物理化学第一章总结.

合集下载

物理化学知识点总结(热力学第一定律)

物理化学知识点总结(热力学第一定律)

热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。

封闭系统:与环境只有能量交换而无物质交换的系统。

(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。

2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。

根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。

广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。

强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。

注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。

它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。

或者说dU与过程无关而δQ和δW却与过程有关。

这里的W既包括体积功也包括非体积功。

以上两个式子便是热力学第一定律的数学表达式。

它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。

三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。

将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。

当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。

物理化学知识点总结

物理化学知识点总结

第一章 热力学第一定律一、基本概念系统与环境,状态与状态函数,广度性质与强度性质,过程与途径,热与功,内能与焓。

二、基本定律热力学第一定律:ΔU =Q +W 。

焦耳实验:ΔU =f (T ) ; ΔH =f (T ) 三、基本关系式1、体积功的计算 δW = -p e d V恒外压过程:W = -p e ΔV可逆过程:1221ln ln p p nRT V V nRT W ==2、热效应、焓等容热:Q V =ΔU (封闭系统不作其他功) 等压热:Q p =ΔH (封闭系统不作其他功) 焓的定义:H =U +pV ; d H =d U +d(pV )焓与温度的关系:ΔH =⎰21d p T T T C3、等压热容与等容热容热容定义:V V )(T U C ∂∂=;p p )(T H C ∂∂=定压热容与定容热容的关系:nR C C =-V p 热容与温度的关系:C p =a +bT +c’T 2 四、第一定律的应用1、理想气体状态变化等温过程:ΔU =0 ; ΔH =0 ; W =-Q =⎰-p e d V 等容过程:W =0 ; Q =ΔU =⎰T C d V ; ΔH =⎰T C d p 等压过程:W =-p e ΔV ; Q =ΔH =⎰T C d p ; ΔU =⎰T C d V 可逆绝热过程:Q =0 ; 利用p 1V 1γ=p 2V 2γ求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p不可逆绝热过程:Q =0 ; 利用C V (T 2-T 1)=-p e (V 2-V 1)求出T 2,W =ΔU =⎰T C d V ;ΔH =⎰T C d p2、相变化可逆相变化:ΔH =Q =n Δ_H ;W=-p (V 2-V 1)=-pV g =-nRT ; ΔU =Q +W3、热化学物质的标准态;热化学方程式;盖斯定律;标准摩尔生成焓。

摩尔反应热的求算:)298,()298(B H H m f B m r θθν∆=∆∑反应热与温度的关系—基尔霍夫定律:)(])([,p B C T H m p BB m r ∑=∂∆∂ν。

厦门大学 物理化学 (上) 各章 知识点 总结

厦门大学 物理化学 (上) 各章 知识点 总结

第1章第零定律与物态方程一、基本要点公式及其适用条件1.系统的状态和状态函数及其性质系统的状态—就是系统物理性质和化学性质的综合表现,它采用系统的宏观性质来描述系统的状态,系统的宏观性质,也称为系统的"状态函数"。

系统的宏观性质(状态函数)—就是由大量(摩尔级)的分子、原子、离子等微观粒子组成的宏观集合体所表现出的集团行为,简称"热力学性质"或“热力学函数”如p、V、T、U、H、S、A、G 等。

Z=f(x,y)表示一定量、组成不变的均相系统,其任意宏观性质(Z)是另两个独立宏观性质(x,y)的函数。

状态函数Z具有五个数学特征:(1),状态函数改变量只决定于始终态,与变化过程途径无关。

(2),状态函数循环积分为零,这是判断Z是否状态函数的准则之一。

(3),系Z的全微分表达式(4),系Z的Euler 规则,即微分次序不影响微分结果。

(5),系Z、x、y满足循环式,亦称循环规则。

2.热力学第零定律即热平衡定律:当两个物态A和B分别与第三个物体C处于热平衡,则A和B之间也必定彼此处于热平衡。

T =t+273.15,T是理想气体绝对温标,以"K"为单位。

t是理想气体摄氏温标,以"℃"为单位。

绝对温标与摄氏温标在每一度大小是一样的,只是绝对温标的零度取在摄氏温标的-273.15℃处,可以看出,有了绝对温标的概念后,只需确定一个固定参考点(pV)0p=0,依国际计量大会决定,这个参考点选取在纯水三相点,并人为规定其温度正好等于273.16K。

