3-7有理函数和三角函数有理式的积分法

合集下载

4(4)有理函数及三角函数有理式的积分(1)

4(4)有理函数及三角函数有理式的积分(1)

原式=
5u + 2 (u2 + 1)2
du

5 2
d(u2 + 1)
(u2 + 1)2 + 2
du (u2 + 1)2
51
u
- 2 u2 + 1 + u2 + 1 + arctanu + C
递推公式
回代
2x -7 2( x2 - 2x + 2) + arctan( x - 1) + C
书上无
Q( x)
部分分式的和, 如果分母多项式Q( x)在实数域
上的质因式分解式为:
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
, 为正整数, 则 P( x) 可唯一的分解为:
Q( x)
4
有理函数的积分
Q( x) b0( x - a) ( x2 + px + q) ,( p2 - 4q 0)
+ arctan x + C
说明:当被积函数是假分式时,应把它分为 一个多项式和一个真分式,分别积分.
9
有理函数的积分
例2 求
x+3 x2 - 5x + 6 dx

x2
x+3 -5x + 6

(x
x+3 - 2)( x - 3)

A+ x-2
B x-3
因式分解 x + 3 A(x - 3) + B(x - 2)
Ap
At + (B - )

2

有理函数的积分拆分方法

有理函数的积分拆分方法

有理函数的积分拆分方法一、前言积分是高等数学中非常重要的概念。

而有理函数则是些基础的函数,其定义域是有理数的多项式函数。

在进行有理函数的积分时,我们有时可以通过拆分的方式,将原式转化为简单的形式,从而使求解变得更加容易。

本文将讨论有理函数的积分拆分方法,特别是常见的分式分解法和部分分式分解法。

二、分式分解法分式分解法是将原有理式拆分成若干个分式相加的形式。

下面我们将介绍一下分式分解法的具体步骤:1.将分母拆分成多项式的积。

例如:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{ B}{x+2}$其中 $A$,$B$ 是待定系数。

2.将原式中的分式分别乘上其对应的除数。

例如:$x^2+2x=A(x+2)+B(x+1)$3.利用待定系数的方法求解 $A$,$B$。

例如:在上式中将 $x$ 替换为 $x=-1$,可以得到 $A=-1$。

在上式中将 $x$ 替换为 $x=-2$,可以得到 $B=2$。

最终得到:$\frac{x^2+2x}{(x+1)(x+2)}=\frac{-1}{x+1}+\frac{2}{x+2}$三、部分分式分解法部分分式分解法则是将有理式模拟成部分分式,之后进行求解。

下面我们将介绍部分分式分解法的具体步骤:1.将分母分解因式。

例如:$\frac{5x-1}{x^2-3x+2}=\frac{5x-1}{(x-1)(x-2)}$2.将各因式拆成单项式。

例如:$\frac{5x-1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}$3.用待定系数法求解。

例如:$5x-1=A(x-2)+B(x-1)$4.解得系数 $A$,$B$。

例如:在上式中将 $x=1$,可以得到 $A=-4$。

在上式中将 $x=2$,可以得到 $B=9$。

最终得到:$\frac{5x-1}{x^2-3x+2}=\frac{-4}{x-1}+\frac{9}{x-2}$四、总结:通过上述两种方法,我们可以将有理函数的积分拆分为若干个简单的分式相加。

高数讲义第四节有理函数的积分全

高数讲义第四节有理函数的积分全

例9
求积分
1
x
1 xdx x
解 令 1 x t 1 x t2,
x
x
x
t
1 2
, 1
dx
2tdt t2 1
2,
例9
求积分
1
x
1 xdx x

令 1 x t x
x
xt2211a12,dxdx
1
2a
ln
x2tdat tx2 a1
2
C,
1 x
1
x
xdx
t
2
1t
t
2
2t
12
dt
2
x
2)
1
A 2x
Bx 1
C x2
解:令:
x
1 (1
x)
2
A x
B 1 x
C (1 x)
2
1 A(1 x)2 B x(1 x) C x
取 x1, 得 C 1; 取 x0, 得 A1;
再取 x 2 , 得 1 (1 2)2 B2(1 2) 2 , B 1 ;
1 x (1 x) 2
t
3
1 t 1
1dt
6
(t
2
t
1
t
1
)dt 1
2t 3 3t 2 6t 6 ln | t 1 | C
2 x 1 33 x 1 36 x 1 6 ln(6 x 1 1) C.
说明 无理函数去根号时, 取根指数的最小公倍数.
例11 求积分
x 3x 1
dx. 2x 1
解 先对分母进行有理化
f (x) 为真分式 , 当 m n 时
f (x) 为假分式

有理函数的不定积分

有理函数的不定积分
4 2 3 2
例5. 求
( x 2 x 2) (2 x 2) d x 解: 原式 2 2 ( x 2 x 2)
dx d( x 2 x 2) 2 2 2 ( x 1) 1 ( x 2 x 2)
2
2
1 C arctan(x 1) 2 x 2x 2
2
2
例11. 求 解: 为去掉被积函数分母中的根式, 取根指数 2, 3 的最小公倍数 6, 令 x t , 则有 5 1 2 6 t d t 原式 3 2 6 ( t t 1 ) dt 1 t t t
6
6
2 1t 3 1 ln 1 t t t 3 2
2
例3. 求 解: 原式
x 2x 3 2 d( x 1) 1 d( x 2 x 3) 3 2 2 x 2x 3 ( x 1) 2 ( 2 ) 2 3 x 1 1 2 arctan C ln x 2 x 3 2 2 2
1 ( 2 x 2) 3 2
例2. 求 解: 已知 1 1 4 2x 1 2 2 (1 2 x)(1 x ) 5 1 2 x 1 x 1 x 2
2 d(1 2 x) 1 d(1 x ) 1 dx 原式 2 2 5 5 1 2x 5 1 x 1 x 2 1 1 2 ln 1 2 x ln (1 x ) arctan x C 5 5 5
1 Bx C A 2 (1 2 x)(1 x ) 1 2 x 1 x 2
A(1 x 2 ) ( Bx C )(1 2 x) 2 (1 2 x)(1 x ) 2 1 A(1 x ) ( Bx C)(1 2x), 1 4 1 取x 得A , 取x 0得1 A C, C , 5 5 2 2 取x 1得1 2 A 3( B C), B

有理函数

有理函数

(其中各系数待定); 其中各系数待定);
例1
x+3 x2 − 5x + 6
=
分母因式分解
=
x + 3 ( x − 2 )( x − 3 )
比( 较 系 数 法 )
部分分式之和
A B , + x−2 x−3
x + 3 = A( x − 3 ) + B ( x − 2 ),
通分后分子相等

∴ x + 3 = ( + B ) x − ( 3 A + 2 B ),
3、有理函数积分法
(1) 假分式
多项式除法

多项式 + 真分式;
x3 + x + 1 1 如 = x+ 2 2 x +1 x +1
(2) 真分式
待定系数法

: 部分分式之和
P( x ) 化为部分分式之和的步骤: 有理真分式 化为部分分式之和的步骤: Q( x ) 在实数系作标准分解: (1)对分母 Q ( x )在实数系作标准分解: b0 ( x − λ1 )α1 L( x − λk )α k ( x 2 + p1 x + q1 ) β1 L( x 2 + ph x + qh ) β h
(其中 x 2 + p i x + q i , i = 1, L , h 为 不可约因式 )
( x − a ) k ,对应的部分分式为 (2)分母中因式 ) A1 A2 Ak , + + L+ k k −1 ( x − a) ( x − a) x−a
都是待定 常数. 待定的 其中 A1 , A2 ,L , Ak 都是待定的常数

