小学四年级奥数讲义
小学四年级奥数教程30讲(经典讲解)
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
四年级奥数讲义
四年级奥数讲义本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一讲和倍问题知识点:已知两个量的和与这两个量的倍数关系,要我们求这两个量分别是几。
和÷(倍数+1)= 较小数;较小数 × 倍数= 较大数;和-较小数= 较大数例1:甲、乙两个仓库共存货物960吨,已知甲仓库所存货物是乙仓库的2倍,问甲、乙两个仓库各存货物多少吨?例2:果园里有梨树,苹果树和桃树共1800棵,其中梨树的棵数是苹果树的2倍,桃树的棵数是苹果树的2倍,问三种树各多少棵例3:学校里的足球只数是排球的3倍,篮球的只数是排球的5倍,足球和篮球共72只,问三种球各多少只?例4:三块钢板共重207千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍,第三块钢板重多少千克?例5:某小学购进红粉笔和白粉笔共244盒,购进的白粉笔比红粉笔的7倍少12盒,问购进红粉笔、白粉笔各多少盒?例6:两箱茶叶共重88千克,如果从甲箱取15千克放入乙箱,那么乙箱的重量是甲箱的3倍,问两箱原有茶叶各多少千克?例7:甲水池有水1500升,乙水池有水1200升,每分钟从甲水池流入乙水池25升水,问多少分钟后乙水池的水是甲水池的2倍?自我检测:填空。
小红和妈妈的年龄加在一起是40岁,妈妈的年龄是小红年龄的4倍。
妈妈岁,小红岁。
生产队养公鸡、母鸡共404只,其中公鸡是母鸡的3倍。
公鸡有只,母鸡有只。
小明买语文本和数学本共25本,其中语文本比数学本的2倍多4本,语文练习本买了本,数学练习本买了本。
师傅和徒弟一共生产零件190个,师傅生产的个数比徒弟的3倍少10个。
徒弟生产零件个,师傅生产零件个。
A、B两人同时从学校出发相背而行,2小时共行48千米,A的速度是B的2倍,求A的速度是,B的速度是。
一块长方形木板,长是宽的2倍,周长是54厘米。
这块长方形木板的长是厘米,宽是厘米,面积是平方厘米。
四年级全册奥数精品讲义1-20讲(全册奥数)
目录◆第一讲找规律(一) (2)◆第二讲找规律(二) (5)◆第三讲长方形和正方形(一) (8)◆第四讲长方形和正方形(二) (11)◆第五讲算式谜(一) (14)◆第六讲算式谜(二) (17)◆第七讲植树问题(一) (19)◆第八讲植树问题(二) (22)◆能力测试(一) (25)◆第九讲和差问题(一) (28)◆第十讲和倍问题(一) (31)◆第十一讲和倍问题(二) (33)◆第十二讲差倍问题 (35)◆第十三讲年龄问题(一) (38)◆第十四讲年龄问题(二) (41)◆第十五讲还原问题(一) (43)◆第十六讲还原问题(二) (45)◆能力测试(二) (48)◆第17讲周期问题(一) (2)◆第18讲周期问题(二) (7)◆第19讲假设问题(一) (12)◆第20讲假设问题(二) (16)◆第21讲计数问题(一) (17)◆第22讲计数问题(二) (19)◆第23讲容斥问题(一) (23)◆第24讲容斥问题(二) (26)◆能力测试(一) (26)◆第25讲行程问题(一) (28)◆第26讲行程问题(二) (31)◆第27讲平均数问题 (35)◆第28讲推理问题(一) (37)◆第29讲推理问题(二) (39)◆第30讲巧算(一) (40)◆第31讲巧算(二) (45)◆第32讲巧算(二) (45)◆第33讲巧算(三) (45)◆第34讲等量代换 (45)◆第35讲拼拼算算 (45)◆能力测试(二) (63)第一讲 找规律(一)事物的发展中有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。
在数学竞赛中,常常出现按规律填数的题目,找规律的方法是根据已知数的前后(可上下)之间的联系,找出其中的规律。
例题与方法例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。
(1)1,5,9,13,( ),21,25。
(2)3,6,12,24,( ),96,192。
小学四年级奥数讲义
四年级奥数讲义 (2)一、新定义运算 (2)二、数列 (3)三、数字谜 (4)四、数阵图 (4)五、归一问题 (4)六、平均数问题 (5)七、鸡兔同笼问题 (6)八、钉子板上的计数 (7)九、格点与面积 (8)十、数、线段与长方形 (11)十一、组合图形的计数 (13)十二、流水行程问题 (13)十三、火车过桥问题 (15)十四、追及问题 (17)十五、相遇问题 (18)十六、猜对错问题 (20)十七、说谎问题 (22)十八、整数中的推理问题 (24)十九、盈不足问题 (25)四年级奥数讲义一、新定义运算1. 设b a ,表示两个不同的数,规定b a b a 43+=∆,求6)78(∆∆。
2. 定义运算⊖为a ⊖b =5×)(b a b a +-⨯,求11⊖12。
3. b a ,表示两个数,记为:a ※b =2×b b a 41-⨯,求8※(4※16)。
4. 设y x ,为两个不同的数,规定x □y 4)(÷+=y x ,求a □16=10中a 的值。
5. 规定a ba b a b +⨯=,求2 10 10的值。
6. 定义新运算x ⊕y x y 1+=,求3⊕(2⊕4)的值。
7. 有一个数学运算符号“⊗”,使下列算式成立:4⊗8=16,10⊗6=26,6⊗10=22,18⊗14=50,求7⊗3=?8. “▽”表示一种新运算,它表示:)8)(1(11+++=∇y x xy y x ,求3▽5的值。
9. b a b a b a ÷+=∆,在6)15(=∆∆x 中,求x 的值。
10. 规定xyy x xA y x ++=∆,而且1∆2=2∆3,求3∆4的值。
二、数列1. 把一堆苹果分给8个朋友,要使每个人都能拿到苹果,而且每个人拿到苹果个数都不同的话,这堆苹果至少应该有 个。
2. 图中是一个堆放铅笔的V 形架,如果最上面一层放60支铅笔。
问一共有 支铅笔。
3. 全部两位数的和是 。
小学四年级奥数全册精品讲义
7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。
四年级奥数培优讲义上下册