3.理想气态方程及其衍生式为:;式中p、V、T、n单位分别为Pa、m3、K、mol;R=8.314J〃mol-1〃K-1,V m为气体摩尔体积,单位为m3〃mol-1,ρ 为密度单位kg〃m-3,M 为分子量。

此式适用于理想气或近似地适用于低压气。

4.理想混合气基本公式(1)平均摩尔质量;式中M B和y B分别为混合气中任一组份B 的摩尔质量与摩尔分数。

《大学物理化学》知识点总结

《大学物理化学》知识点总结

第一章 理想气体1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。

2、分压力:混合气体中某一组分的压力。

在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。

混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。

每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。

P y P B B =,其中∑=BBB B n n y 。

分压定律:∑=BB P P道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。

∑=BB V RT n P )/(3、压缩因子ZZ=)(/)(理实m m V V 4、范德华状态方程 RT b V V ap m m=-+))((2 nRT nb V Van p =-+))((225、临界状态(临界状态任何物质的表面张力都等于0)临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数:(1)临界温度c T ——气体能够液化的最高温度。

高于这个温度,无论如何加压 气体都不可能液化;(2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。

6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。

取决于状态,主要取决于温度,温度越高,饱和蒸气压越高。

7、沸点:蒸气压等于外压时的温度。

8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。

对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、rr r c r r r c c c T Vp Z T V p RT V p Z =⋅=10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。

物理化学期末总结

物理化学期末总结

物理化学期末总结物理化学学期总结绪论1.物理化学的概念:物理化学是从研究化学现象和物理现象之间的相互联系入手,从而探求化学变化中具有普遍性的基本规律的一门科学。

在实验方法上主要采用物理学中的方法。

2.物理化学的研究内容(1) 化学变化的方向和限度问题。

(2) 化学反应的速率和机理问题。

(3) 物质的性质与其结构之间的关系问题。

第一章气体1.理想气体概念:任何压力机任何温度下都严格服从理想气体状态方程的气体叫做理想气体。

2.分子热运动理论:物质由大量分子构成,分子不停的做无规则的高速运动,热运动有使分子相互分散的倾向,分子间存在相互作用力:引力和斥力。

3.理想气体混合物:(1)自然界的气体多数为混合气体。

(2)假设混合气体中,各气体组分均为理想气体。

(3)混合气体服从理想气体状态方程。

4. 道尔顿分压定律:在气体混合物中,混合气体的总压力等于各气体在相同温度和相同体积下单独存在时的分压力之和。

5.阿马格分体积定律 :在气体混合物中,混合气体的总体积等于各气体在相同温度和相同压力下单独存在时的体积之和。

6. 真实气体对于理想气体的偏差的概念:由于真实气体仅在压力很低、温度较高条件下才近似符合理想气体状态方程。

而真实气体的压力、温度偏离理想气体条件时,就出现对理想气体状态方程的明显偏差。

7. 偏差的原因真实气体不符合理想气体的微观模型。

(a 真实气体分子占有一定体积;b 分子间存在相互引力)。

8.液体的饱和蒸汽压概念:是指在一定条件下,能与液体平衡共存的它的蒸汽的压力,通常也叫做蒸汽压。

同一种液体,其蒸汽压决定决定于液体所处的状态,主要取决于液体的温度,温度升高,则蒸汽压增大。

∑=B Bp p p RT n V BB ∑=第二章热力学第一定律1.热力学的研究对象:(1)热力学是研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律;主要基础是热力学第一定律和热力学第二定律。

(2)热力学第一定律研究各种物理变化和化学变化过程中所发生的能量效应;(3)热力学第二定律研究化学变化的方向和限度。

物理化学第一章总结

物理化学第一章总结

第一章总结一热力学基本概念①系统分类:敞开、封闭、孤立②平衡态:各部分宏观性质不变,无宏观流③性质分类:广度,强度④状态函数及特点:1)2)3)⑤过程分类:恒温、恒容、绝热、恒压⑥可逆过程:无损耗、过程无限缓慢、做功最大或最小⑦理想气体物态方程:PV=nRT二热力学定律1)热力学第零定律:分别于第三物体达到平衡的两物体,他们彼此也一定互呈热平衡(确定温度)2)热力学第一定理:dU=δQ+δW焓的定义:dH=dU+d(PV)3)热力学第二定律:ds≥δQ/T=>“>”不可逆过程,T表环境温度“=”可逆过程,环境温度等于体系温度“<”熵变小于热温商过程不可能发生自发过程特征:一定方向和限度;不可逆;存在方向限度的决定因素。