有理函数积分法

有理函数积分法

第21讲 理函数的不定积分一、有理函数的不定积分有理函数是指由两个多项式函数的商所表示的函数,其一般形式为mm mn n n xxx x x Q x P x R βββααα++++++==-- 110110)()()(, (1)其中,m 为n 非负整数,n ααα,,,10 与m βββ ,,10都是常数,且00≠α,00≠β. 若n m >,则称它为真分式;若n m ≤,则称它为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分,故设(1)为一有理真分式. 根据代数知识,有理真分式必定可以表示成若干个部分分式之和(称为部分分式分解).因而问题归结为求那些部分分式的不定积分.为此,先把怎样分解部分分式的步骤简述如下(可与例1对照着做): 第一步 对分母()x Q 在实系数内作标准分解: ()()()()()tt t s q p x q x p xa x a x x Q μμλλ++++--=21121121, (2)其中()t iji ,,2,1,1,0 ==μλβ均为自然数,而且.,,2,1,04;2211t j q p m j j si tj ji =-=+∑∑==μλ第二步 根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()ka x -的因式,它所对应的部分分式是 ()();221kka x A a x A ax A -++-+-对每个形如()kq px x ++2的因式,它所对应的部分分式是()().22222211kkk q px xC x B q px xC x B qpx x C x B ++++++++++++把所有部分分式加起来,使之等于()x R .(至此,部分分式中的常数系数i i i C B A ,,尚为待定的.)第三步 确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()x Q ,而其分子亦应与原分子()x P 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例1 对()8425109422345234-+--+-++-=x x x x x x x x x x R 作部分分式分解解 按上述步骤依次执行如下:()=x Q 84252345-+--+x x x x x ()()().12222+-+-=x x x x部分分式分解的待定形式为()().122222210+-++++++-=x x C Bx x A x A x A x R (3)用()x Q 乘上式两边,得一恒等式()()1210942220234+-+≡-++-x x x A x x x x +()()()()()121222221+--++-+-x x x A x x x x A+()()()222+-+x x C Bx (4)然后使等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--+=+----=+++-=++常数项的系数,的系数,的系数,的系数 .1082449483442433123,22102122103210410C A A A x C B A A x C B A A A x C B A A A x B A A 求出它的解:1,1,1,2,1210=-=-===C B A A A ,并代人(3)式,这便完成了)(x R 的部分分式分解:.11)2(12221)(22+---+-++-=x x x x x x x R上述待定系数法有时可用较简便的方法去替代.例如可将x 的某些特定值(如0)(=x Q 的根)代人(4)式,以便得到一组较简单的方程,或直接求得某几个待定系数的值.对于上例,若分别用2=x 和2-=x 代人(4)式,立即求得1120-==A A 和,于是(4)式简化成为)1)(2)(2(161232134+-+-=-+-x x x x A x x x .)2)(2)((2+-++x x C Bx为继续求得C B A ,,1,还可用x 的三个简单值代人上式,如令1,1,0-=x ,相应得到⎪⎩⎪⎨⎧=+-=++=+.83,233,42111C B A C B A C A 由此易得1,1,21=-==C B A .这就同样确定了所有待定系数. 一旦完成了部分分式分解,最后求各个部分分式的不定积分.由以上讨论知道,任何有理真分式的不定积分都将归为求以下两种形式的不定积分:⎰-I ka x dx)()(;()⎰<-+++I I )04()(22q p dx q px x M Lx k.对于()I ,已知()()⎪⎩⎪⎨⎧>+--=+-=--⎰.1,11,1,ln )(1k C a x k k C a x a x dx k k对于()II ,只要作适当换元(令2p x t +=),便化为()⎰⎰++=+++dt rtNLt dx q px xMLx kk222)(⎰⎰+++=,)()(2222kkr t dt N dt r t t L (5)其中.2,422L p M N pq r-=-=.当1=k 时,(5)式右边两个不定积分分别为⎰++=+C r t dt rtt)ln(212222,.a r c t a n 122C rtr rtdt+=+⎰ (6) 当2≥k 时,(5)式右边第一个不定积分为C r t k dt r t tk k++-=+⎰-12222))(1(21)(.对于第二个不定积分,记 ,)(122⎰-+=k k r tdtI 可用分部积分法导出递推公式如下:dt r t t r t rI kk ⎰+-+=)()(1222222⎰+-=-dt r ttrI rkk )(11222212⎰⎪⎪⎭⎫ ⎝⎛+-+=--122212)(1)1(211k k r t td k r I r.)()1(2111122212⎥⎦⎤⎢⎣⎡-+-+=---k k k I r t tk r I r 经整理得到.)1(232))(1(2121222----++-=k k k I k r k r t k r tI (7)重复使用递推公式(7),最终归为计算1I ,这已由(6)式给出. 把所有这些局部结果代回(5)式,并令2p x t +=,就II )的计算.例2 求.)22(1222dx x xx ⎰+-+解:在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为222222)22()12()22()22(1+--++-=+-+x x x x x x x x .)22(12221222+--++-=x x x x x现分别计算部分分式的不定积分如下:.)1arctan(1)1()1(22122C x x x d x x dx +-=+--=+-⎰⎰dx x xx dx x xx ⎰⎰+-+-=+--2222)22(1)22()22(12++-+-=⎰222)22()22(x xx x d []⎰+--221)1()1(x x d.)1(221222⎰+++--=tdtx x由递推公式(7),求得其中⎰⎰+++=+121)1(2)1(2222tdtt t t dt .)1arctan(21)22(2122C x x x x +-++--=于是得到.)1a r c t a n (23)22(23)22(12222C x x x x dx x xx +-++--=+-+⎰二、三角函数有理式的不定积分⎰dx x x R )cos ,(sin 是三角函数有理式的不定积分。

有理函数及三角函数有理式的积分

有理函数及三角函数有理式的积分

2. 特殊类型的积分按上述方法虽然可以积出, 但不一定 简便 , 要注意综合使用基本积分法 , 简便计算 .
思考与练习
如何求下列积分更简便 ?
解:
备用题 1. 求不定积分
x6
1 (1
x2
)
dx
.
分母次数较高, 宜使用倒代换.
解:令 t 1 , 则
,故
x
x6
1 (1
x
t6
(
1 t2
讨论积分
(
x
Mx 2 px
N q
)n
dx,
x2
px
q
x
p2
2
q
p2 4
,
令 x pt
2
记 x2 px q t 2 a2 , Mx N Mt b,
则 a2 q p2 , b N Mp ,
4
2
(
x
Mx 2 px
N q)n
dx
(t2
Mt a2 )n
dt
(t2
b a2 )n
特殊地:k
1,
分解后为
x
Mx 2
N px
q
;
真分式化为部分分式之和的待定系数法
例1
x
2
x
3 5x
6
(
x
x 2)(
3 x
3)
A x2
B, x3
x 3 A( x 3) B( x 2),
x 3 ( A B)x (3A 2B),
A (3
B A
1, 2B)
3,
A B
5 ,
x sin2 2
x 2
1 tan2 x
1
tan2