目录第一章趣题与智巧(一)····························································第一讲找规律(一)··························································第二讲找规律(二)··························································第二章数与计算(一)······························································第一讲巧妙求和(一)························································第二讲变化规律(一)························································第三讲变化规律(二)························································第三章空间与图形·································································第一讲图形问题·····························································第二讲数数图形(一)························································第三讲数数图形(二)························································第四章实践与应用·································································第一讲应用题(一)··························································第二讲和倍问题·····························································第三讲植树问题·····························································第五章数与计算(二)······························································第一讲错中求解·····························································第二讲巧妙求和·····························································第六章趣题与智巧(二)····························································第一讲算式迷(一)··························································第二讲算式迷(二)··························································第七章组合与推理·································································第一讲简单推理·····························································第二讲最优化问题···························································第三讲简单列举·····························································第一章趣题与智巧(一)第一讲找规律(一)【一】找规律填数:2,4,6,8,,12练习1、1,3,5,7,,112、0,5,10,,20,25【二】找规律填数:18,15,,9,6,练习1、100,98,,,92,902、120,110,,,80,70【三】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
(四年级)小学数学奥数基础教程-30讲全
(四年级)小学数学奥数基础教程-30讲全小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
小学四年级奥数讲义
小学四年级奥数讲义需要牢背的基本概念1、加法中的巧算:加法交换律: a+b =b+a 加法结合律:a+b+c=a+(b+c)减法和加、减混合运算中的巧算:(1)一个数连续减去几个数,等于减去这几个数的和.相反,一个数减去几个数的和,等于连续减去这几个数.即a-b—c=a-(b+c) a—(b+c) =a-b-c(2)在加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如:a—b+c=a+c—b(3)加、减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“—”变“+”,“+”变“-”;如果括号前面是“+"号,那么括号里的符号不变。
如a-(b-c)=a-b+c,a+(b—c)=a+b-c如果两个数的和恰好可以凑成整十、整百、整千……的数,那么其中一个数叫做另一个数的“互补数”。
2、乘法中的巧算:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c、(a-b)×c=a×c—b×c3、除法中的巧算:(1)除法交换律:a÷b÷c=a÷c÷b(2)根据“被除数和除数同时扩大或缩小相同的倍数,商不变”的规律,进行巧算。
公式:如果a÷b=c 则 (a×n)÷(b×n)=c (a÷n)÷(b÷n)=cn≠0(3)根据“一个数除以两个因数的积等于一个数连续除以这两个因数”的规律,进行巧算.公式:a÷(b×c)= a÷b÷c(4)根据“一个数除以两个因数的商等于一个数除以第一个因数乘以第二个因数"公式:a÷(b÷c)= a÷b×c(5)除法分配律:(a + b)÷c = a÷c + b÷c a÷c + b÷c=(a + b)÷c4、你知道巧算中有几对好朋友吗?请写出来: 2×5=10 4×25=100 8×125=100016×625=10000 3×37=111 7×11×13=1001 37037×3=10101 5、“头同尾合十”:头×(头+1)×100+尾×尾“尾同头合十":(头×头+尾)×100+尾×尾6、平方差公式: a2-b2=(a+b)×(a—b)7、配对求和,也就是等差数列求和。
《小学奥数》小学四年级奥数讲义之精讲精练第1讲寻找规律
《⼩学奥数》⼩学四年级奥数讲义之精讲精练第1讲寻找规律第1讲找规律⼀、知识要点按照⼀定的顺序排列的⼀串数叫做数列。