又卡诺定理推出热力学第二定理:η=(Q1+ Q2)/Q1=(T1- T2)/T1=>(T2-T1)/T2>1+Q1/Q2 (卡诺定理)=>Q1/T1+Q2/T2<0=>dS≥δQ/T4)热力学第三定理:0K时任何完美晶体熵等于0理想气体各可逆过程重要变量计算过程 W Q △U △H △S自由膨胀 0 0 0 0 nRIn(V2/V1) 恒容 0 n Cv.m dT n Cv.m dT n m .p C dT n Cv.m In(V2/V1) 恒温 nRTIn(V2/V1) nRTIn(V2/V1) 0 0 nRTIn(V2/V1) 绝热 n Cv.m dT=(P2V2-P1V1)/(r-1) 0 n Cv.m dT n m p .C dT 0恒压 -pdT n m .p C dT n Cv.m dT n m .p C dT n m .p C In(V2/V1)。

物理化学各章节总结

物理化学各章节总结

物理化学每章总结第1章 热力学第一定律及应用1.系统、环境及性质热力学中把研究的对象(物质和空间)称为系统,与系统密切相关的其余物质和空间称为环境。

根据系统与环境之间是否有能量交换和物质交换系统分为三类:孤立系统、封闭系统和敞开系统。

性质⎩⎨⎧容量性质强度性质2.热力学平衡态系统的各种宏观性质不随时间而变化,则称该系统处于热力学平衡态。

必须同时包括四个平衡:力平衡、热平衡、相平衡、化学平衡。

3.热与功 (1) 热与功的定义热的定义:由于系统与环境间温度差的存在而引起的能量传递形式。

以Q 表示,0>Q 表示环境向系统传热。

功的定义:由于系统与环境之间压力差的存在或其它机、电的存在引起的能量传递形式。

以W 表示。

0>W 表示环境对系统做功。

(2) 体积功与非体积功功有多种形式,通常涉及到是体积功,是系统体积变化时的功,其定义为:V p W d δe -=式中e p 表示环境的压力。

对于等外压过程 )(12e V V p W --= 对于可逆过程,因e p p =,p 为系统的压力,则有V p W V V d 21⎰-=体积功以外的其它功,如电功、表面功等叫非体积功,以W ′表示。

4.热力学能热力学能以符号U 表示,是系统的状态函数。

若系统由状态1变化到状态2,则过程的热力学增量为 12U U U -=∆对于一定量的系统,热力学能是任意两个独立变量的状态函数,即 ),(V T f U = 则其全微分为V V U T T U U TVd d d ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=对一定量的理想气体,则有0=⎪⎭⎫⎝⎛∂∂TV U 或 U =f (T ) 即一定量纯态理想气体的热力学能只是温度的单值函数。

5.热力学第一定律及数学表达式 (1) 热力学第一定律的经典描述① 能量可以从一种形式转变为另一种形式,但在转化和传递过程中数量不变。

② “不供给能量而可连续不断做功的机器称为第一类永动机,第一类永动机是不可能存在的。

物理化学知识点总结[物理化学知识点归纳]

物理化学知识点总结[物理化学知识点归纳]

物理化学知识点总结[物理化学知识点归纳]热力学第一定律...............................................................................(1)第二章热力学第二定律. (3)第三章化学势 (7)第四章化学平衡 (10)第五章多相平衡 (12)第六章统计热力学基础 (14)第七章电化学 (16)第八章表面现象与分散系统 (20)第九章化学动力学基本原理 (24)第十章复合反应动力学 (27)物理化学知识点归纳根据印永嘉物理化学简明教程第四版编写,红色的公式要求重点掌握,蓝色的公式掌握。

第一章热力学第一定律本章讨论能量的转换和守恒,其目的主要解决变化过程的热量,求功的目的也是为了求热。

1. 热力学第一定律热力学第一定律的本质是能量守恒定律,对于封闭系统,其数学表达式为∆U =Q +W 微小过程变化:d U =δQ +δW只作体积功:d U =δQ −p e d V 理想气体的内能只是温度的函数。

2. 体积功的计算:δW V =−p 外d VW V =−∫p 外d VV 1V 2外压为0(向真空膨胀,向真空蒸发):W V =0;恒容过程:W V =0恒外压过程:W V =−p 外(V 2−V 1) 恒压过程:W V =−p (V 2−V 1) 可逆过程:W V =−∫V 2V 1p d V (主要计算理想气体等温可逆、绝热可逆过程的功)3. 焓和热容由于大多数化学反应是在等压下进行的,为了方便,定义一个新的函数焓:H =U +pV焓是状态函数,是广度性质,具有能量,本身没有物理意义,在等压下没有非体积功的热效应等于焓的改变量。