有理函数积分法

有理函数积分法

第21讲 理函数的不定积分一、有理函数的不定积分有理函数是指由两个多项式函数的商所表示的函数,其一般形式为mm m nn n x x x x x Q x P x R βββααα++++++==-- 110110)()()(, (1) 其中,m 为n 非负整数,n ααα,,,10 与m βββ ,,10都是常数,且00≠α,00≠β. 若n m >,则称它为真分式;若n m ≤,则称它为假分式.由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和.由于多项式的不定积分是容易求得的,因此只需研究真分式的不定积分,故设(1)为一有理真分式. 根据代数知识,有理真分式必定可以表示成若干个部分分式之和(称为部分分式分解).因而问题归结为求那些部分分式的不定积分.为此,先把怎样分解部分分式的步骤简述如下(可与例1对照着做): 第一步 对分母()x Q 在实系数内作标准分解: ()()()()()t t t s q p x q x p xa x a x x Q μμλλ++++--=21121121 , (2)其中()t i j i ,,2,1,1,0 ==μλβ均为自然数,而且.,,2,1,04;2211t j q p m j j si tj j i=-=+∑∑==μλ第二步 根据分母的各个因式分别写出与之相应的部分分式:对于每个形如()ka x -的因式,它所对应的部分分式是()();221kk a x A a x A a x A -++-+- 对每个形如()kq px x ++2的因式,它所对应的部分分式是()().22222211kkk qpx xC x B qpx x C x B q px x C x B ++++++++++++把所有部分分式加起来,使之等于()x R .(至此,部分分式中的常数系数i i i C B A ,,尚为待定的.)第三步 确定待定系数:一般方法是将所有部分分式通分相加,所得分式的分母即为原分母()x Q ,而其分子亦应与原分子()x P 恒等.于是,按同幂项系数必定相等,得到一组关于待定系数的线性方程,这组方程的解就是需要确定的系数.例1 对()8425109422345234-+--+-++-=x x x x x x x x x x R 作部分分式分解解 按上述步骤依次执行如下:()=x Q 84252345-+--+x x x x x ()()().12222+-+-=x x x x部分分式分解的待定形式为()().122222210+-++++++-=x x CBx x A x A x A x R (3)用()x Q 乘上式两边,得一恒等式()()1210942220234+-+≡-++-x x x A x x x x +()()()()()121222221+--++-+-x x x A x x x x A+()()()222+-+x x C Bx (4)然后使等式两边同幂项系数相等,得到线性方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--+=+----=+++-=++常数项的系数,的系数,的系数,的系数 .1082449483442433123,22102122103210410C A A A x C B A A x C B A A A x C B A A A x B A A 求出它的解:1,1,1,2,1210=-=-===C B A A A ,并代人(3)式,这便完成了)(x R 的部分分式分解:.11)2(12221)(22+---+-++-=x x x x x x x R 上述待定系数法有时可用较简便的方法去替代.例如可将x 的某些特定值(如0)(=x Q 的根)代人(4)式,以便得到一组较简单的方程,或直接求得某几个待定系数的值.对于上例,若分别用2=x 和2-=x 代人(4)式,立即求得1120-==A A 和,于是(4)式简化成为)1)(2)(2(161232134+-+-=-+-x x x x A x x x .)2)(2)((2+-++x x C Bx为继续求得C B A ,,1,还可用x 的三个简单值代人上式,如令1,1,0-=x ,相应得到⎪⎩⎪⎨⎧=+-=++=+.83,233,42111C B A C B A C A 由此易得1,1,21=-==C B A .这就同样确定了所有待定系数. 一旦完成了部分分式分解,最后求各个部分分式的不定积分.由以上讨论知道,任何有理真分式的不定积分都将归为求以下两种形式的不定积分:⎰-I k a x dx )()(; ()⎰<-+++II )04()(22q p dx q px x M Lx k. 对于()I ,已知()()⎪⎩⎪⎨⎧>+--=+-=--⎰.1,11,1,ln )(1k C a x k k C a x a x dx k k 对于()II ,只要作适当换元(令2px t +=),便化为()⎰⎰++=+++dt r t NLt dx q px x M Lx kk 222)(⎰⎰+++=,)()(2222k k r t dt N dt r t t L (5)其中.2,422L pM N p q r -=-=. 当1=k 时,(5)式右边两个不定积分分别为⎰++=+C r t dt r t t )ln(212222, .arctan 122C rtr r t dt +=+⎰ (6) 当2≥k 时,(5)式右边第一个不定积分为C r t k dt r t t k k++-=+⎰-12222))(1(21)(. 对于第二个不定积分,记 ,)(122⎰-+=k k r t dtI 可用分部积分法导出递推公式如下:dt r t t r t r I k k ⎰+-+=)()(1222222⎰+-=-dt r t t r I r kk )(11222212 ⎰⎪⎪⎭⎫ ⎝⎛+-+=--122212)(1)1(211k k r t td k r I r .)()1(2111122212⎥⎦⎤⎢⎣⎡-+-+=---k k k I r t tk r I r 经整理得到.)1(232))(1(2121222----++-=k k k I k r k r t k r t I (7)重复使用递推公式(7),最终归为计算1I ,这已由(6)式给出. 把所有这些局部结果代回(5)式,并令2p x t +=,就完成了对不定积分(II )的计算.例2 求.)22(1222dx x x x ⎰+-+ 解:在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为222222)22()12()22()22(1+--++-=+-+x x x x x x x x .)22(12221222+--++-=x x x x x 现分别计算部分分式的不定积分如下:.)1arctan(1)1()1(22122C x x x d x x dx +-=+--=+-⎰⎰dx x x x dx x x x ⎰⎰+-+-=+--2222)22(1)22()22(12++-+-=⎰222)22()22(x x x x d []⎰+--221)1()1(x x d.)1(221222⎰+++--=t dtx x由递推公式(7),求得其中⎰⎰+++=+121)1(2)1(2222t dt t t t dt .)1arctan(21)22(2122C x x x x +-++--=于是得到 .)1arctan(23)22(23)22(12222C x x x x dx x x x +-++--=+-+⎰ 二、三角函数有理式的不定积分⎰dx x x R )cos ,(sin 是三角函数有理式的不定积分。

