通信等领域中具有广泛的应用前景。

例如,超材料传感器可以用于检测微量的生物分子,从而实现早期疾病的诊断和治疗。

此外,超材料在光学调制器方面的应用也具有重要意义。

光学调制器是一种用于调节光信号强度和相位的设备,广泛应用于光通信和光信息处理等领域。

传统的光学调制器通常依赖于电场或温度等外部因素来实现对光信号的调制。

而超材料调制器可以通过调整其结构和组分来实现对光信号的高度精确的调制。

这使得超材料调制器具有更快的响应速度和更高的调制深度,从而在光通信和光信息处理等领域中发挥重要作用。

最后,超材料在光学隐身技术方面的应用也备受关注。

光学隐身技术是一种通过调整材料的光学特性来实现对光信号的屏蔽和反射的技术。

传统的光学隐身技术通常依赖于材料的吸收或散射等特性来实现对光信号的屏蔽。

而超材料可以通过调整其结构和组分来实现对光信号的高度精确的屏蔽和反射。

这使得超材料在军事隐身和光学安全等领域中具有广泛的应用前景。

综上所述,超材料在光学领域中的应用研究具有重要意义。

超材料透镜可以实现更高的分辨率和更大的焦距范围,超材料传感器可以实现对光信号的高度敏感性检测,超材料调制器可以实现更快的响应速度和更高的调制深度,超材料隐身技术可以实现对光信号的屏蔽和反射。

cst超材料吸收率随入射角的变化光谱

cst超材料吸收率随入射角的变化光谱

cst超材料吸收率随入射角的变化光谱
CST超材料的吸收率随入射角的变化光谱取决于材料的特性
和结构。

一般来说,超材料的吸收率对入射角的变化是敏感的,并且可能出现吸收谷或吸收峰。

在某些情况下,当入射光的波长与超材料的结构周期匹配时,吸收峰可能出现。

这种现象被称为布拉格反射,类似于光在光栅上的反射。

当入射角变化时,布拉格反射的吸收峰位置会发生移动。

此外,超材料的吸收率还可能受到入射角的变化而发生调制。

具体来说,当入射角改变时,超材料的电磁响应也会发生变化,导致吸收率发生变化。

这种现象可以用来设计用于调制或调控光的器件。

需要注意的是,超材料的吸收率随入射角的变化光谱是一个复杂的问题,因为它涉及到材料的光学特性、结构设计以及入射光的频率和极化等因素。

因此,具体的光谱变化需要根据具体的超材料结构和特性进行分析和研究。

光学超材料的研究及其应用前景分析

光学超材料的研究及其应用前景分析

光学超材料的研究及其应用前景分析光学超材料是一种新兴的光学材料,具有很高的光学吸收率和折射率,同时还具有很强的色散性和非线性效应。

近年来,光学超材料的研究和应用得到了广泛的关注和研究。

本文将会从光学超材料的定义,结构与性质,研究现状以及未来的应用前景等方面逐一探讨。

一、光学超材料的定义光学超材料是由一系列微观结构组成的周期性介质,并且这些微观结构的周期与光波的波长相当。

其最重要的特点是在电磁波频率范围内具有可调控的折射率和吸收系数,从而能够实现对光的有效控制和调节。

二、光学超材料的结构与性质光学超材料一般采用的结构有二维和三维结构,其基本单元包括介电纳米颗粒、金属纳米颗粒、纳米线、纳米棒、纳米环等类型。

在这些基本单元的组合下,光学超材料可以实现对电磁波频率范围内的光的有效控制和调节。

其基本原理为:通过有效的设计和优化微观结构,可以实现对光的折射、反射、衍射、透明度、吸收率等性能的调控。

通过对材料结构的调节和控制,还可以实现在红外、可见光和紫外等波段的光学应用。

三、光学超材料的研究现状光学超材料的研究可以追溯到20世纪初,在近些年随着微纳加工技术的发展和计算机模拟方法的应用,光学超材料的研究和应用得到了极大的推动和发展。

同时,超材料在电子器件、微波光子学、激光技术和光导器件等领域的应用也逐渐增多。

目前,光学超材料的研究主要涉及到以下几个方面:1、光学超材料的制备与结构设计2、光学超材料的光学性质研究与模拟分析3、光学超材料的性能优化和改进4、光学超材料的应用研究和开发四、光学超材料的应用前景随着光学超材料的研究和应用得到了逐年增加的进展,其在通信、传感、化学和生物技术等领域的应用前景也逐渐浮现。

以下是几个有代表性的应用领域:1、光学传感:光学超材料可以用于制造更加灵敏的传感器,用于探测环境中的化学和生物分子等,同时还可以实现对信号的增强和加强噪声的抑制。