等容热容:C V = δQ V⎛∂U ⎛=⎛⎛ d T ⎛∂T ⎛V等压热容:C p =δQ p⎛∂H ⎛=⎛⎛ d T ⎛∂T ⎛p对于理想气体:C p −C V =nR4. 理想气体各基本过程中W 、Q 、∆U 、∆H 的计算5. 焦耳-汤姆逊系数µ=⎛⎛∂T ⎛1⎛∂H ⎛=−⎛⎛⎛,用于判断气体节流膨胀时的温度变化。

物理化学重点公式总结

物理化学重点公式总结
ln B ln B )T ; H E R T 2 n B ( )p p T
E E G RT n B ln B ; V RT n B(
E S R n B ln B RT n B (
ln B )p T
第六章 统计热力学 1、系统配分函数 Q
n 1、y 衰期同初始浓度的关系: t y A C1 0
2、阿伦尼乌斯公式及其变形: k A exp{ E a RT } ;
d ln k E a2 dT RT
3、活化能 Ea 的物理意义:活化分子平均能力与反应物分子平均能力的差值。
第十一章 复杂反应动力学 一、碰撞理论: 1、碰撞频率: Z AB d 2 AB
cl
1
(aq ) AgCl (s) Ag (s)
(3)甘汞电极: KCl(aq ) Hg 2 Cl 2 ( s ) Hg (l ) 2、自由能与电势关系: r G m nFE RT ln K 3、电池温度系数: (
E r sm ) T p nF
4、能斯特方程: E E

B B





B
B
第四章 气体热力学 1、理想气体化学势: (T , p) (T , p ) RT ln

p p

2、理想气体混合物组分化学势: B (T , p) B (T , p ) RT ln

pB p
3、实际气体化学势: (T , p) (T , p ) RT ln

9、弱电解质解离度同摩尔电导率的关系:

m m
10、动力学参数测定:先写出动力学积分方程,再用电导率代替浓度。 11、离子迁移数:

北京理工大学物理化学A(南大版)上册知识点总结

北京理工大学物理化学A(南大版)上册知识点总结

物理化学上册公式总结第一章.气体一、理想气体适用①波义耳定律:定温下,一定量的气体,其体积与压力成反比pV=C②盖·吕萨克定律:对定量气体,定压下,体积与T成正比V t=C`T③阿伏伽德罗定律:同温同压下,同体积的各种气体所含分子数相同。

④理想气体状态方程式pV=nRT推导:气体体积随压力温度和气体分子数量改变,即:V=f(p,T,N)对于一定量气体,N为常数dN=0,所以dV=(∂V/∂p)T,N dp+(∂V/∂T)p,N dT根据波义耳定律,有V=C/P,∴(∂V/∂p)T,N=-C/p2=-V/p根据盖·吕萨克定律,V=C`T,有(∂V/∂T)p,N=C`=V/T代入上式,得到dV/V=-dp/p+dT/T积分得lnV+lnp=lnT+常数若所取气体为1mol,则体积为V m,常数记作lnR,即得pV m=RT上式两边同时乘以物质的量n,则得pV=nRT⑤道尔顿分压定律:混合气体的总压等于各气体分压之和。

⑥阿马格分体积定律:在一定温度压力下,混合气体的体积等于组成该气体的各组分分体积之和。

⑦气体分子在重力场的分布设在高度h处的压力为p,高度h+dh的压力为p-dp,则压力差为 dp=-ρgdh假定气体符合理想气体状态方程,则ρ=Mp/RT,代入上式,-dp/p=Mgdh/RT对上式积分,得lnp/p0=-Mgh/RT∴p=p0exp(-Mgh/RT)ρ=ρ0exp(-Mgh/RT)或n=n0exp(-Mgh/RT)二、实际气体适用①压缩因子ZZ=pV m/RT对于理想气体,Z=1,对实际气体,当Z大于1,表明同温度同压力下,实际气体体积大于理想气体方程计算所得结果,即实际气体的可压缩性比理想气体小。