有理函数及三角函数有理式的积分

有理函数及三角函数有理式的积分

有理函数及三角函数有理式的积分
一、有理函数的积分
有理函数是指可以表示为常熟分式的函数,称为有理函数。

有理函数主要由多项式和
不定积分所组成。

1.直接积分法:即把有理函数积分后的结果表达式化成原函数的另一种表达形式,常
用整理、贝塞尔曲线等方法来解决。

2.常熟分式积分法:将有理函数分解成分加函数,然后分别积分,再把积分结果求和。

三角函数是一类有特殊解析特性的函数,它们其中包括正弦、余弦函数、正切函数等等。

由于三角函数以及它们的倒数和反函数都有解析特性,因此其积分是容易解决的。

1.利用倒数公式积分:针对三角函数有一系列专有倒数公式,其中包括 Ma 矩阵公式
和高尔文三角函数积分公式。

2.利用反函数积分:由于三角函数都有反函数,因此也可以利用反函数将三角函数的
积分问题转化为反函数的积分问题,从而轻松解决。

3.利用改元积分:改元积分是把变量改为一些更简单的函数,然后分别积分得出结果,可以将三角函数的积分转化为改元积分,以减少积分的难度。

总之,有理函数和三角函数都可以通过不同的方法解决积分问题,在解决的时候需要
根据具体的函数情况来选择最适合的积分法,才能更好的解决积分问题。

第四节有理函数的积分

第四节有理函数的积分

第四节 有理数函数的积分本节我们还要介绍一些比较简单的特殊类型函数的不定积分,包括有理函数的积分以及可化为有理函数的积分,如三角函数有理式、简单无理函数的积分等.分布图示★ 有理函数的积分 ★ 例1 ★ 例2★ 例3 ★ 例4 ★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 有理函数的原函数★ 三角函数有理式的积分★ 例 11 ★ 例 12 ★ 例 13 ★ 例 14★ 简单无理函数的积分★ 例 15 ★ 例 16 ★ 例 17 ★ 例 18★ 例 19 ★ 例 20 ★ 例 21 ★ 例 22★ 内容小结 ★ 课堂练习★ 习题4-4★ 返回内容要点一、有理函数的积分1.最简分式的积分下列四类分式称为最简分式,其中n 为大于等于2的正整数.,A 、M 、N 、a 、p 、q 均为常数,且042<-q p . (1) a x A -; (2) na x A )(-; (3) qpx x N Mx +++2; (4) n q px x N Mx )(2+++. 2.有理分式化为最简分式的和二、可化为有理函数的积分1.三角函数有理式的积分: 由x sin 、x cos 和常数经过有限次四则运算构成的函数称为三角有理函数,记为).cos ,(sin x x R2.简单无理函数的积分求简单无理函数的积分,其基本思想是利用适当的变换将其有理化,转化为有理函数的积分. 下面我们通过例子来说明.三、总结本章我们介绍了不定积分的概念及计算方法. 必须指出的是:初等函数在它有定义的区间上的不定积分一定存在,但不定积分存在与不定积分能否用初等函数表示出来不是一回事. 事实上,有很多初等函数,它的不定积分是存在的,但它们的不定积分却无法用初等函数表示出来,如dx e x ⎰-2,⎰dx x x sin ,⎰+31x dx.同时我们还应了解,求函数的不定积分与求函数的导数的区别,求一个函数的导数总可以循着一定的规则和方法去做,而求一个函数的不定积分并无统一的规则可循,需要具体问题具体分析,灵活应用各类积分方法和技巧.例题选讲有理式的分解例1(E01) 分解有理分式6532+-+x x x . 解 ,)3)(2(36532--+=+-+x x x x x x ∴设,326532-+-=+-+x B x A x x x ),2()3(3-+-=+x B x A x )23()(3B A x B A x +-+=+∴⇒⎩⎨⎧=+-=+3)23(1B A B A ⇒⎩⎨⎧=-=,65B A .36256532-+--=+-+∴x x x x x 例2 分解有理式 .2424x x +解 ⎥⎦⎤⎢⎣⎡++++=+=+24)2(424222224x D Cx x B x A x x x x 两边同乘以2x 得:⎥⎦⎤⎢⎣⎡⋅++++=+2222424x x D Cx B Ax x 令,0=x 得.2/1=B 再将上式两边求导:⎥⎥⎦⎤⎢⎢⎣⎡'⎪⎭⎫ ⎝⎛+++++⋅+=+-2224)2(822222x D Cx x x D Cx x A x x 令,0=x 得.0=A同理,两边同乘以,22+x 令,2C x =得,0=C ,2/1-=D 所以)2(4242224+=+x x x x ⎥⎦⎤⎢⎣⎡+-=)2(2121422x x .22222+-=x x例3 分解有理分式 2)1(1-x x .解 设1)1()1(122-+-+=-x C x B x A x x ⇒),1()1(12-++-=x Cx Bx x A (*) 代入特殊值来确定系数,,,C B A 取0=x ⇒;1=A 取1=x ⇒;1=B取,2=x 并将B A ,值代入(*)⇒;1-=C.11)1(11)1(122---+=-∴x x x x x例4 分解有理分式 )1)(21(12x x ++. 解 设22121)1)(21(1xC Bx x A x x ++++=++⇒),21)(()1(12x C Bx x A ++++= 整理得 ,)2()2(12A C x C B x B A +++++=即1,02,02=+=+=+C A C B B A ⇒,51,52,54=-==C B A .151522154)1)(21(122x x x x x ++-++=++∴例5 将 )1)(1(1222+---+x x x x x 分解为部分分式. 解 设11)1)(1(12222+-++-=+---+x x C Bx x A x x x x x 去分母,得)1)(()1(1222-+++-=-+x C Bx x x A x x令,1=x 得;2=A 令,0=x 得,1C A -=-所以;3=C令,2=x 得,237C B A ++=所以.1-=B因此 .1312)1)(1(12222+----=+---+x x x x x x x x x有理式的积分例6 (E02) 求不定积分⎰-dx x x 2)1(1. 解 根据例3的结果,11)1(11)1(122---+=-x x x x x ∴原式dx x x x ⎰⎥⎦⎤⎢⎣⎡---+=11)1(112dx x dx x dx x ⎰⎰⎰---+=11)1(112 .|1|ln 11||ln C x x x +----= 例7 (E03) 求不定积分⎰++dx x x )1)(21(12.解 根据例4的结果,151522154)1)(21(122x x x x x ++-++=++ ∴原式⎰⎰++-++=dx x x dx x 2151522154⎰⎰+++-+=dx x dx x x x 2211511251|21|ln 52 .arctan 51)1ln(51|21|ln 522C x x x +++-+=例8 求不定积分.)1)(1(1222dx x x x x x ⎰+---+ 解 根据例5的结果,有dx x x x x dx x x x x x ⎰⎰⎪⎭⎫ ⎝⎛+----=+---+1312)1)(1(12222⎰⎰+----=dx x x x x dx 13122 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+----=⎰⎰4341511221|1|ln 222x x dx dx x x x x ⎰⎰+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--+-+---=432121251)1(21|1|ln 2222x x d x x x x d x |1|ln 21|1|ln 22+---=x x x C x +-⋅+2/32/1arctan 3225 .312arctan 351)1(ln 22C x x x x +-++--=例9 (E04) 求不定积分⎰+++++4555222423x x x x x . 解法1⎰⎰+++++++=dx x x x dx x x x x I 45524552242243⎰⎰++++++++++=dx x x x x x x x x d )4)(1(4145)45(212222424 ⎰⎰++++++=14|45|ln 212224x dx x dx x x .2arctan 21arctan |45|ln 2124C x x x x +++++= 解法241)4)(1(5522222223+++++=+++++x D Cx x B Ax x x x x x)4)((5522223++=+++x B Ax x x x )1)((2+++x D Cx比较x 同次幂的系数得54,54,2,2=+=+=+=+D B C A D B C A解得.1,1,1,1====D C B A 故⎰⎰+++++=dx x x dx x x I 411122 |4|ln 21|1|ln 2122+++=x x C x x +++2arctan arctan .2arctan 21arctan |45|ln 2124C x x x x +++++= 解法3 由)1(5)1(25522223+++=+++x x x x x x )52)(1(2++=x x ,则有)4)(1()52)(1()4)(1(55222222223++++=+++++x x x x x x x x x )4)(1()41)(1(2222++++++=x x x x x .411122+++++=x x x x 所以.2arctan 21arctan |45|ln 2124C x x x x I +++++=例10 求不定积分.116/3/2/dx e e e x x x ⎰+++ 解 令6xe t =⇒,6,ln 6dt t dx t x ==原式dt t t t dt t t t t ⎰⎰++=⋅+++=)1)(1(6611223dt t t t t ⎰⎪⎭⎫ ⎝++-+-=213313 ⎰⎰+-++-+-=dt tt t d t t 2221131)1(23)1ln(3ln 6 C t t t t +-+-+-=arctan 3)1ln(23)1ln(3ln 62 .arctan 3)1ln(23)1ln(3636C e e e x xx x+-+-+-=例11 (E05) 求不定积分.cos sin 1sin dx xx x ⎰++ 解 由万能置换公式,12,11cos ,12sin 2222du u dx u u x u u x +=+-=+= 原式⎰⎰++--++=++=du u u u u u du u u u )1)(1(112)1)(1(22222 ⎰⎰⎰+-++=+++-+=du u du u u du u u u u 1111)1)(1()1()1(2222C u u u ++-++=|1|ln )1ln(21arctan 2 ↓2tan xu =.2tan 1ln 2sec ln 2C x x x ++-=例12 (E06) 求不定积分⎰dx x4sin 1. 解一 利用万能置换公式,12,11cos ,12sin 2222du u dx u u x u u x +=+-=+= 原式⎰+++=du u u u u 46428331C u u u u +⎥⎦⎤⎢⎣⎡++--=333318133 .2tan 2412tan 832tan 832tan 24133C x x x x +⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛-= 解二 修改万能置换公式 ,令x u tan =,11,11cos ,1sin 222du u dx u x u ux +=+=+= 原式du u u du u u u ⎰⎰+=+⋅⎪⎪⎭⎫ ⎝⎛+=422211111C u u +--=1313.cot cot 313C x x +--= 解三 不用万能置换公式原式dx x x )cot 1(csc 22+=⎰dx x x xdx ⎰⎰+=222csc cot csc .cot cot 313C x x +--= 结论:比较以上三种解法,便知万能置换不一定是最佳方法,故三角有理式的计算中先考虑其他手段,不得已才用万能置换.例13 求不定积分.sin 3sin sin 1dx xx x ⎰++ 解 ,2cos 2sin 2sin sin B A B A B A -+=+ 原式⎰⎰+=+=dx x x x dx x x x 2cos sin 4sin 1cos 2sin 2sin 1⎰⎰+=dx x dx x x 22cos 141cos sin 141 ⎰⎰+=dx xdx x x x x 2222cos 141cos sin cos sin 41 ⎰⎰⎰++=dx xdx x dx x x 22cos 141sin 141cos sin 41 ⎰⎰⎰++-=dx x dx x x d x 22cos 141sin 141)(cos cos 141.tan 412tan ln 41cos 41C x x x +++=例14 求不定积分.cos 4sin 3⎰+xx dx 解一 作代换.2tan x t = 原式⎰⎰-+=+-+++=22222464211412312t t dt t t t t dt t dt t t t t dt ⎰⎰⎪⎭⎫ ⎝⎛-++=-+=2112251)2)(12( .2tan 212tan2ln 51212ln 51C xx C t t +-+=+-+= 解二 原式⎰+=x x dx cos 54sin 5351⎰++=)sin()(51θθx x d .2tan ln 51C x +⎪⎭⎫ ⎝⎛+=θ 其中.54sin ,53cos ==θθ简单无理函数的积分例15 求不定积分.1213dx x x x ⎰+++解 先对分母进行有理化 原式=dx x x x x x x x ⎰+-+++++-+)1213)(1213()1213(⎰+-+=dx x x )1213( ⎰⎰++-++=)12(1221)13(13(31x d x x d x .)12(31)13(922323C x x ++-+=例16 (E07) 求不定积分⎰+dx x x 1.解 令x t =,即作变量代换)0(2>=t t x ,从而tdt dx 2=,所以不定积分C x C t dt t tdt t t dx x x ++=++=+=⋅+=+⎰⎰⎰)1ln(21ln 21122112.例17 (E08) 求不定积分 ⎰+dx x x 313. 解 令,133+=x t 则,,3123dt t dx t x =-=从而 ⎰⎰⎰-=-=+dt t t dt t t t dx x x )(3131134233C t t +⎪⎪⎭⎫ ⎝⎛-=253125.)13(61)13(1513/23/5C x x ++-+=例18 (E09) 求不定积分dx x x ⎰+)1(13.方法: 当被积函数含有两种或两种以上的根式,k x …,l x 时,可令n t x =(n 为各根指数的最小公倍数).解 令6t x =⇒,65dt t dx =dt t t t dx x x ⎰⎰+=+)1(6)1(12353⎰⎰+-+=+=dt t t dt t t 2222111616 ⎰+-=⎪⎭⎫ ⎝⎛+-=C t t dt t ]arctan [611162.]arctan [666C x x +-= 例19 求不定积分.1113dx x x ⎰+++解 令16+=x t ⇒dx dt t =56 原式dt t t t 52361⋅+=⎰dt t t t t ⎰⎰+-+=+=11161633C t t t t ++++-=|1|ln 663223 63131312+++-+=x x x .)11ln(66C x ++++例20 求不定积分⎰+dx xx x 11. 解 令t x x =+1⇒,)1(2,11,12222--=-==+t tdt dx t x t x x 原式⎰⎰--=---=12)1(2)1(2222t dt t dt t t t t C t t t dt t ++---=⎪⎭⎫ ⎝⎛-+-=⎰11ln 211122 .11ln 122C x x x x x +⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-+-=例21 (E10) 求不定积分.111dx x x x -+⎰ 解 令,11-+=x x t 则.)1(4,112222--=-+=t tdt dx t t x 原式dt t t t t t dt t ⎰⎰⎪⎭⎫ ⎝⎛+---+=-+-=121111)1)(1(42222C t t t +--+=arctan 211ln 111ln 111ln --+-⎪⎪⎭⎫ ⎝⎛+-+=x x x x .11arctan 2C x x +-+-例22 求不定积分⎰+++12x x x dx . 解 令,12t x x x =+++则,2112tt x +-=且 ,)21()1(222dt t t t dx +++=,211122t t t x x +++=++ 于是⎰⎰+++=+++dt t t t t x x x dx )2/1(121122⎰⎥⎦⎤⎢⎣⎡+-+-=dt t t t 2)2/1(232/13421 C t t t +⎥⎦⎤⎢⎣⎡+++-=)2/1(2321ln 3||ln 421.)12(23|2/1|ln 2134C t t t ++++= 注: 上式最后一步只需将变量t 回代为变量x 即可.课堂练习求下列不定积分.4cos 5)2(;)1)(1(1)1(224⎰⎰-+-+x dx dx x x x。