2、纳米电路:由于光学超材料的集成电路性能优越,可以用于制造更加高效、灵敏的电路,从而实现更高的效率和更高的准确性。

超材料在光学中的应用及其前景展望

超材料在光学中的应用及其前景展望

超材料在光学中的应用及其前景展望超材料是一种具有特殊于其组成材料的结构和性质的材料。

在光学领域中,超材料的应用前景非常广泛。

超材料在光学中的应用主要体现在光学设备的改进和新型光学器件的开发上。

一方面,超材料可以用于改进光学设备的性能。

例如,超材料可以用于改进光学透镜的成像质量。

传统的光学透镜受制于折射率的约束,无法在特定波长范围内实现完美成像。

而超材料可以通过合理设计的结构和元件,控制光的传播和折射,从而达到超分辨率的成像效果。

这种特性可以应用于医学成像、光学传感器和安防监控等领域,显著提高成像质量和定位精度。

另一方面,超材料还可以用于开发新型光学器件。

例如,超材料在红外光谱范围内表现出特异的介电常数和磁场响应,具有优秀的吸收和散射特性,可以用于开发高效率的红外探测器。

此外,超材料还可以应用于光学通信领域,通过控制光的传输特性,实现超短距离光波导器件和光电器件,提高通信速率和传输效率。

此外,超材料还可以应用于太阳能电池板的开发,提高太阳能电池的能量转换效率。

超材料在光学中的应用还远不止上述几个方面。

近年来,研究人员还取得了一系列超材料在光学领域中的新突破。

例如,通过结合金属纳米颗粒和堆叠二维材料,研究人员成功地制造出了一种具有负折射率的超材料,这种材料在光学成像和折射补偿方面具有巨大的应用潜力。

此外,研究人员还提出了一种基于碳纳米管和聚合物复合材料的超材料,可以在可见光范围内完全吸收光线,并将光能转化为热能,具有重要的太阳能热能利用潜力。

总的来说,超材料在光学中的应用前景非常广阔。

随着技术的发展和研究的深入,超材料在光学设备和光学器件方面的应用将会越来越广泛。

超材料的研究和开发有望为光学器件的性能提供新的突破,推动光学领域的创新发展。

高光学吸收性能材料的特性与应用分析

高光学吸收性能材料的特性与应用分析

高光学吸收性能材料的特性与应用分析引言高光学吸收性能的材料在各个领域具有广泛的应用前景。

通过对光学特性的调控和优化,这些材料能够实现高效的光吸收和光转换,用于太阳能电池、光催化、光电传感器等领域。

本文将重点探讨高光学吸收性能材料的特性以及它们在实际应用中的潜力。

一、光学吸收性能材料的定义和特性高光学吸收性能材料通常指的是那些能够高效地吸收入射光的材料。

其具有以下几个主要特性:1. 宽带吸收特性:高光学吸收材料能够在宽波长范围内吸收光线,从紫外到可见光再到红外光都具有很好的吸收能力。

2. 高吸收率:这些材料对入射光具有高吸收率,大部分光线能够被材料吸收而不反射或透射。

3. 低反射率:与一般材料相比,高光学吸收材料的反射率较低,使得光线不会被反射而能够被更大程度地吸收。

4. 长寿命和稳定性:这些材料具有较长的寿命和稳定性,能够在长时间内保持其光学吸收性能。

二、高光学吸收性能材料的应用领域1. 太阳能电池:高光学吸收材料在太阳能电池中能够实现光的高效转换为电能。

通过优化光吸收层的材料和结构,可以增强太阳能电池的光电转换效率,并提高其稳定性。

2. 光催化:高光学吸收材料在光催化反应中起到关键作用,能够将入射光转化为化学反应能,促进催化反应的进行。

这对于环境净化、能源转化等领域具有重要意义。

3. 光电传感器:高光学吸收材料可用于制作高灵敏度的光电传感器。

通过吸收环境中的光线并将其转化为电信号,可以实现光信号的高效检测和传输,广泛应用于环境监测、通信等领域。

4. 光学涂层:高光学吸收性能材料可用于制备具有特殊光学性质的涂层。

通过调控材料的吸收特性和反射特性,可以实现对入射光的选择性吸收和反射,用于光学器件、光学器械的设计与制备。

三、高光学吸收性能材料的研究进展目前,团队已经在高光学吸收性能材料的研究上取得了一系列重要突破。

以下是其中几个值得关注的方向:1. 结构优化:通过调控材料的结构,提高其光学吸收性能。

基于二氧化钒超材料的双窄带太赫兹吸收器

基于二氧化钒超材料的双窄带太赫兹吸收器

第 21 卷 第 12 期2023 年 12 月太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information TechnologyVol.21,No.12Dec.,2023基于二氧化钒超材料的双窄带太赫兹吸收器曹俊豪,饶志明*,李超(江西师范大学物理与通信电子学院,江西南昌330224)摘要:提出一种基于二氧化钒(VO2)超材料的吸收器,由3层结构组成,从上往下分别为2个VO2圆、中间介质层和金属底板。

仿真数据表明,该吸收器有2个很强的吸收峰,分别为4.96 THz 和5.64 THz,相对应的吸收率为99.1%和98.5%。

利用阻抗匹配理论和电场分布进行分析,阐明了吸收的物理机制,并进一步分析了结构参数对吸收率的影响。

所提出的吸收器具有可调谐的特点,能够灵活调控吸收率,为太赫兹波的调控、滤波等功能的实现提供了良好的方案。

该吸收器在图像处理、生物探测和无线通信领域都有潜在的应用。

关键词:太赫兹;超材料;二氧化钒;吸收器中图分类号:TB34 文献标志码:A doi:10.11805/TKYDA2023148 Dual-narrowband THz absorber based on vanadium dioxide metamaterialCAO Junhao,RAO Zhiming*,LI Chao(College of Physics and Communication Electronics,Jiangxi Normal University,Nanchang Jiangxi 330224,China)AbstractAbstract::A metamaterial absorber based on vanadium dioxide(VO2) is presented. This structure consists of three layers including two vanadium dioxide circles, intermediate dielectric layer, and metalsubstrate from top to bottom. The simulated data shows that the absorber has two strong absorption peaks,at 4.96 THz and 5.64 THz respectively, and the corresponding absorption rates reach 99.1% and 98.5%.The physical mechanism of absorption is clarified by using the impedance matching theory and theelectric field distribution. The effect of the structural parameters on the absorption rate is also analyzed.In addition, the proposed absorber can regulate the absorption rate flexibly, which provides a goodscheme for the realization of terahertz wave regulation, filtering and other functions. Therefore, thisabsorber has potential applications in image processing, biological detection, and wireless communication.KeywordsKeywords::THz;metamaterial;vanadium dioxide;absorber太赫兹波是指频率为0.1~10 THz的电磁波,相应波长为30 μm~3 mm,它的电磁波谱左侧和右侧分别为电子学和光子学,因此也被称为太赫兹间隙[1]。

超材料在光学上的应用

超材料在光学上的应用

超材料在光学上的应用
超材料(metamaterial)是一种由人类设计和制造出来的材料,不同于自然界中存在的材料,在光学、电磁学、声学等领域中具有许多优异的特性。