当Z小于1,情况则相反。

②范德华方程式(p+a/V m )(V m -b )=RT第二章.热力学第一定律①热力学第一定律表达式:ΔU=Q+W 或dU=δQ+δW热力学能的微分表达式dU=(∂U/∂p )T dp+(∂U/∂T )p dT而如果把U 当作T,V 的函数,则上式变为dU=(∂U/∂V )T dV+(∂U/∂T )V dT但是 (∂U/∂T )V d T≠(∂U/∂T )p dT ②各过程下气体做的功自由膨胀:外压等于0,所以W=0;外压始终恒定(抵抗某个外压):p e 恒定不变,则W e =-p e (V 2-V 1) 多次等外压膨胀W=-p 1ΔV 1-p 2ΔV 2外压总是比内压小一个无限小的膨胀W=-∑p e dV=-∑(p i -dp )dV ,略去二级无限小dpdV ,得到:W=−∫p i V 2V1dV=-nRTln V1V 2③焓(状态函数) 定义:焓H=U+pV等容过程下,ΔV=0,所以W=0,ΔU=Q V等压过程下,p 2=p 1=p ,ΔU=Q p -p (V 2-V 1),则Q p =(U 2+pV 2)-(U 1+pV 1) ΔH=H 2-H 1=Q P④热容定义:系统升高单位热力学温度所吸收的热C(T)=δQ dT摩尔热容:C m (T)=C(T)n=1n δQ dT(等压过程热容C p ,等容过程热容C V )理想气体的C p 和C V 之差:C p -C V =nR 推导:对于任意系统,C p -C V =(∂H∂T)P -(∂U∂T)V =(∂(U+pV )∂T)p -(∂U∂T)V=(∂U ∂T)p +p(∂V ∂T)P -(∂U ∂T)V =(∂U ∂V)T (∂V ∂T)p +p(∂V ∂T )p (此时依然是通式) ∴对于理想气体,(∂U∂V)T =0,(∂V∂T)p =nRp ,代入上式,得到C p -C V =nR⑤绝热过程的功:绝热过程中,Q=0;由热力学第一定律,W=ΔU ;又∵dU=C V dT ,假设C V 是常数,则W=ΔU=C V (T 2-T 1)⑥绝热过程方程式:TV γ-1=常数;pV γ=常数;p 1-γT γ=常数 推导:对于理想气体dU=C V dT ,pV=nRT ; ∴C V dT+nRTdV/V=0,整理后得dT T+nRdVC V V=0,令CP C V=γ(热容比)又∵nR C V=γ-1,∴dT T+(γ-1)dV V=0;积分后得lnT+(γ-1)lnV=常数,即TV γ-1=常数⑦热机效率和冷冻系数 热机效率η=−W Q ℎ=−nR(T ℎ−T C )ln V 1V 2−nRT ℎln V1V 2=T ℎ−T cT ℎ=1-T c T ℎ=1+Qc Q ℎ冷冻系数β=Q c /W=T c /(T h -T c ) ⑧基尔霍夫定律第三章.热力学第二定律①克劳修斯不等式与熵增加原理卡诺定理指出,温度相同的低温热源和高温热源之间工作的不可逆热机效率不可能大于可逆热机效率。

大学物理化学概念总结

大学物理化学概念总结

大学物理化学概念总结篇一:大学物理化学概念总结第一章气体的pvT 关系一、理想气体状态方程 pV=(m/M)RT= nRT (1.1)或pVm=p(V/n)=RT (1.2)式中p、V、T及n的单位分别为Pa、m3、K及mol。

Vm=V/n称为气体的摩尔体积,其单位为m3·mol。

R=8.314510J·mol-1·K-1称为摩尔气体常数。

此式适用于理想,近似于地适用于低压下的真实气体。

二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(?nB)RTBpV=mRT/Mmix (1.4)式中Mmix为混合物的摩尔质量,其可表示为Mmixdef?ByBMB (1.5)Mmix=m/n= ?BmB /?BnB(1.6)式中MB为混合物中某一种组分B的摩尔质量。

以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。

2.道尔顿定律pB=nBRT/V=yBp (1.7)P=?pB (1.8)B理想气体混合物中某一种组分B的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。

而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

3.阿马加定律VB*=nBRT/p=yBV (1.9)V=∑VB* (1.10)VB*表示理想气体混合物中物质B的分体积,等于纯气体B 在混合物的温度及总压条件下所占有的体积。