有理函数和三角函数有理式的积分法

有理函数和三角函数有理式的积分法

§3-7 阅读(有理函数和三角函数有理式的积分法)在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分..在那里,因为被积函数都很特殊,因为被积函数都很特殊,所以用所以用所以用“拼凑的方法”“拼凑的方法”就求出了它们的积分就求出了它们的积分..这一节讨论的是一般情形下,如何求它们的积分当你遇到那些简单或特殊的情形时,当然不必用这里的一般方法,而仍用以前那种“拼凑方法”就行了法,而仍用以前那种“拼凑方法”就行了. .1.有理函数的积分法有理函数的积分()d ()p x x q x ò[ [其中其中()p x 和()q x 都是多项式都是多项式] ] 总可以积出来,即可把它表示成初等函数总可以积出来,即可把它表示成初等函数..积分方法的要点是:第一,若有理函数()()p x q x 中,分子()p x 的次数不低于分母()q x 的次数,则称它为假分式假分式..在这种情形下,就用多项式除法(见下面例2727)),先把它变成一个多项式与一个真分式之和,即()()()()()p x r x s x q x q x =+ [ [其中分子其中分子()r x 的次数低于分母()q x 的次数的次数] ] 于是,()d ()p x x q x ò()()d d ()r x s x x x q x =+òò右端第一项是多项式的积分右端第一项是多项式的积分((用分项积分法可以积出来用分项积分法可以积出来)),所以就变成求有理函数真分式的积分()d ()r x x q x ò. . 关于多项式除法,请看下面的例题关于多项式除法,请看下面的例题关于多项式除法,请看下面的例题. . 例27 例如求有理函数假分式的积分522d 36x x x x -++ò首先像做整数除法那样,做多项式除法:由此可得63225++-x x x 3212323336x x x x +æö=-+ç÷+èø其次再逐项积分,即(余式) 23+x (被除式) (除式)255336000202x x x x x ++++-+++xx x x 40220233-+-+-+-(商式)31233x x -5342222212321132d d d d 33123363636x x x x x x x x x x x x x x x -+++æö=-+=-+ç÷+++èøòòòò这样就变成求这样就变成求((右端最后一个右端最后一个))有理函数真分式的积分有理函数真分式的积分. .第二,第二,对于真分式对于真分式()()r x q x ,先把分母上的多项式()q x 分解成一次因式或没有实根的二次因式的乘积二次因式的乘积((根据代数基本定理,这是可能的).).然后用待定系数法然后用待定系数法然后用待定系数法((或拼凑方法或拼凑方法))把()()r x q x 化成不超出下面这些“最简分式”的和:化成不超出下面这些“最简分式”的和:22,,,()()n m A B Cx D Ex Fx a x b x px q x rx s ++--++++(n 和m 为正整数为正整数)) (分子比分母上的基因式低一次分子比分母上的基因式低一次) )这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分. . 我们用例子来说明上述方法我们用例子来说明上述方法我们用例子来说明上述方法. .⑴分母为一次重因式的真分式的积分法例28 例如求例如求2353d (2)x x x ++ò,可令,可令2323532(2)(2)(2)x A B C x x x x +=++++++将右端通分,将右端通分,并比较两端分子,并比较两端分子,并比较两端分子,即即C x B x A x ++++º+)2()2(3522,则得三元线性方程组则得三元线性方程组ïîïíì=++=+=(常数项)的系数)(的系数)(3240452C B A x B A x A , 解得解得ïîïíì=-==23205C B A 于是得于是得3232)2(23)2(2025)2(35+++-+=++x x x x x 因此,因此, 2353d (2)x x x ++ò2352023d d d 2(2)(2)x x x x x x =-++++òòò220235ln 222(2)x x x =++-++【注1】上面求待定系数的方法是比较两端x 的同次项系数,下面是求待定系数的另一个方法:根据2253(2)(2)x A x B x C +º++++,则,则第一步,让2x =-,得23C =;第二步,在2253(2)(2)x A x B x C +º++++两端关于x 求导数,得102(2)x A x B º++. 再令2x =-,得20B =-;第三步,在102(2)x A x B º++两端关于x 求导数,则得102A =,即5A =.【注2】把真分式2353(2)x x ++化成最简分式之和的另一个方法是依次用多项式除法化成最简分式之和的另一个方法是依次用多项式除法: :25323(510)22x x x x +=-+++,222253510232023522(2)(2)(2)x x x x x x x +-=+=-++++++ 232353520232(2)(2)(2)x x x x x +=-+++++ ( (你看懂了吗你看懂了吗你看懂了吗?) ?)⑵分母为不同一次因式乘积的真分式的积分法例如求d ()()cx d x x a x b +--ò,可令,可令 bx Ba x Ab x a x d cx -+-=--+))(((A 和B 为待定系数)为待定系数) 然后根据恒等式()()cx d A x b B x a +º-+-,求出待定系数A 和B .于是,于是,d ()()cx d x x a x b +=--òd d ln ||ln ||A B x x A x a B x b x a x b +=-+---òò例29 求2d (3)(5)x x x x ---ò.解 设53)5)(3(2-+-=---x Bx A x x x (B A ,为待定常数为待定常数) ) 则得)3()5(2-+-º-x B x A x ,即,即2)35()(-º+-+x B A x B A 比较两端常数项和x 的系数,则得线性方程组的系数,则得线性方程组îíì=+=+1235BA B A 解得23,21=-=B A ( (求求B A 和的另一个方法见下注的另一个方法见下注).).).因此,因此,因此, 523321)5)(3(2-+--=---x x x x x 从而得从而得2d(3)(5)x x x x ---ò113113d(3)d(5)ln 3ln 5232522x x x x x x =--+-=--+---òò【注】在式2(5)(3)x A x B x -º-+-中,让3x =,则得12A =-,所以12A =-;再让5x =,则得32B =,所以32B =.⑶分母为二次多项式(没有实根)的真分式的积分法 例如例如[[注意注意,,分母没有实根2(40)p q -<],22222111(1)d d d 424x x ux px q u A p q px ==+++-æö++ç÷èøòòò24,22q p p u x A æö-ç÷=+=ç÷èø(套用积分公式)1arctan u A A =2222arctan 44q q x p p p+-=-2222(2)(2)d (0)d d 2b bx p p x ax ba a ax a ax x x px qx px qx px qæö++-+ç÷+èø¹==++++++òòò222d()21d 22ax px q a b p x a x px q x px q++æö=+-ç÷++++èøòò2221ln()d 22aa bx px q p x a x px q æö=+++-ç÷++èøò(套用前一题的结果套用前一题的结果).). ⑷分母为二次重因式的真分式的积分法例30 例如求积分例如求积分322221d (1)x x x x x -+++ò.若用待定系数法,就令若用待定系数法,就令322222221(1)1(1)x xAx B Cx D x x x x x x -+++=+++++++若不用待定系数法,可依次用多项式除法:若不用待定系数法,可依次用多项式除法:第一步,3222212(2)(3)11x x x x x x x x -++=-+++++;第二步,32222222132(2)(1)1(1)x x x x x x x x x x -+-+=+++++++于是,于是,32222222132(2)d d d (1)1(1)x x x x xx x x x x x x x -+-+=+++++++òòò其中右端第一个积分其中右端第一个积分22222231(21)71d(1)7d d d 1212121322x x x x x x x x x x x x x x -+-++==-++++++æöæö++ç÷ç÷èøèøòòòò217221ln(1)arctan 2233x x x +=++-×而第二个积分而第二个积分2222222222(2)(21)3d(1)1d d 3d (1)(1)(1)(1)x x x x xxx x x x x x x x x +++++==+++++++++òòòò2222113d (1)1322x x x x =-+++éùæöæöêú++ç÷ç÷êúèøèøëûò[套积分公式⒇] ⑸分母为一次因式与二次因式乘积的真分式的积分法例如,求22d ()()bx cx d x x a x px q ++-++ò时,可令时,可令 q x p x C x B a x Aq x p x a x d x c x b ++++-=++-++222))((然后根据恒等式然后根据恒等式22()()()bx cx d A x px q Bx C x a ++º++++-求出待定系数A 、B 和C . 于是,于是,22d ()()bx cx dx x a x px q ++-++ò2ln ||d Bx C A x a x x px q +=-+++ò (注意2xpx q ++没有实根没有实根,,即240p q -<)2.三角函数有理式的积分法 所谓“三角函数有理式”,是指由常数和简单三角函数x sin 与x cos 经过有限次的有理运算经过有限次的有理运算((加、减、乘、除加、减、乘、除))得到的函数,记成)cos ,(sin x x R .下面介绍的是形如积分的是形如积分(sin ,cos )d R x x x ò的积分法的积分法..例如积分例如积分2cos d 2sin cos x x x x +ò,1d 2sin cos 1x x x -+ò,1d (0)cos x ab a b x ¹+ò等.实际上,我们在前面几节中曾多次遇到这种类型的积分我们在前面几节中曾多次遇到这种类型的积分..这里介绍的是一般方法这里介绍的是一般方法..你在做题时.....,还是要具体问题具体分析...........,未必就一定要用这里介绍的方法..............(因为一般情形下,这里介绍的方法要麻烦一些)方法要麻烦一些). .令2tan xt =(称它为半角替换或万能替换称它为半角替换或万能替换)),则,则2222122tan12tan22sec 2tan22cos2tan22cos2sin2sin t t x x xx xx x x x +=+==== 22222222112tan12tan 1)2tan 1(2cos 2sin 2cos cos t t x x x x x x x +-=+-=-=-= t t t x d 12)arctan 2(d d 2+==于是,于是,(sin ,cos )d R x x xò2222212,d 111t t R t t t t-æö=ç÷+++èøò这样,三角函数有理式的积分就变成有理函数的积分三角函数有理式的积分就变成有理函数的积分..在有些情形下,像前面做过的那样,不必用半角替换,而用其它三角替换会更简单必用半角替换,而用其它三角替换会更简单..例如例如()i 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令cos t x =; ()ii 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令sin t x =; ()iii 当(sin ,cos )(sin ,cos )R x x R x x --=时,令tan t x =.习题1.求下面的原函数:⑴25d (3)x x x --ò; ⑵⑵325d (2)x x x --ò;⑶23354d (1)x x x x -+-ò; ⑷⑷3223242d 21x x x x x x -++-+ò. 答案:⑴323ln -+-x x;⑵2)2(2122-+--x x ;⑶2)1(1111ln 3-----x x x ; ⑷171ln 94232---++x x x x .2.求下面的原函数:求下面的原函数:⑴x x x x d )3)(2(73ò---; ⑵⑵x x x x d 2152ò-++; ⑶⑶x x x x x x d )2)(2(2342ò+---. 答案:⑴3ln 22ln -+-x x ;⑵1ln 22ln 3-++x x ;⑶2ln 252ln ln 21++-+x x x . 3.求下面的原函数:求下面的原函数:⑴x x x x x d )1)(2(23222ò++-+; ⑵⑵x x x x x d )32)(1(2ò+++; ⑶⑶x x x d 134ò+. 答案:⑴x x arctan )1ln(2-+;⑵21arctan 21)32ln(411ln 212++++++-x x x x ;⑶312arctan 311)1(ln 6121222--+-++x x x x x . 4.根据提示,请把下面的演算做到底:根据提示,请把下面的演算做到底:⑴tan 21d 2sin cos 1x t x x x æö=ç÷èø====-+ò⑵(cos )1d (2cos )sin t x x x x ======+ò⑶2(sin )cos d 2sin cos t x xx x x ======+ò⑷3(tan )3sin d sin cos t x xx x x======+ò答案:⑴22tan2tan ln21+x x ;⑵32)cos 1()cos 1()cos 2(ln 61x x x +-+;⑶12sin 1ln 222sin 1x x +--+;⑷÷÷øöççèæ---+-x x x x x x x sin 3sin cos 2arctan 31cos sin 1)cos (sin ln 612.。