在光学方面,超材料具有一些独特的应用,比如超透镜、隐形衣、超分辨显微镜等。

超透镜是一种利用超材料特异的折射率分布来实现的系统,能够让物体的图像在无损失情况下被放大。

超材料的折射率分布使得光线经过超透镜时的折射呈现非线性变换,达到放大的效果。

超透镜可用于生物医学中的显微镜和高清晰度相机。

隐形衣是一种利用超材料的吸波特性来实现的设备,能够使人体表面特征消失不见。

一般来说,光线照射在物体表面,一部分被反射,一部分被吸收,而被吸收的光就是把物体暴露在人类视野中的罪魁祸首。

超材料的吸波特性可以使得物体表面的光线被完全吸收,从而达到消失不见的效果。

隐形衣可用于军事和安全领域。

超分辨显微镜是一种利用超材料微结构折射率特异的性质来实现的显微技术,可以突破传统显微镜分辨率的限制。

超分辨显微镜的原理是利用超材料在微观尺度上的折射率分布,构成一种类
似于透镜的结构,使得透镜的焦距小于波长,进而达到高分辨率
的效果。

这种技术可用于生命科学、医学等领域。

除此之外,超材料还可以用于制造各种光学器件,比如分光镜、光学天线、激光辐射源等。

超材料的折射率特性可以通过一系列
设计和制造工艺来精确调控,因此能够满足各种不同光学器件的
需求。

总之,超材料在光学领域有着广泛的应用前景,尤其是在高分
辨率成像、隐形光学和光学通信等方面有着重要的意义。

随着科
技的不断进步,人们对超材料的研究和应用也将越来越深入。

超材料在光学领域的应用

超材料在光学领域的应用

超材料在光学领域的应用超材料是一种人工制造的材料,它的物理特性不同于自然材料。

超材料具有许多优良的特性,比如可以控制光线的传播方向,折射率、色散率等。

因此,超材料在光学领域的应用非常广泛。

一、超材料的制备方法超材料可以通过多种方法制备,包括金属纳米粒子组装、纳米线组装、超材料层合、纳米结构自组装等。

其中,金属纳米粒子组装是最常用的方法之一。

二、1. 高分辨率显微镜超材料可以制造出具有超分辨率的光学显微镜。

这种显微镜可以将物体的细节部分放大到极小的程度,大大提高了检测的精度和准确性。

这种显微镜非常适合于生物医学、纳米材料等领域的应用。

2. 电子束透镜超材料可以制造出具有偏振特性的透镜,这种透镜可以帮助控制电子束的传播方向和焦距。

利用超材料透镜可以提高电子显微镜的分辨率和成像能力,也可以用于精细加工和纳米制造。

3. 光学元件超材料可以制造出各种具有特殊光学性质的元件,如超透镜、超面阵列、光子晶体、金属结构等。

这些光学元件可以用于光学通信、光伏电池、激光器、传感器等领域的应用。

4. 纳米光学超材料可以制造出具有复杂电场分布的超小尺度结构,这种结构可以用于控制和调制光的传播。

比如,可以制造出具有反向衍射效应的纳米结构,这种结构可以使光从空气中射向玻璃表面时不发生全反射,从而大大提高光的传播效率。

5. 纳米光子学与拓扑光学超材料可以用于制造各种具有拓扑保护的三维光子晶体和纳米结构。

这些结构可以用于光子流控制、拓扑激发、拓扑准粒子等领域的研究。

此外,纳米光子学还可以用于超灵敏传感、单分子检测等应用。

三、超材料的未来发展趋势超材料在光学领域的应用非常广泛,但目前还存在一些问题,如制造成本高、稳定性差、调制范围有限等。

未来,随着制造技术的进步和发展,超材料的应用领域将会更加广阔,同时也将面临更多的挑战和机遇。

预计在未来,超材料的研究方向将会更加注重其应用价值和实际应用效果,同时也需要更加注重其制备成本和工艺流程的优化。

基于二氧化钒的可调双宽带太赫兹超材料吸收器

基于二氧化钒的可调双宽带太赫兹超材料吸收器

第50卷第4期2023年北京化工大学学报(自然科学版)Journal of Beijing University of Chemical Technology (Natural Science)Vol.50,No.42023引用格式:许中璞,赵永鹏.基于二氧化钒的可调双宽带太赫兹超材料吸收器[J].北京化工大学学报(自然科学版),2023,50(4):107-112.XU ZhongPu,ZHAO YongPeng.A tunable dual broadband terahertz metamaterial absorber based on vanadium dioxide[J].Journal of Beijing University of Chemical Technology (Natural Science),2023,50(4):107-112.基于二氧化钒的可调双宽带太赫兹超材料吸收器许中璞1 赵永鹏2*(1.武威职业学院信息技术学院,武威 733000;2.四川农业大学机电学院,雅安 625000)摘 要:基于VO 2的相变特性提出一种具有双宽带特性的太赫兹超材料吸收器,包括对角放置的VO 2图案层㊁电介质层以及金反射层共3层结构㊂对吸收器的结构建模㊁吸收效果及吸收特性等进行了仿真分析,仿真结果表明,所设计吸收器吸收率大于90%的两个带宽分别为0.73THz 和0.6THz㊂在通过热控制诱导VO 2从绝缘态到金属态的相变过程中,吸收率分别在31%~93.1%和30%~95.2%之间实现连续可调㊂另外,通过研究不同偏振角及入射角下所设计超材料吸收器的吸收性能发现,该吸收器具有偏振无关㊁偏振不敏感以及大入射角吸收特性㊂所设计吸收器有望在如太赫兹通信㊁成像和探测器等利用太赫兹波段领域得到广泛应用㊂关键词:VO 2相变特性;超材料;太赫兹吸收器;连续可调中图分类号:O436 DOI :10.13543/j.bhxbzr.2023.04.014收稿日期:2023-02-13基金项目:四川省自然科学基金(2023NSFSC0435)第一作者:男,1988年生,硕士*通信联系人E⁃mail:zhaoyp@引 言太赫兹波的工作频率在0.1~10THz,相应的波长在0.03~3mm [1]㊂大多数天然材料在太赫兹频率下表现出微弱的电磁响应,这种现象被称为 太赫兹间隙”㊂而超材料是一种人工设计的周期性结构材料,具有天然材料所不具备的超常物理属性,其奇异的光学特性由所设计的人工周期性结构决定[2]㊂基于超材料的电磁特性,有学者研究了其在操纵太赫兹辐射方面的实用性[3]㊂太赫兹吸收器是太赫兹领域最具吸引力的研究课题之一,由于其在探测㊁成像和调制方面的重要应用前景,受到了人们的广泛关注㊂随着超材料这一概念的引入,太赫兹超材料吸收器得到快速发展㊂在太赫兹波段,关于吸收器已有了大量研究,如超宽带吸收器[4-5]㊁宽带吸收器[6-8]以及窄带吸收器[9-11]等㊂然而,上述绝大多数的吸收器存在一个功能上的限制,即大多数吸收器的电磁波吸收率是不可以调节的,一旦设计完成,其功能就己经固定了㊂因此为了面对日益复杂的电磁应用环境,需要设计一种吸收率可调节的超材料吸收器㊂要实现吸收器的吸收率可调,主要手段是在超材料结构中引入活性材料(如相变材料㊁石墨烯等),使其主动控制超材料吸收器的光学特性㊂二氧化钒(VO 2)是控制器件的理想选择,当施加热㊁外部电场或光学刺激时,可诱导VO 2发生从绝缘态到金属态的可逆相变[12],相变过程中伴随着电导率发生改变,从而实现超材料吸收器的吸收率可调㊂近年来,针对宽带可调太赫兹超材料吸收器已有不少研究,如张婷等[13]基于VO 2设计了一种90%以上吸收带宽为1.06THz 以及吸收率在4%~99.5%之间可调的超材料吸收器;Wang 等[14]基于VO 2设计了一种90%以上的吸收带宽为0.65THz 且吸收率在30%~98%的可调吸收器;Song 等[15]基于VO 2设计了一种90%以上吸收带宽为0.33THz 且吸收率在30%~100%的可调吸收器;Huang 等[16]基于VO 2设计了一种80%以上吸收带宽分别为0.88THz 和0.77THz 且吸收率在20%~90%的可调双宽带吸收器;刘苏雅拉图[17]提出一种二氧化钒开口环阵列组成的宽带可调谐吸收器;晋豪[18]提出一种表面由石墨烯圆盘构成的 葫芦形”图案的超材料吸收器;樊怡等[19]提出基于VO 2相变特性的温度可调控双频太赫兹超材料吸收器;马燕燕[20]提出了一种双频可调谐㊁双频可切换㊁宽带可切换的超材料吸收器;王佳云[21]设计了一种极化可控的单频/五频段超材料吸收器;杨森等[22]设计出一种基于光激发动态可切换的超材料吸收器㊂基于以上分析,目前对于超材料吸收器的研究主要集中在拓宽工作带宽㊁实现宽带可调谐以及提高吸收率和吸收性能等方面㊂为了进一步拓宽工作带宽和提高可调谐范围,本文提出一种基于VO 2的双宽带太赫兹超材料吸收器,其由两个相同的VO 2图案在经典的金属-电介质-金属结构的顶部对角排列而成㊂通过在热控制下诱导VO 2发生从绝缘态到金属态的相变,可以连续调节两个频段的吸收率㊂该吸收器具有偏振无关㊁偏振不敏感以及大入射角吸收特性,在太赫兹波段具有广泛的应用前景,如太赫兹通信㊁成像和探测器等㊂图1 双宽带太赫兹超材料吸收器单元结构示意图Fig.1 Schematic view of the dual broadband terahertzmetamaterial absorber structure1 太赫兹超材料吸收器的结构设计本文提出的双宽带太赫兹超材料单元结构示意图如图1所示㊂该结构包括3层,从上到下依次为对角放置的VO 2图案层㊁电介质层和底部金反射层,其中金的电导率为4.56×107S /m[23],SiO 2的相对介电常数为3.9+0.03i [16]㊂最优结构参数取值如下:单元结构周期P =180μm,金反射层厚度h 1=0.2μm,SiO 2电介质层厚度h 2=36μm,VO 2图案层厚度t =0.1μm,VO 2图案到周期边界的间隙g =11μm,对角图案开口宽度w =23μm,对角图案开口长度l =110μm㊂本文使用CST MICROWAVE STU⁃DIO 软件,通过有限元方法进行全波电磁仿真,在仿真过程中采用频域求解器,使用四面体自适应网格剖分㊂在x 和y 方向采用unit cell 边界条件,在z 方向采用open(add space)边界条件㊂图2 VO 2介电常数随电导率的变化Fig.2 Variation of the permittivity of VO 2withconductivity该结构的光学介电常数可由Drude 模型[24]描述ε(ω)=ε∞-ω2p (σ)ω2+i γω(1)式中,ε∞=12为高频介电常数,γ=5.75×1013rad /s 为碰撞频率,σ处的等离子体频率ω2p (σ)=σσ0ω2p (σ0),ωp (σ0)=1.4×1015rad /s,σ0=3×105S /m㊂在热控制下,VO 2可以发生由绝缘态到金属态的可逆相变,其电导率σ可由2×102S /m 变化到2×105S /m㊂根据式(1),利用Matlab 软件计算了VO 2介电常数随电导率的变化情况,结果如图2所示㊂可以看出,不同电导率下介电常数实部的变化远小于虚部,当电导率取值为2×102S /m 时,表现为绝缘体特性,当电导率取值为2×105S /m 时,表现为金属特性㊂在仿真过程中,采用Drude 模型对VO 2的电导率进行取值,与Matlab 计算过程一致㊂当通过热刺激使VO 2温度略高于室温时,可以实现从绝缘体到金属的转变,在相变温度点其电导率提高了㊃801㊃北京化工大学学报(自然科学版) 2023年10000倍,晶体结构由单斜相转变为四方相㊂2 太赫兹超材料吸收器的性能分析在本文中,吸收率定义如下[25]:A(ω)=1-R(ω)-T(ω)=1-|S11(ω)|2-|S21(ω)|2,其中A(ω)㊁R(ω)和T(ω)分别表示吸收率㊁反射率和透射率,S11(ω)和S21(ω)分别为反射系数和透射系数㊂由于底部金反射层的厚度远远大于入射电磁波的趋肤深度,使得入射电磁波无法透过该金属薄膜继续传播,因此T(ω)=0㊂吸收器的吸收率可进一步简化为A(ω)=1-R(ω)=1-|S11(ω)|2㊂横电模(TE)和横磁模(TM)两种偏振方式下吸收器的吸收率㊁反射率以及透射率变化情况的仿真结果如图3(a)所示㊂在0.67THz~1.4THz和2.9THz~3.5THz频率范围内,吸收率大于90%的带宽分别为0.73THz和0.6THz,在0.86THz㊁2.93THz以及3.39THz这3个频率点处吸收率接近于1,表示这些点的吸收接近完美吸收㊂另外,从图中可以看出,两种偏振方式下的吸收率㊁反射率以及透射率变化保持高度一致,表明所设计的超材料吸收器具有偏振无关特性㊂两种偏振方式下的透射率为零,表明理论分析与仿真结果一致㊂在TE偏振下吸收谱随偏振角的变化情况如图3(b)所示,可以看出,改变偏振角对吸收器的吸收性能没有任何影响,表明所设计的吸收器具有偏振不敏感特性㊂另外,由于所设计的VO2图案的对称性,TM偏振下的吸收光谱与TE偏振下的吸收光谱是重合的,这里不再赘述㊂通过热控制诱导VO2从绝缘态到金属态的相变过程中,可以连续调节两个频带的吸收率和带宽,如图4所示㊂从图中可以看出,在VO2电导率由2×102S/m变化到2×105S/m过程中,第一个频带(0.67THz~1.4THz)的吸收率可由31%增大到93.1%,第二个频带(2.9THz~3.5THz)的吸收率可由30%增大到95.2%㊂因此,通过控制VO2电导率可以实现吸收器两个带宽的连续可调㊂为了更好地理解吸收器的吸收性能,引入阻抗匹配理论,在正入射下太赫兹波的相对阻抗可描述为[25]Z r=(1+S11(ω))2-S221(ω)(1-S11(ω))2-S221(ω)(2)式中,Z r=Z/Z0,Z和Z0分别为吸收器的有效阻抗图3 双宽带吸收器的反射谱㊁透射谱和吸收谱以及不同偏振角下的吸收光谱图Fig.3 Reflection,transmission and absorption spectra of the dual broadband absorber and the absorption spectrawith different polarization angles图4 吸收器吸收率随电导率变化情况Fig.4 Variation of the absorption with conductivity 和自由空间阻抗㊂当Z r=Z/Z0=1时,吸收器有效阻抗与自由空间阻抗匹配,吸收率最大㊂当相对阻抗的实部为1,虚部为0时,可以实现阻抗匹配㊂图5为不同电导率下相对阻抗实部和虚部的变化㊂可以看出,当VO2电导率为2×105S/m(金属态)㊃901㊃第4期 许中璞等:基于二氧化钒的可调双宽带太赫兹超材料吸收器时,在0.67THz ~1.4THz 和2.9THz ~3.5THz 两个频率范围内,相对阻抗的实部接近于1,虚部接近于0,实现了完美吸收,与理论分析结果一致㊂图5 不同电导率下相对阻抗实部和虚部的变化Fig.5 Variation of real and imaginary parts of the relativeimpedance for different VO 2conductivities进一步研究了TE 和TM 两种偏振方式下不同入射角对吸收器吸收性能的影响,结果如图6所示㊂TE 偏振入射下(图6(a)),对于第一个频带(0.67THz ~1.4THz),当入射角小于60°时,吸收器能够保持良好的吸收性能,对于第二个频带(2.9THz ~3.5THz),当入射角小于20°时,吸收器能够保持良好的吸收性能;入射角继续增大,第一个宽带的吸收率急剧下降,第二个宽带的中心频率出现蓝移现象,且带宽逐渐变窄㊂在TM 偏振下(图6(b)),对于第一个频带(0.67THz ~1.4THz),当入射角小于60°时,吸收器能够保持良好的吸收性能;对于第二个频带(2.9THz ~3.5THz),当入射角小于20°时,吸收器也能够保持良好的吸收性能,入射角进一步增大,两个频带内的吸收率都显著降低㊂本文所设计吸收器与文献中的吸收器性能对比如表1所示㊂可以看出,与双频吸收器相比,本文所设计的双宽带吸收器在工作带宽和吸收率可调范围两个方面的性能都有所提高;与单频吸收器相比,本文部分工作带宽有所拓宽㊂图6 吸收率随入射角的变化Fig.6 Variation of absorption with incident angle 表1 本文设计吸收器与文献中吸收器的性能对比Table 1 Comparison of the performance of the absorberdesigned in this paper with absorbers reported in the literature吸收器来源材料工作带宽/THz吸收率可调范围文献[13]VO 21.06(吸收率>90%)4%~99.5%文献[14]VO 20.65(吸收率>90%)30%~98%文献[15]VO 20.33(吸收率>90%)30%~100%文献[16]VO 20.88和0.77(吸收率>80%)20%~90%本文设计VO 20.73和0.6(吸收率>90%)30%~95.2%3 结论本文提出了一种由对角放置的VO 2图案层㊁介质层以及金反射层组成的双宽带太赫兹超材料吸收器结构,并根据超材料吸收器的吸收机理对吸收器的吸收性能作出分析㊂仿真结果表明,该吸收器吸收率达90%以上的吸收带宽分别为0.73THz 和㊃011㊃北京化工大学学报(自然科学版) 2023年0.6THz㊂当VO2的电导率由2×102S/m变化到2×105S/m时,两个频带的吸收率分别可在31%~ 93.1%和30%~95.2%之间连续调节㊂根据阻抗匹配理论分析可知,该吸收器具有偏振无关㊁偏振不敏感以及大入射角吸收特性,因此其在太赫兹通信㊁成像和探测器等方面具有广泛的应用前景㊂参考文献:[1] QIAN J J,ZHOU J,ZHU Z,et al.Polarization⁃insensi⁃tive broadband THz absorber based on circular graphenepatches[J].Nanomaterials,2021,11(10):2709. [2] REN Z,CHENG L,HU L,et al.Photoinduced broad⁃band tunable terahertz absorber based on a VO2thin film[J].ACS Applied Materials&Interfaces,2020,12(43):48811-48819.[3] WANG T L,ZHANG Y P,ZHANG H Y,et al.Dual⁃controlled switchable broadband terahertz absorber basedon a graphene⁃vanadium dioxide metamaterial[J].Opti⁃cal Materials Express,2020,10(2):369-386. [4] ZHU J F,MA Z F,SUN W J,et al.Ultra⁃broadbandterahertz metamaterial absorber[J].Applied Physics Let⁃ters,2014,105(2):021102.[5] RI K J,RI C H,RI S Y.Ultra⁃broadband terahertzmetamaterial absorber using a simple design method[J].Optics Communications,2022,515:128191. [6] GRANT J,MA Y,SAHA S,et al.Polarization insensi⁃tive,broadband terahertz metamaterial absorber[J].Op⁃tics Letters,2011,36(17):3476-3478. [7] WEN Y Z,MA W,BAILEY J,et al.Broadband tera⁃hertz metamaterial absorber based on asymmetric resona⁃tors with perfect absorption[J].IEEE Transactions onTerahertz Science and Technology,2015,5(3):406-411.[8] CHENG Y Z,ZOU H J,YANG J J,et al.Dual andbroadband terahertz metamaterial absorber based on acompact resonator structure[J].Optical Materials Ex⁃press,2018,8(10):3104-3114.[9] HU D,MENG T H,WANG H Y,et al.Ultra⁃narrow⁃band terahertz perfect metamaterial absorber for refractiveindex sensing application[J].Results in Physics,2020,19:103567.