理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

三、临界参数每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc或tc表示。

我们将临界温度Tc时的饱和蒸气压称为临界压力,以pc表示。

初中物理化学知识点全面总结

初中物理化学知识点全面总结

初中物理知识点总结第一章声现象知识归纳1 . 声音的发生:由物体的振动而产生。

振动停止,发声也停止。

2.声音的传播:声音靠介质传播。

真空不能传声。

通常我们听到的声音是靠空气传来的。

3.声速:在空气中传播速度是:340米/秒。

声音在固体传播比液体快,而在液体传播又比空气体快。

4.利用回声可测距离:S=1/2vt5.乐音的三个特征:音调、响度、音色。

(1)音调:是指声音的高低,它与发声体的频率有关系。

(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。

6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。

7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。

8.超声波特点:方向性好、穿透能力强、声能较集中。

具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。

9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。

一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。

它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。

第二章物态变化知识归纳1. 温度:是指物体的冷热程度。

测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。

2. 摄氏温度(℃):单位是摄氏度。

1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。

3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。

体温计:测量范围是35℃至42℃,每一小格是0.1℃。

4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。

物理化学重要知识点总结及其考点说明

物理化学重要知识点总结及其考点说明

第一章气体的pvT关系⑴波义尔定律:当n、T一定时,PV=常数⑵盖-吕萨克定律:当n、P一定时,V/T=常数⑶阿伏伽德罗定律:当T、P一定时,V/n=常数●⑷理想气体状态方程:PV=(m/M)RT= nRT或者或PVm=p(V/n)=RTR=8.314mol-1·K-1称为摩尔气体常数;T为华氏温度⑸摩尔分数:X B=n B/n总●⑹道尔顿定律:P B=P总X B;P总=P分⑺实际气体状态方程:PV=znRT(z为压缩因子)●⑻理想气体特征:①分子间无相互作用力②分子本身不占有体积第二章热力学第一定律热力学第一定律(能量守恒定律)●⑴系统:①隔离系统:无能量、无物质交换②★封闭系统:有能量、无物质交换(热力学基础;热力学研究对象)③敞开系统:有能量、有物质交换●⑵状态函数:P、V、T、U、H、G、A、S (P、T、C p, m、C V,m 为强度量,其他均为广度量) 状态函数特征:①有可微分性,能计算②只与始末状态有关●途径函数:Q、W●⑶热:系统从环境中吸热(Q>0);系统对环境做功(W<0)●⑷热力学能:△U=Q+W(封闭系统);U只是温度T的函数;只与首末有关非体积功的计算①气体向真空膨胀时体积功所的计算W=0②恒外压过程体积功W=-p(V2-V1)=-p△V③对于理想气体恒压变温过程W=-p△V=-nR△T④可逆过程体积功W=-p(v2-v1)●⑤理想气体恒温可逆过程体积功 W=-p(v2-v1)或者W=-nRTln(V1/V2)或者W=nRTln(p2/ p1)⑥理想气体绝热可逆过程体积功W=-p(v2-v1)=(-)γ= C p, m /C V,m(双原子气体为1.4)T2/T1=(V1/V2) 的γ-1次方;T2/T1=(P1/P2)的(γ-1)/γ次方;P2/P1=(V1/V2)的γ次方●⑦恒温膨胀可逆功最大,系统对环境作最大功;恒温可逆压缩,环境对系统做最小功⑧可逆相变体积功W=-pdV恒热容、恒压热,焓⑴焓定义:H=U + PV⑵焓变:△H=△U+△(pV)式中△(pV)为p V乘积的增量,只有在恒压下△(pV)=p(V2-V1)在数值上等于体积功。

物理化学1-2章公式总结

物理化学1-2章公式总结
8
(3)理想气体恒温混合 ∆S = −R∑ni ln yi
i =1 K
, 能用这个公式各气体的 对不同种分子的混合才 的 ∆ 分压在混合前后是改变 , 否则 S = 0 。 4 ( )单组分理想气体任意 过程 V2 T2 ∆S = SB − SA = nRln + nCV ,m ln V1 T1 p1 T2 V2 p2 = nRln + nC p,m ln = nC p,m ln + nCV ,m ln p2 T1 V1 p1
∂U ∂ H T = = ∂ S ∂ S
V
∂Z ∂ Z dZ = dY dX + ∂ X ∂Y
Y X
p
∂ A ∂ G S = − = − ∂T ∂T
V
p
麦克斯韦关系式 dZ = MdX + NdY
1.热力学基本定律 热力学基本定律
1.1热力学第一定律和热力学能 热力学第一定律和热力学能
①热力学第一定律的数学表达式 (封闭系统任何过程) ∆U = Q + W
dU = dQ + dW (封闭系统微小过程)
V2 V1
dW体积 = - p外dV,W体积 = -∫
p外dV
在封闭系统, W 在封闭系统, ' = 0的恒容过程中 ∆U = QV
T
V
p
12
V(β ) V (α )
∆U = ∆H − ∆( pV )
T2 T1
∆U = ∫ nCV ,mdT
pd = − p V ( β ) −V (α ) V
(
)
如涉及气体则液体或固体的体积可 , , 忽略 , 还可用 (g) = nRT pV 如气体可视为理想气体