几种特殊函数的积分

几种特殊函数的积分
2 2
p p x px q x q , 2 4 p 令 x t 2
记 x 2 px q t 2 a 2 ,

Mx N Mt b,
p2 2 a q , 4
Mp b N , 2
Mx N 2 dx n ( x px q ) Mt b 2 dt 2 dt 2 n 2 n (t a ) (t a )
真分式化为部分分式之和的待定系数法
x3 x3 A B 例1 2 , x 5 x 6 ( x 2)( x 3) x 2 x 3
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
1 dx . 例4 求积分 2 x( x 1) 1 1 1 1 dx 解 2 2 dx x ( x 1) x ( x 1) x 1 1 1 1 dx dx dx 2 x ( x 1) x 1
1 ln x ln x 1 C. x 1
三、简单无理函数的积分
ax b 讨论类型 R( x, ax b ), R( x , ), cx e
n
n
解决方法 作代换去掉根号.
1 1 x 例10 求积分 dx x x

1 x 2 1 x 令 t t , x x
1 sin x dx. 例9 求积分 sin 3 x sin x A B A B 解 sin A sin B 2 sin cos 2 2 1 sin x 1 sin x sin 3 x sin x dx 2 sin 2 x cos x dx 1 sin x dx 2 4 sin x cos x 1 1 1 1 dx dx 2 2 4 sin x cos x 4 cos x

第4节 有理函数的不定积分

第4节 有理函数的不定积分
其中 M i , N i 都是常数( i = 1,2,L , k ) .
Mx + N ; 特殊地: 特殊地:k = 1, 分解后为 2 x + px + q
说明 将有理函数化为部分分式之和后,只出 将有理函数化为部分分式之和后, 现三类情况: 现三类情况:
A Mx + N (1) 多项式; ( 2) 多项式; ; ( 3) ; n 2 n ( x − a) ( x + px + q ) Mx + N dx , 讨论积分∫ 2 n ( x + px + q )
2x3 + 5x 2x2 + 5 解 原式 = ∫ x4 + 5x2 + 4dx + ∫ x4 + 5x2 + 4dx
1 d( x4 + 5x2 + 5) ( x2 +1) + ( x2 + 4) = ∫ 4 dx +∫ 2 2 2 2 x + 5x + 4 ( x +1)( x + 4)
1 1 1 4 2 + 2 )dx = ln x + 5x + 4 + ∫ ( 2 x +1 x + 4 2
1 = ln x4 + 5x2 + 4 + arctanx + 1arctan x + C. 2 2 2
注意 将有理函数分解为部分分式求积分虽可行, 将有理函数分解为部分分式求积分虽可行, 但不一定简便 ,因此要注意根据被积函数的结构 特点,灵活处理,寻求简便的方法求解. 特点,灵活处理,寻求简便的方法求解. 例6 求积分 解
2u+1+ u2 −1− u2 2u du du = 原式 = 2 2 (1+ u)(1+ u ) (1 + u)(1 + u )

第4节有理函数的不定积分

第4节有理函数的不定积分

2
2
2
例2
求积分

1 sin4
x
dx.

令utanx, 2
sinx12uu2 ,
dx12u2du,
1 sin4
x
dx
13u28u34u4u6du
1 8[31 u3u 33uu 33]C 2 4 t1 a2 x n 38t3 a2 xn 8 3ta2 xn 2 1 4 ta2 x n 3C .
解法二
令 utaxn ,则sinx
u, 1u2
dx11u2
du,
1 sin4 xdx
1 u
4 11u2du

1u2


1 u2 u4
du
31u3
1C u
1co3xtcoxtC. 3
解法三
1 sin4
dx x

cs4cxdxcs2x ccs2xc dx
令 t pa x b,其中p为m,n的最小公.倍数
例1
求积分
1
dx 3x

2
.
解 令 t3x2, 则 xt32,dx3t2dt,
原式 13t2tdt 3(t211)t1dt 3(t11 1t)dt
31 t 2 tln1t C
2 33 (x2)2 33 x23ln13x2C.
原式 (1u)2u 1 (u2)du 2u( 11u)u(12 1u 2)u2du
(1(1u)u2)(1(1u2u)2)du
1u 1u2
du

1 du 1 u
arctuan 1ln(1u2)ln |1u|C
2
x ln| secx | ln|1taxn|C.