[10]WANG Y,YUE L S,CUI Z J,et al.Optically tunablesingle narrow band all⁃dielectric terahertz metamaterialsabsorber[J].AIP Advances,2020,10(4):045039.[11]CHEN F,CHENG Y Z,LUO H.Temperature tunablenarrow⁃band terahertz metasurface absorber based on InSbmicro⁃cylinder arrays for enhanced sensing application[J].IEEE Access,2020,8:82981-82988. [12]REN Y,ZHOU T L,JIANG C,et al.Thermally switc⁃hing between perfect absorber and asymmetric transmis⁃sion in vanadium dioxide⁃assisted metamaterials[J].Op⁃tics Express,2021,29(5):7666-7679. [13]张婷,杨森,于新颖.基于二氧化钒的可调宽带太赫兹完美吸收器设计[J].激光与光电子学进展,2021,58(21):250-256.ZHANG T,YANG S,YU X Y.Tunable broadband tera⁃hertz perfect absorber design based on vanadium dioxide[J].Laser and Optoelectronics Progress,2021,58(21):250-256.(in Chinese)[14]WANG S X,CAI C F,YOU M H,et al.Vanadium di⁃oxide based broadband THz metamaterial absorbers withhigh tunability:simulation study[J].Optics Express,2019,27(14):19436-19447.[15]SONG Z Y,WANG K,LI J W,et al.Broadband tunableterahertz absorber based on vanadium dioxide metamateri⁃als[J].Optics Express,2018,26(6):7148-7154.[16]HUANG J,LI J N,YANG Y,et al.Active controllabledual broadband terahertz absorber based on hybrid meta⁃materials with vanadium dioxide[J].Optics Express,2020,28(5):7018-7027.[17]刘苏雅拉图.基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器[D].呼和浩特:内蒙古大学,2022.LIU S Y.Terahertz tunable metamaterial absorber basedon graphene and vanadium dioxide[D].Hohhot:InnerMongolia University,2022.(in Chinese) [18]晋豪.基于石墨烯圆盘的超材料吸收器的研究[D].成都:四川师范大学,2022.JIN H.Study on metamaterial absorbers based on gra⁃phene disks[D].Chengdu:Sichuan Normal University,2022.(in Chinese)[19]樊怡,杨荣草.基于VO2温度可调控双频超薄太赫兹超材料吸收器[J].量子光学学报,2022,28(1):46-54.FAN Y,YANG R C.Temperature⁃tunable dual⁃band ul⁃tra⁃thin terahertz metamaterial absorber based on vanadi⁃um dioxide[J].Journal of Quantum Optics,2022,28(1):46-54.(in Chinese)[20]马燕燕.双频及宽带可调控超材料吸收器的研究[D].太原:山西大学,2021.MA Y Y.Research on dual⁃band and broadband control⁃lable metamaterial absorbers[D].Taiyuan:Shanxi Uni⁃versity,2021.(in Chinese)[21]王佳云.多频/宽频电磁超材料吸收器和极化转换器的研究[D].太原:山西大学,2021.㊃111㊃第4期 许中璞等:基于二氧化钒的可调双宽带太赫兹超材料吸收器WANG J Y.Study on multi⁃band/broadband absorbersand polarization converters based on electromagneticmetamaterials[D].Taiyuan:Shanxi University,2021.(in Chinese)[22]杨森,袁苏,王佳云.一种光激发可切换的双频太赫兹超材料吸收器[J].光学学报,2021,41(2):0216001.YANG S,YUAN S,WANG J Y.Light⁃excited andswitchable dual⁃band terahertz metamaterial absorber[J].Acta Optica Sinica,2021,41(2):0216001.(inChinese)[23]YAN D X,MENG M,LI J S,et al.Vanadium dioxide⁃assisted broadband absorption and linear⁃to⁃circular polar⁃ization conversion based on a single metasurface designfor the terahertz wave[J].Optics Express,2020,28(20):29843-29854.[24]WANG S X,KANG L,WERNER D H.Hybrid resona⁃tors and highly tunable terahertz metamaterials enabled byvanadium dioxide(VO2)[J].Scientific Reports,2017,7:4326.[25]CHE Z G,LI Z X,ZHANG G M,et al.Active controlla⁃ble broadband absorber based on vanadium dioxide[C]∥2021Photonics&Electromagnetics Research Symposium(PIERS).Hangzhou:IEEE,2021:604-608.A tunable dual broadband terahertz metamaterial absorberbased on vanadium dioxideXU ZhongPu1 ZHAO YongPeng2*(rmation Technology College,Wuwei Vocational College,Wuwei733000;2.College of Mechanical and Electrical Engineering,Sichuan Agricultural University,Ya’an625000,China) Abstract:A terahertz metamaterial absorber with dual broadband characteristics based on the phase transition char⁃acteristics of VO2has been fabricated.The absorber is composed of three layers,a diagonally placed VO2pattern layer,a dielectric layer and a gold reflector.The simulation results show that there are two bandwidths with absorp⁃tivity greater than90%at0.73THz and0.6THz.During the phase transition from the insulating state to the me⁃tallic state of VO2induced by thermal control,the absorption rate is continuously tunable in the range31%-93.1%and30%-95.2%,respectively.In addition,by studying the absorption performance of the metamaterial absorber at different polarization angles and incidence angles,it is found that the absorber has polarization⁃inde⁃pendent,polarization⁃insensitive and large incidence angle absorption characteristics.The absorber has broad pros⁃pects for applications in the terahertz band region,such as in terahertz communication,imaging and detectors. Key words:VO2phase transition property;metamaterial;terahertz absorber;continuously tunable(责任编辑:吴万玲)㊃211㊃北京化工大学学报(自然科学版) 2023年。