大学物理化学笔记总结

大学物理化学笔记总结

⼤学物理化学笔记总结第⼀章物理化学的定义,相变化(物质在熔点沸点间的转化)物理化学的基本组成:1化学热⼒学(⽅向限度)2化学动⼒学(速率与机理)3结构化学物理化学的研究⽅法、热⼒学⽅法、动⼒学⽅法、量⼦⼒学⽅法系统、环境的定义。

系统的分类:开放系统,封闭系统,隔离系统系统的性质:强度性(不可加),⼴延性(可加)。

系统的状态状态函数及其性质:1单值函数2仅取决于始末态3全微分性质。

热⼒学能、热和功的定义热分:潜热,显热。

功分:膨胀功、⾮膨胀功。

热⼒学第⼀定律的两类表述:1第⼀类永动机不可制成。

2封闭体系:能量可从⼀种形式转变为另⼀种形式,但转变过程中能量保持不变。

、恒容热、恒压热,焓的定义。

PV U H def+≡恒容热:①封闭系统② W f =0 ③W e =0 恒压热:①封闭系统②W f =0 ③d p =0 理想⽓体的热⼒学能和焓是温度的函数。

C, C V , C V,m , C P , C P,m 的定义。

△u =n C V,m (T 2-T 1) △H=n C P,m (T 2-T 1) C V,m =a+bT+cT 2+…/ a+bT -1+cT -2+… 单原⼦分⼦C V,m =23R C P,m =25R 双原⼦分⼦C V,m =25R C P,m =27R γ单=35 γ双=57 C P,m - C V,m =R R=·mol -1·k-1可逆过程定义及特点:①阻⼒与动⼒相差很⼩量②完成⼀个循环⽆任何功和热交换③膨胀过程系统对环境做最⼤功,压缩过程环境对系统做最⼩功可逆过程完成⼀个循环△u=0 ∑=0W ∑=0QW 、 Q 、△u 、△H 的计算①等容过程:W=0 Q=△u △u=n C V,m (T 2-T 1) △H=n C P,m (T 2-T 1)②等压过程:W=-Pe(V 2-V 1) Q=△H △u=n C V,m (T 2-T 1) △H=n C P,m (T 2-T 1) ③等温过程:W=-nRTln 12V V Q=-W △u=△H=0④绝热可逆过程:W=n C V,m (T 2-T 1) /??---1112111γγv v v p Q=0 △u=n C V,m (T 2-T 1)△H=n C P,m (T 2-T 1) 21p p =(12v v )γ 21T T =(12v v )1-γ 21T T=(21p p )γγ1-相变化过程中△H 及△u 的计算△u=△H-P △V=△H-nRT 见书1-10 化学计量系数ν化学反应进度??=BνBn ?(必与指定的化学反应⽅程对应)化学反应热效应定义,盖斯定律:⼀个化学反应,不管是⼀步完成或是经数步完成,反应的总标准摩尔焓变是相同的,即盖斯定律。

《物理化学》热力学第一定律知识总结

《物理化学》热力学第一定律知识总结

第一章 热力学第一定律和热化学理想气体:分子间无相互作用力,分子本身没有体积的气体PV=nRT 适用于理想气体,其中T 单位为K(开氏度=摄氏度+273.15),V 单位为m 3,R=8.314J.mol -1.k -1第二节热力学基本概念1.*敞开系统:系统与环境之间没有物质的交换,只要能量的交换孤立系统(隔离系统)无物质,无能量交换2.状态函数:只与始终态有关,V 、P 、T 、热容、热力学能、焓、熵、吉布斯函数、亥姆兹函数等都属于状态函数过程函数:与途径有关3.*热和功(状态函数)热(Q )是无序的;功(W)是有序的,dv p 21v v e ⎰-=W (所采用的压力均外压力)系统吸热为正,Q>0; 系统对环境做功,W<0(dv>0)。