几种特殊类型函数地积分

几种特殊类型函数地积分

几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。

43某些特殊类型函数的不定积分

43某些特殊类型函数的不定积分

x3
x5 x
2
x2
1
2x2 x 2 x3 x 2
由代数学定理: Q(x)=b0(x-a) …(x-b) (x2 +px+q) …(x2+rx+s)
难点: 将有理函数化为最简分式之和.
部分分式分解的步骤: 第一步 对分母 Q(x) 在实系数内作标准分解:
Q(x) (x a1)1 (x as )s (x2 p1x q1)1 (x2 pt x qt )t
则可令 t tan x , 此时,
sin 2
x
1
t2 t
2
,
cos x
1
1 t
2
,
dx
1
d
t t
2
.
(2) 若 R(sin x , cos x) R(sin x , cos x) , 则可令 t cos x .
(3) 若 R(sin x , cos x) R(sin x , cos x) , 则可令 t sin x . (4) 运用三角函数恒等式可将一些三角函数有理式的积分化
sin2 x
dx
(
csc2
x
cos x sin2 x
csc
x
cos sin
x x
)d
x
cot x 1 ln | csc x cot x | ln | sin x | C sin x
1 cos x | 1 cos x | sin x ln sin2 x C .
三、简单无理函数的积分
x
6
. 3

1 x( x1)2
A x
(x
B 1)2
C, x1
1 A( x 1)2 Bx Cx( x 1)

[全]高等数学之三角函数有理式的积分问题方法总结[下载全]

[全]高等数学之三角函数有理式的积分问题方法总结[下载全]

高等数学之三角函数有理式的积分问题方法总结
三角函数有理式R(sinx,cosx)是由sinx,cosx及常数作为运算单元,经有限次的加减乘除得到的函数,它的积分使用万能代换t=tan(x/2)都可以化为有理函数的积分。

万能代换对于此类积分尽管具有普遍性,但是解题过程过于繁琐。

对于某些特殊情况可不使用万能代换,也可将此类积分化为有理函数的积分,通常的方法如下:
(1)若R(sinx,-cosx)=-R(sinx,cosx)(关于cox是奇函数),则可令t=sinx;(2)若R(-sinx,cosx)=-R(sinx,cosx)(关于sinx是奇函数),则可令t=cosx;(3)若R(-sinx,-cosx)=R(sinx,cosx),则可令t=tanx;
题型一:利用万能公式求解
例1:
分析:解决三角函数有理式的基本方法就是万能公式。

解:
题型二:若R(sinx,-cosx)=-R(sinx,cosx)(关于cox是奇函数),则可令t=sinx;例2:
解:
题型三:若R(-sinx,-cosx)=R(sinx,cosx),则可令t=tanx;例3:
解:。

考研数学(二)中如何求三角函数有理式的积分

考研数学(二)中如何求三角函数有理式的积分

2017考研数学(二)中如何求三角函数有理式的积分? 在2017考研数学(二)的考试大纲中,要求考生“会求有理函数、三角函数有理式和简单无理函数的积分”。

由于过去曾经出现了计算三角函数有理式的不定积分的真题,故在2017考研的数学(二)科目中有可能出现类似考题,掌握一些计算该类不定积分的方法和技巧是有现实意义的。

(一)2017考研数学二考点复习:求三角函数有理式的不定积分的方法和技巧 计算三角函数有理式的不定积分的常见方法和技巧如下所述。

(1)万能公式法计算三角函数有理式的不定积分对三角函数有理式的不定积分 ,若令tan(/2)u x =,则有于是 。

由于这种方法的解答过程往往很复杂,一般情况下不采用万能公式法将三角函数有理式转化为有理函数,针对特定类型有特定的方法技巧进行积分。

(2)技巧一若被积函数中出现1cos x +,一般用。

(3)技巧二若被积函数中出现cos sin a x b x +,往往变换成 或 的形式。

(4)技巧三若被积函数中含sin cos x x 及2sin x 、2cos x ,一般用22(sin )sin 2, d(cos x)=-sin2xdx, d(sinxcosx)=cos2xdx d x xdx =,这是一种凑微分的技巧。

(5)技巧四若分子分母都是sin x 或cos x 二次,常使用分子分母同除以2cos x 。

这也是一种凑微分的技巧,往往凑出正切函数的微分。

(6)技巧五若被积函数的形式如下: , 往往令cos sin (cos sin )(cos sin )'a x b x A c x d x B c x d x +=+++。

这是用待定系数法来凑微分的技巧,可以凑出分母的微分。

(二)2017考研数学二考点复习之数学二真题解析(sin ,cos )R x x dx ⎰2222212sin , cosx=, dx=, 111u u x du u u u -=+++2222212(sin ,cos )(,)111u u R x x dx R du u u u-=+++⎰⎰21cos 2cos 2xx +=)x θ+)x θ+cos sin cos sin a x b x c x d x ++下面请随文都教育看一下往年数学(二)科目中求三角函数有理式的不定积分的一道真题及解析,体会解题方法和技巧,以便牢固掌握该类问题的解题方法。

3-3有理式的不定积分与有理化方法

3-3有理式的不定积分与有理化方法


ห้องสมุดไป่ตู้
4 2 1 − x+ 1 = 5 + 5 25. (1 + 2 x)(1 + x 2 ) 1 + 2 x 1+ x
dx 2 d(1+ 2x) 1 d(1+ x ) 1 = ∫ + − 2 5 1+ 2x 5 1+ x2 5 1+ x

2

2 = ln 1+ 2x 5
1 1 2 − ln (1+ x )+ arctan x + C 5 5
变分子为
B 2
(2x + p)+ C − B2p
再分项积分
2C 2x + Bx + C B B dx 3. dx = ∫ 2 2 2 x + px + q x + px + q Bp 2C C− 2x + p + −p B 2x + p B B 2 dx dx + dx = ∫ 2 = ∫ 2 x + px + q 2 x2 + px + q x2 + px + q