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》范文

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》范文

《基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器》篇一一、引言随着科技的飞速发展,超材料在电磁波谱的各个波段都展现出其独特的性能和应用潜力。

在太赫兹(THz)波段,超材料吸收器由于具有高性能、小型化和集成化等特点,已经广泛应用于各类安全检查、医学成像、能量传输和感知系统中。

本篇论文介绍一种基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器,其独特的性质和潜在的应用前景将得到详细阐述。

二、石墨烯和二氧化钒的特性和应用1. 石墨烯石墨烯是一种二维原子晶体,其优异的导电性能和极高的光学对比度使其成为纳米光子器件的重要材料。

在太赫兹波段,石墨烯的电导率可以通过外部电场进行动态调控,从而实现对太赫兹波的吸收和反射的调控。

2. 二氧化钒(VO2)二氧化钒是一种典型的相变材料,其在一定温度下会从绝缘体变为金属,这种相变过程伴随着显著的电导率和光学性质的变化。

在太赫兹超材料吸收器中,二氧化钒的这种特性可以用于实现吸收器的动态可调谐性。

三、基于石墨烯和二氧化钒的太赫兹可调谐超材料吸收器的设计本论文所设计的太赫兹可调谐超材料吸收器,以石墨烯和二氧化钒为主要材料,通过特定的结构设计,实现了对太赫兹波的吸收和反射的动态调控。

具体设计如下:1. 结构设计吸收器由多个周期性的亚波长结构组成,这些结构包含印有石墨烯的金属片,以及金属片上方的二氧化钒薄膜。

通过调整石墨烯和二氧化钒的厚度、金属片的形状和大小等参数,可以实现对太赫兹波的吸收和反射的精确调控。

2. 工作原理在无外加电场的情况下,二氧化钒处于绝缘态,对太赫兹波的吸收较小。

当外加电场作用于石墨烯时,石墨烯的电导率发生变化,从而改变对太赫兹波的吸收和反射。

同时,随着温度的变化,二氧化钒从绝缘态变为金属态,其电导率和光学性质也会发生变化,从而影响对太赫兹波的吸收。

通过同时调整石墨烯和二氧化钒的状态,可以实现太赫兹波的吸收和反射的动态调控。

四、实验结果与讨论通过实验验证了本论文所设计的太赫兹可调谐超材料吸收器的性能。

超材料及其在光学领域中的应用

超材料及其在光学领域中的应用

超材料及其在光学领域中的应用随着科学技术的不断发展,人们对新材料的研究和发展也越来越重视。

而在材料界,最近越来越受到关注的就是超材料。

超材料是由具有特定电磁响应的结构性单元组成的人工制备的材料。

这些单元相互交互,产生与原材料不同的物理和化学性质。

超材料的制备和应用,对于科学研究和技术创新都有着重要的贡献。

其中在光学领域中的应用更是令人瞩目。

一、超材料的制备技术超材料的制备技术涉及到许多方面的知识领域,比如纳米材料、光学、材料化学等。

目前常见的制备技术有以下几种:1. 自由空间光刻技术:自由空间光刻技术是一种新型的加工技术,利用激光束在石英玻璃表面留下微米和亚微米级别的毛细管或球形凸起来实现超材料的制备。