系统放热为负,Q<0; 系统从环境得到功,W>0(dv<0)。

功可表示为强度性质与广度性质改变量的乘积:机械工=F (力)*dl (位移)体积功=—p (外压)*dv (提及的改变) ——由于系统变化与环境交换的功。

除此为非体积功。

表面功(非体积功)=σ(表面张力)*da (表面积的改变)电功(非体积功)=E (电位)*dq (电量的改变)4.热力学第一定律的三种说法。

其数学式:W Q U +=∆5.*热力学能又称内能(Q )(状态函数)除掉宏观中的整体势能以及整体动能,在微观中其分子之间存在平动能和转动能等。

另一种说法:组成物体分子的无规则热运动动能和分子间相互作用势能的总功。

第四节功的过程与可逆过程定外压,)(12v v p --=W ;多次定外压,)'2()1'('v v Pe v v Pe W ----=准静态膨胀过程(可逆过程))1/2ln(v v nRT W -=系统做功最大Ps :自由膨胀和恒压定温膨胀(压缩)皆为不可逆过程压缩系放热;膨胀系吸热。

第五节焓(封闭,非体积功为零)定容热:U Q v ∆=; 焓(定压))(12V V P U H Q e p -+∆=∆=第六节热容m p m v C C ,,-------2/'c ,T bT a C m p ++=(假若题目已经告知此经验公式,根据公式)(12,T T nC Q H m p p -==∆算出Qp ) 如若未告知,则理想气体在常温下,单原子分子的R C R C m p m v 2/5,2/3,,==;刚性双原子分子(线性分子)的R C R C m p m v 2/7,2/5,,==非刚性双原子分子的R C R C m p m v 2/8,2/6,,==多原子分子的R C R C m p m v 4,3,,==绝热可逆过程:常数=-1r TV ;绝热过程功的计算公式标准摩尔生成热等于产物的标准摩尔生成焓乘以其系数的总和减去反应物的标准摩尔生成焓乘以其系数的总和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
※理想气体微观模型
※理想气体状态方程
(a) 分子本身不占有体积 (b) 分子间无相互作用力 一种气体 p V= n R T
混合物气体的摩尔质量
Hale Waihona Puke 混合气体M mix y B M B
B
※道尔顿定律
p p B nB ( RT / V )
B
B
适用的条件:理想气体 低压气体近似符合
※阿马加定律
物理化学第一章总结


化工八班 汪建福
第一章 气体的 pVT 性质
1.想气体状态方程
2.理想气态混合物
3.真实气体状态方程 4.对应状态原理及普 遍化压缩因子图
整体知识框架
状态方程
理想气体
气 体
分压及分体积定律 状态方程
实际气体
液化及临界现象 对应状态原理及压缩因子图
下面先介绍几个内容
气体的PVT性质
(n, p 一定) (3)阿伏加德罗定律(A. Avogadro, 1811)
V / T = 常数
V / n = 常数
(T,
p 一定)
以上三式结合
理想气体状态方程
pV = nRT
单位:p Pa
pVm = RT
V m3 n mol
T K R J mol-1 K-1
R 摩尔气体常数, 8.314510

对应状态原理
压缩因子:
Z = pV /(nRT)= p Vm /(RT)
临界压缩因子Z:将压缩因子概念应用于临界点
1.理想气体状态方程
归纳法--低压气体经验定律: (1)玻义尔定律(R.Boyle,1662):
pV = 常数
(n,T 一定)
(2)盖.吕萨克定律(J. Gay-Lussac,1808):
E
0
r0
r
兰纳德-琼斯势能曲线
(2)理想气体模型
当实际气体p→0时,V →∞ 分子间距离无限大,则: • 分子间作用力完全消失 • 分子本身所占体积可完全忽 略不计 理想气体的微观模型 (1)分子本身不占体积 (2)分子间无相互作用力 !由微观模型可导出理想气体状态方程--演绎法
谢谢观看!

2013.9.10
J mol-1 K-1
2 理想气体模型及定义-演绎法
(1)分子间力(实际气体) 吸引力 相距较远时,有范德华引力; 排斥力 相距较近时,电子云及核产生排斥作用 。
E吸引 -1/r 6
E排斥 1/r n Lennard-Jones理论:n = 12 A B E总 E吸 引+E排 斥=- 6 12 r r 式中A-吸引常数;B-排斥常数
VB B
( n B )RT/p nRT/p V
B
真实气体状态方程
※范德华方程(考虑分子本身的体积、引力所引起的修正)
a ( p 2 )(Vm b) RT Vm

n2a ( p 2 )(V nb ) nRT V
※范德华常数与临界参数的关系 临界点C,范德华方程一阶、二阶导数为零
相关文档
最新文档