而最后一个积分可以用上上一节例6中的递推公式.
1 x 2n −1 + I 递推公式 In+1 = 2 2 2 n 2 n 2n a (x + a ) 2n a 1 x 说明: 说明 已知 I1 = arctan + C 利用递推公式可求得 In . a a 例如, 1 x 3 I3 = 2 2 2 2 + 2 I2 4a (x + a ) 4a 1 x 3 1 x 1 = 2 2 2 2 + 2 ( 2 2 2 + 2 I1 ) 4a (x + a ) 4a 2a x + a 2a 1 x 3 x 3 x = 2 2 2 2 + 4 2 2 + 5 arctan + C a 4a (x + a ) 8a x + a 8a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3-7 阅读(有理函数和三角函数有理式的积分法)在前面几节中,读者都已经遇到过许多有理函数的积分和三角函数有理式的积分.在那里,因为被积函数都很特殊,所以用“拼凑的方法”就求出了它们的积分.这一节讨论的是一般情形下,如何求它们的积分.当你遇到那些简单或特殊的情形时,当然不必用这里的一般方法,而仍用以前那种“拼凑方法”就行了.1.有理函数的积分法 有理函数的积分()d ()p x x q x ⎰[其中()p x 和()q x 都是多项式] 总可以积出来,即可把它表示成初等函数.积分方法的要点是:第一,若有理函数()()p x q x 中,分子()p x 的次数不低于分母()q x 的次数,则称它为假分式.在这种情形下,就用多项式除法(见下面例27),先把它变成一个多项式与一个真分式之和,即()()()()()p x r x s x q x q x =+ [其中分子()r x 的次数低于分母()q x 的次数] 于是,()d ()p x x q x ⎰()()d d ()r x s x x x q x =+⎰⎰右端第一项是多项式的积分(用分项积分法可以积出来),所以就变成求有理函数真分式的积分()d ()r x x q x ⎰. 关于多项式除法,请看下面的例题.例27 例如求有理函数假分式的积分522d 36x x x x -++⎰首先像做整数除法那样,做多项式除法:由此可得63225++-x x x 3212323336x x x x +⎛⎫=-+ ⎪+⎝⎭其次再逐项积分,即(余式)23+x (被除式)(除式) 255336000202x x x x x ++++-+++xx x x 40220233-+-+-+-(商式) 31233x x -5342222212321132d d d d 33123363636x x x x x x x x x x x x x x x -+++⎛⎫=-+=-+⎪+++⎝⎭⎰⎰⎰⎰这样就变成求(右端最后一个)有理函数真分式的积分.第二,对于真分式()()r x q x ,先把分母上的多项式()q x 分解成一次因式或没有实根的二次因式的乘积(根据代数基本定理,这是可能的).然后用待定系数法(或拼凑方法)把()()r x q x 化成不超出下面这些“最简分式”的和:22,,,()()n mA B Cx D Ex F x a x b x px q x rx s ++--++++(n 和m 为正整数) (分子比分母上的基因式低一次)这样,根据分项积分法,有理函数真分式的积分就化为最简分式的积分. 我们用例子来说明上述方法.⑴分母为一次重因式的真分式的积分法例28 例如求2353d (2)x x x ++⎰,可令 2323532(2)(2)(2)x A B Cx x x x +=++++++将右端通分,并比较两端分子,即C x B x A x ++++≡+)2()2(3522,则得三元线性方程组⎪⎩⎪⎨⎧=++=+=(常数项)的系数)(的系数)(3240452C B A x B A x A , 解得⎪⎩⎪⎨⎧=-==23205C B A于是得3232)2(23)2(2025)2(35+++-+=++x x x x x因此,2353d (2)x x x ++⎰2352023d d d 2(2)(2)x x x x x x =-++++⎰⎰⎰220235ln 222(2)x x x =++-++ 【注1】上面求待定系数的方法是比较两端x 的同次项系数,下面是求待定系数的另一个方法:根据2253(2)(2)x A x B x C +≡++++,则第一步,让2x =-,得23C =;第二步,在2253(2)(2)x A x B x C +≡++++两端关于x 求导数,得102(2)x A x B ≡++. 再令2x =-,得20B =-;第三步,在102(2)x A x B ≡++两端关于x 求导数,则得102A =,即5A =.【注2】把真分式2353(2)x x ++化成最简分式之和的另一个方法是依次用多项式除法:25323(510)22x x x x +=-+++,22253510232023522(2)(2)(2)x x x x x x x +-=+=-++++++ 232353520232(2)(2)(2)x x x x x +=-+++++ (你看懂了吗?)⑵分母为不同一次因式乘积的真分式的积分法例如求d ()()cx dx x a x b +--⎰,可令bx Ba x Ab x a x d cx -+-=--+))(((A 和B 为待定系数)然后根据恒等式()()cx d A x b B x a +≡-+-,求出待定系数A 和B .于是,d ()()cx dx x a x b +=--⎰d d ln ||ln ||ABx x A x a B x b x ax b+=-+---⎰⎰例29 求2d (3)(5)x x x x ---⎰.解 设53)5)(3(2-+-=---x Bx A x x x (B A ,为待定常数) 则得)3()5(2-+-≡-x B x A x ,即2)35()(-≡+-+x B A x B A比较两端常数项和x 的系数,则得线性方程组⎩⎨⎧=+=+1235B A B A 解得23,21=-=B A (求B A 和的另一个方法见下注).因此, 523321)5)(3(2-+--=---x x x x x从而得2d (3)(5)x x x x ---⎰113113d(3)d(5)ln 3ln 5232522x x x x x x =--+-=--+---⎰⎰【注】在式2(5)(3)x A x B x -≡-+-中,让3x =,则得12A =-,所以12A =-;再让5x =,则得32B =,所以32B =.⑶分母为二次多项式(没有实根)的真分式的积分法 例如[注意,分母没有实根2(40)p q -<],22222111(1)d d d 424x x u x px qu Ap q px ==+++-⎛⎫++ ⎪⎝⎭⎰⎰⎰,2p u x A ⎛ =+ ⎝⎭(套用积分公式)arctan A A== 2222(2)(2)d (0)d d 2b b x p p x ax b a a a x a a x x x px q x px qx px q⎛⎫++-+⎪+⎝⎭≠==++++++⎰⎰⎰222d()21d 22a x px q a bp x a x px qx px q++⎛⎫=+- ⎪++++⎝⎭⎰⎰2221ln()d 22a a b x px q p x ax px q⎛⎫=+++- ⎪++⎝⎭⎰(套用前一题的结果).⑷分母为二次重因式的真分式的积分法例30 例如求积分322221d (1)x x x x x -+++⎰.若用待定系数法,就令322222221(1)1(1)x x Ax B Cx Dx x x x x x -+++=+++++++ 若不用待定系数法,可依次用多项式除法:第一步,3222212(2)(3)11x x x x x x x x -++=-+++++;第二步,32222222132(2)(1)1(1)x x x x x x x x x x -+-+=+++++++ 于是,32222222132(2)d d d (1)1(1)x x x x x x x x x x x x x -+-+=+++++++⎰⎰⎰其中右端第一个积分22222231(21)71d(1)7d d d 12121212x x x x xx x x x x x x x x -+-++==-++++++⎛⎫++ ⎪⎝⎭⎝⎭⎰⎰⎰⎰217ln(1)22x x =++-而第二个积分2222222222(2)(21)3d(1)1d d 3d (1)(1)(1)(1)x x x x x x x x x x x x x x x +++++==+++++++++⎰⎰⎰⎰2222113d (1)12x x x x =-+++⎡⎤⎛⎫⎢⎥++ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰[套积分公式⒇]⑸分母为一次因式与二次因式乘积的真分式的积分法例如,求22d ()()bx cx dx x a x px q ++-++⎰时,可令qx p x C x B a x Aq x p x a x d x c x b ++++-=++-++222))(( 然后根据恒等式22()()()bx cx d A x px q Bx C x a ++≡++++-求出待定系数A 、B 和C . 于是,22d ()()bx cx dxx a x px q ++-++⎰2ln ||d Bx C A x a x x px q +=-+++⎰(注意2x px q ++没有实根,即240p q -<)2.三角函数有理式的积分法 所谓“三角函数有理式”,是指由常数和简单三角函数x sin 与x cos 经过有限次的有理运算(加、减、乘、除)得到的函数,记成)cos ,(sin x x R .下面介绍的是形如积分(sin ,cos )d R x x x ⎰的积分法.例如积分2cos d 2sin cos x x x x +⎰,1d 2sin cos 1x x x -+⎰,1d (0)cos x ab a b x≠+⎰等. 实际上,我们在前面几节中曾多次遇到这种类型的积分.这里介绍的是一般方法.你在做题时.....,还是要具体问题具体分析...........,未必就一定要用这里介绍的方法..............(因为一般情形下,这里介绍的方法要麻烦一些).令2tan x t =(称它为半角替换或万能替换),则2222122tan12tan22sec 2tan22cos 2tan 22cos 2sin 2sin t t x xx x x x x x x +=+==== 22222222112tan12tan 1)2tan 1(2cos 2sin 2cos cos t t x xx x x x x +-=+-=-=-= t tt x d 12)arctan 2(d d 2+== 于是,(sin ,cos )d R x x x ⎰2222212,d 111t t R t t t t -⎛⎫= ⎪+++⎝⎭⎰这样,三角函数有理式的积分就变成有理函数的积分.在有些情形下,像前面做过的那样,不必用半角替换,而用其它三角替换会更简单.例如()i 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令cos t x =; ()ii 当(sin ,cos )(sin ,cos )R x x R x x -=-时,令sin t x =; ()iii 当(sin ,cos )(sin ,cos )R x x R x x --=时,令tan t x =.习题1.求下面的原函数:⑴25d (3)x x x --⎰; ⑵325d (2)x x x --⎰; ⑶23354d (1)x x x x -+-⎰; ⑷3223242d 21x x x x x x -++-+⎰.答案:⑴323ln -+-x x ;⑵2)2(2122-+--x x ;⑶2)1(1111ln 3-----x x x ; ⑷171ln 94232---++x x x x . 2.求下面的原函数:⑴x x x x d )3)(2(73⎰---; ⑵x x x x d 2152⎰-++; ⑶x x x x x x d )2)(2(2342⎰+---. 答案:⑴3ln 22ln -+-x x ;⑵1ln 22ln 3-++x x ;⑶2ln 252ln ln 21++-+x x x .3.求下面的原函数:⑴x x x x x d )1)(2(23222⎰++-+; ⑵x x x x x d )32)(1(2⎰+++; ⑶x x x d 134⎰+. 答案:⑴x x arctan )1ln(2-+;⑵21arctan 21)32ln(411ln 212++++++-x x x x ;⑶312arctan 311)1(ln 6121222--+-++x x x x x .4.根据提示,请把下面的演算做到底:⑴tan 21d 2sin cos 1x t x x x ⎛⎫= ⎪⎝⎭====-+⎰⑵(cos )1d (2cos )sin t x x x x======+⎰⑶2(sin )cos d 2sin cos t x xx x x======+⎰ ⑷3(tan )3sin d sin cos t x xx x x======+⎰答案:⑴22tan2tan ln21+x x ;⑵32)cos 1()cos 1()cos 2(ln 61x x x +-+;⑷⎪⎪⎭⎫ ⎝⎛---+-x x x x x x x sin 3sin cos 2arctan 31cos sin 1)cos (sin ln 612.。

相关文档
最新文档