2. 磁性液体技术:磁性液体技术是超材料制备中常用的方法之一。

利用磁性液体中包含的磁性微粒子在外部磁场作用下组成规则的结构单元,通过加工获得所需超材料。

3. 金属纳米颗粒技术:金属纳米颗粒技术是一种利用真空蒸发制备金属纳米颗粒,并利用这些颗粒形成的简单结构单元制备的超材料。

因此,超材料的制备技术非常多样化,可以根据不同需要采用不同的制备技术。

二、超材料在光学领域中的应用超材料在光学领域中的应用是其重要应用领域之一。

由于超材料结构的独特性,可以对光的传播行为进行精确控制,从而将其应用于光学透镜、光学天线、光谱成像、表面等离子体和纳米光学等领域。

1. 光学透镜:超材料可以制备出高分辨率的超透镜,解决了传统光学材料的制约问题。

通过利用超材料的吸收、透射和反射特性,设计出更为先进的光学透镜。

2. 光学天线:超材料还可以通过定向辐射、衍射和隐身等效应制备出光学天线。

这些天线不仅可以用于无线电通信,还可以用于成像、传感和高速数据传输。

3. 光谱成像:超材料可以制备出更优秀的光学传感器,可以通过可控制的光子体积效应,选择性地增强或抑制某些波长的吸收。

这一特性可用于研究纳米材料的光谱,成像、分析和检测等。

4. 表面等离子体:利用超材料可精确控制光的传播行为,制备出有效地激发表面等离子体的结构单元。

超材料的制备及性能研究

超材料的制备及性能研究

超材料的制备及性能研究前言超材料是一种具有多种功能的新型材料,受到了广泛的关注和研究。

其可以实现多种电磁波的控制,可以制成各种形状,应用领域广泛。

本文将介绍超材料的制备及性能研究。

一、超材料的定义及原理超材料是一种具有负折射率的材料,其可以通过微结构中的超材料单元单元相互作用来实现对电磁波的控制。

超材料的原理是从能带结构和电磁场的反相干涉效应出发:通过设计超材料的单元结构可以得到负电磁常数和负磁导率,从而实现负折射率(negative refraction index)。

这一特性在光学器件、成像、天线、隐身等方面有广泛应用。

二、超材料的制备方法超材料的制备方法包括顶点法、TEM(透射电子显微镜)法、光学法、电镀法、纳米球技术等。

其中,电镀法在制备超材料方面已经得到了很好的应用,其优点是制备精度高、易于控制,且制备时间较短。

该方法一般是用PECVD技术在聚合物基底上沉积金属或金属氧化物薄膜得到制作超材料。

然后使用光刻工艺将薄膜制成所需的结构。

这种方法制备的超材料制备周期短且制备过程易于控制,因此被广泛应用。

三、超材料的性能研究超材料的性能研究可以从以下几个方面进行:1.透射特性研究根据超材料单元的组合方式和纳米结构参数,可以实现负折射、正折射或双折射,而透射率取决于超材料的结构参数和单位尺寸。

研究透射方向和波导结构影响对材料性质的影响。

近年来,科学家们通过调节超材料的结构参数和缝隙尺寸等研究获得了一系列符合要求的透射特性。

2.光谱性能研究超材料的光学性能研究是评估超材料的重要方法。

超材料可以实现光谱选择性过滤器和宽带吸收器的功能。

实验研究表明,通过特定的超材料结构和制备方法,可以得到波长范围从红外光到紫外光的全光谱特性超材料。

3.激光性能研究超材料在激光成像、维纳滤波、隐身技术、激光成型等领域具有较好的性能。

在研究超材料的激光特性方面,需要充分考虑超材料的倒数折射率和倒数磁感应率。

将超材料应用于激光器上,可以制造出高功率、高效率、小尺寸的激光器和激光器阵列。

超材料在完美吸波器中的应用

超材料在完美吸波器中的应用

超材料在完美吸波器中的应用张勇;张斌珍;段俊萍;王万军【摘要】超材料的电磁响应不仅由其构成材料决定,更与其谐振单元的微结构和排列组合息息相关,基于电磁超材料的完美吸波器(Perfect Metamaterial Absorber ,PMA)通过设计合理的谐振器微结构可实现对特定频段电磁波的100%吸收。

PM A具备设计灵活、响应可调、吸波强、频带宽、厚度薄、质量轻等诸多优点,可广泛用于隐身材料、频率选择表面、太赫兹成像、微型天线、智能通信、电磁波探测及调控等领域。

本文在结合国内外研究现状的基础上综述了基于PM A发展历程、结构特征、制备工艺、性能测试等,以期获得对PM A更为深刻和全面的理解。

最后对PM A的发展趋势、应用前景和亟待解决的问题做了探讨,具备多功能的主动智能PM A和基于新工艺、新材料的新型PM A将是未来的发展趋势。

%Electromagnetic response of metamaterials is not only determined by its component materi‐als but also the microstructure and arrangements of its resonant elements .T he perfect absorber pre‐pared by metamaterial (PM A ) can realize 100% absorption in specific frequency bands by designing reasonable structures of resonators .PM A can be applied in many domains ,such as stealth material , frequency selective surface ,terahertz imaging ,micro antenna ,intelligentcommunication ,detection and regulation of electromagnetic wave because of its flexible designing ,adjustable response ,strongabsorption ,broad band ,thin thickness ,light mass .Based on the present study situation at home and abroad ,we summarized thedevelopment ,structure ,preparation and test of PMA .In order to gain amore profound and comprehensive understanding on PMA ,we also explored its trends ,prospects and urgent problems .Proactive and intelligent PMA with multi functions and new PMA prepared by new material and new process are the future development trends .【期刊名称】《材料工程》【年(卷),期】2016(044)011【总页数】9页(P120-128)【关键词】吸波器;超材料;隐身衣;综述【作者】张勇;张斌珍;段俊萍;王万军【作者单位】中北大学电子测试技术重点实验室,太原030051; 中北大学仪器与电子学院,太原030051;中北大学电子测试技术重点实验室,太原030051; 中北大学仪器与电子学院,太原030051;中北大学电子测试技术重点实验室,太原030051; 中北大学仪器与电子学院,太原030051;路易斯安那州立大学机械工程系,美国巴吞鲁日70803【正文语种】中文【中图分类】TB331;TB34;O433随着电磁探测技术的快速发展,电磁信息的泄漏给世界各国的防御体系和军事装备的生存能力带来了严重威胁,为此隐身技术应运而生,采用吸波材料是隐身技术的一种重要形式,常见的吸波材料有等离子体吸波层[1]、纳米吸波材料[2]、铁氧体吸波材料[3]、导电高聚物吸波材料[4,5]、手性材料[6]、超材料等。

超材料窄带完美吸收体的若干实现方案及特点

超材料窄带完美吸收体的若干实现方案及特点

Science &Technology Vision 科技视界,,[1]。

,(Metamaterials)()、,,、,[2,3]。

,,,[4,5]。

,[4],,。

,[6]。

[7]。

(41),、。

,,、,、[8]。

,、,。

1基于表面等离激元型超材料结构中窄带完美吸收体的研究,-———(Surface Plasmons),,。

,,,(Localized Surface Plasmons)。

,,(Sensitivity,S =δλ/δn ,)。

,()[9,10],1。

,:K 0sin θ+i G x +j G y =K SPP(1)超材料窄带完美吸收体的若干实现方案及特点胡新广黄志永(黄山学院信息工程学院,安徽黄山245041)【摘要】实现对入射电磁波在某个波长或波段近似完全吸收的物体,称为完美吸收体。

窄谱线的完美吸收体在生化传感、热辐射测量、滤波、光电检测等方面具有重要的应用前景和研究价值。

超材料结构的超常电磁特性使人们对入射电磁波实行任意操控成为可能,是目前科学研究的前沿和热点之一。

利用超材料结构实现的完美吸收体具有尺寸小且设计灵活的优势,是目前窄带完美吸收体的主要实现方案。

文章选取了利用超材料结构实现窄带完美吸收体的三种常见方案,从实现原理、典型结构及性能特点等方面进行了阐述,指出了表面等离激元型窄带完美吸收体具有较高的传感灵敏度;介质结构共振型窄带完美吸收体在谱线宽度和器件小型化方面更具优势;而基于石墨烯的窄带完美吸收体则拥有更加丰富的光电性能。

【关键词】超材料;窄带完美吸收体;表面等离激元;共振模式;石墨烯中图分类号:TB33文献标识码:ADOI:10.19694/ki.issn2095-2457.2021.21.66※基金项目:黄山学院校级人才基金启动项目(2019xkjq005)。

作者简介:胡新广,男,博士,研究方向:微纳光子学。

177. All Rights Reserved.Science &Technology Vision科技视界K SPP =K 0R eεm εd εm +εd √(2)K 0K SPP ,i j x ,y ;G x G y x ,y ;εm 、εd 。

超材料及其在光学中的应用

超材料及其在光学中的应用

超材料及其在光学中的应用超材料是一种具有特殊的物理特性的材料,是指由一系列微米和纳米级别的结构组成的材料。

这些结构的大小和形态使得超材料对电磁波的响应具有独特的性质。

超材料的出现使得人们对光学、电子、声波等现象有了新的认识,也为各种应用带来了新的可能性。

本文将探讨超材料在光学中的应用,并简要介绍其特性和制备方法。

超材料的特性超材料由许多微小的结构组成,这些结构的大小通常要小于电磁波的波长,因此超材料的响应可以被视为一种“局部重构”电磁场的现象。

超材料的主要特性如下:1. 负折射率:一些超材料具有负折射率,这意味着它们能够折射入射光线,并使光线向相反的方向偏转。

这一特性引发了对超材料的广泛研究,并被视为最显著的超材料特性之一。

2. 高分散性:超材料具有高分散性的特性,它们能够将光场分散成不同的频率,这一属性为制备光子晶体以及制备色散效应高的量子点提供了可能性。

3. 材料极化:超材料中微结构的大小和形状可以与电场相互作用,导致材料具有极化行为。

这种极化行为使超材料在器件设计和光谱分析中得到广泛应用。

超材料的制备方法超材料的制备通常基于构建不同形态的微结构,通常有以下几种方法:1. 镀膜法:该方法可以制备金属/介质的纳米结构,用于制备超材料。

2. 自组装法:在该方法中,使可分散的材料相互作用,涂布在表面上以构成一系列不同的结构。

3. 离子束雕刻(focussed ion beam,FIB):通过使用离子束雕刻器,在半导体材料上制造出结构比牛顿环还小的微结构。

超材料在光学中的应用超材料在光学中的应用非常广泛。

以下为一些常见的应用:1. 透镜制造:超材料可以制造出小型、精确的透镜,其将热等离子体激发到金属结构中以制作超材料镜头。

2. 光汽化法:超材料的负折射率使其在制造单层膜和其他光学器件方面具有广泛的应用。

超材料可以被用于增强电弧的效果,从而制造出更稳定的材料。

3. 量子点发光器制造:光学超材料中的纳米结构经过量子点发光器转换为具有特定波长范围的光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FIG. 1. a) Absorption spectrum of the absorber. b) SEM image of gold nanorods on top. The scale bar is 200 nm. Solar cells NIR imaging FIG. 2. Absorption under p-polarized light. Inset is simplified structure. (a) schematic of the broadband absorber, the yellow region is gold and blue regions are dielectric. (b) cross-section of half a unit cell. A broadband absorber based gratings is numerically demonstrated, and an average absorption efficiency of 88% is achieved over a wide range of wavelengths (700-2300 nm) for p-polarized light. Blue regions are alumina, the yellow is gold. a = 100 nm, w = 80 nm, and H = 50 nm. In the simulations, half a unit cell consists of 40 grooves, i. e, the width of half a unit is 4000 nm and the depth of the deepest groove is 2000 nm.
Pro. Min Qiu, Dr. Qiang Li, Xingxing Chen, Lijun Meng, Ding Zhao, Hanmo Gong 仇旻教授,李强副教授,陈星星,孟力俊,赵鼎,龚翰墨 [1] X. X. Chen et al., Opt. Lett. 38, 2247-2249 (2013) [2] L. J. Meng et al., Opt. Express 21, A111-A122 (2013) [3] L. J. Meng et al., Opt. Lett. 39, 1137-1140 (2014) [4] D. Zhao et al., Appl. Phys. Lett. 104, 221107 (2014)
(b)
FIG. 2. (a-c) Schematic of the optimized structure. a=1400nm, s=92nm, h=50nm, and r=25nm. (d) Absorption spectra as a function of the environmental refractive index.
Ultra-narrow band absorber
(a) (c) (d)
[3,4] A ultra-narrow band absorber with high absorption is investigated. According to Kirchhoff’s law, the perfect absorber can be considered as a highly directional thermal emitter with an angular width of 0.4 mrad at 1900 nm. The structure presented here has great potential as a light source, satellite radar, sensors, etc.
Broadband absor来自er[1,2] (a) (b)
An extremely broadband absorber is fabricated using droplet evaporation method. Such a metasurface may provide possibilities for obtaining large-area light absorbers in applications such as photothermalvoltaics, NIR imaging, sensing, etc.
光学超材料吸收器
Optical Metamaterial Absorber
Turning the surfaces of metals (metasurfaces) into black (highly absorptive) surfaces has been an attractive research topic. Efficient and tunable absorption of metamaterials based on noble metal has been investigated extensively and developed in a variety of branches. Our research efforts are thus focused on designing optical absorber with novel functionalities.
Light source
Satellite radar
Sensors
An ultra-narrow band absorber consisting of continuous silver and alumina films is investigated. Owing to Fabry–Perot resonance and silver’s inherent loss, an ultra-narrow spectral range of light can be entirely trapped in the structure. FIG. 3. Calculated and measured absorption of the narrowband absorber consisting of multilayer films. The thicknesses from top to bottom are 60 nm, 150 nm, 10 nm and 150 nm, respectively. The scale bar is 200 nm. Main researchers : References
相关文档
最新文档