观察是解决问题的根据。
通过观察,得以揭⽰出事物的发展和变化规律,在⼀般情况下,我们可以从以下⼏个⽅⾯来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从⽽很快找出规律;4.数之间的联系往往可以从不同的⾓度来理解,只要⾔之有理,所得出的规律都可以认为是正确的。
⼆、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号⾥填上适当的数。
1,4,7,10,(),16,19练习1:先找出下列各列数的排列规律,然后在括号⾥填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3.【例题2】先找出下列数排列的规律,然后在括号⾥填上适当的数。
1,2,4,7,(),16,22练习2:先找出下列数排列的规律,然后在括号⾥填上适当的数。
(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8 (5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1 (7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14【例题3】先找出规律,然后在括号⾥填上适当的数。
四年级数学竞赛奥数讲义
第一讲:多位数计算)★★★(111111111计算:999999999×)(★★★★133332 ×计算:66666)★★★★(求算式的计算结果的各位数字之和。
9969L?88L8?66L{22331182009个6个2009个20099)(★★★★228881?11LL计算:{{1个20108个2010)★★★(33334 333339999922222计算:×+×1)★★★★(结果末尾有多少个零?计算9L?19999L9?99L92123312319个个9100100个9100)★★★★★(2L44L4?22533L3?55L?6?{2312132133个20102个个4201020105个2010【你还记得吗】)★★★(20102010 2011××计算:201020112011-)★★★★(333333332 ××333332332333-332计算:2测试题1.计算222222×999999A.222222217880 B.222222788888 C.222221777778 D.22222217778813332×66662.计算C.88871112 B.88881112 88872222 D.88882222A..计算:334L1222111LL2?33332123414324142个300个13003个299A.B.C.D.33L3333333333LL3333L34114321423444314224 3063301个个33200个3300个4.计算100×100-99×99+98×98-97×97+…+2×2-1×1A.4950 B.5050 C.5150 D.52502433333×5.计算99999×26+D..6933669 C.3399966 36699663996366 A.B1799×899+6.计算:899D.981000.A819000 B.810000 C.900000555555444444×.计算111111×777777+7D.333332777777 333333777777C333332666667 A.B.333333666667 .20092008200720072008×-×8.计算2009DC..4017 04016 B.A2 .3容斥原理上第二讲:)(★★参加30人,网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球训练的有人,请问:两个项目都参加的有多少人?乒乓球训练的有35)★★★(人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成30一个班人;一种是语文、数学作业都完成了。
小学四年级奥数讲义
小学四年级奥数讲义第一部分:数学基础知识1.1 自然数和整数- 自然数是指从1开始的正整数,用符号$N$表示。
- 整数是自然数和其相反数的集合,用符号$Z$表示。
1.2 加法和减法- 加法是将两个数合并在一起,得到它们的总数。
- 例如:$2 + 3 = 5$。
- 减法是从一个数中减去另一个数,得到它们的差。
- 例如:$5 - 2 = 3$。
1.3 乘法和除法- 乘法是将两个数相乘,得到它们的积。
- 例如:$2 × 3 = 6$。
- 除法是将一个数分割成若干等份,得到它们的商。
- 例如:$6 ÷ 3 = 2$。
第二部分:奥数技巧和练2.1 快速计算- 利用9的乘法法则,可以快速计算一个数乘以9的结果。
- 例如:$4 × 9 = 36$。
- 利用倍数关系,可以快速计算一个数的倍数。
- 例如:$3 × 4 = 12$。
2.2 算式变换- 利用算式的性质,可以将复杂的算式转化为简单的算式。
- 例如:$(3 + 4) × 5 = 7 × 5 = 35$。
- 利用分配律,可以将一个数拆分成两个数的和或差。
- 例如:$8 × 7 = (5 + 3) × 7 = 5 × 7 + 3 × 7 = 35 + 21 = 56$。
2.3 枚举法和猜想法- 枚举法是一种通过列举所有可能情况来解决问题的方法。
- 例如:求两个数的最大公约数,可以列举出所有可能的公约数,然后找出其中最大的一个。
- 猜想法是一种根据已有规律猜测答案的方法,然后通过严谨的推理来证明猜想是否正确。
- 例如:猜测一个数是偶数时,它一定能被2整除,然后通过证明偶数定义来证明猜想的正确性。
第三部分:练题1. 计算:$2 + 3 × 4 - 5 = ?$2. 计算:$7 - (4 × 2 + 1) = ?$3. 快速计算:$6 × 9 = ?$4. 快速计算:$5 × 7 = ?$5. 利用枚举法找出10以内的所有偶数。
小学四年级奥数讲义(3)
课题
第三讲:归一与归总。
励志言
小朋友们:
知道吗?“天才在于积累,聪明在于勤奋。”
知识反思
归一应用题是已知相关联的两个量,其中一个量变化,另一个量也随着发生同样的变化的应用题。解这类应用题的关键是先求出“单一量”。(单位时间的工作量、单位时间所行的路程、单位面积的产量及物品的单价等等)。所以将这类应用题叫做归一应用题。
10制鞋厂原来30名工人10天生产皮鞋1500双,照这样的速度,现在增加了10名工人,要生产9000双皮鞋,需要多少天?
自我评价
与归一应用题对应的是归总应用题,归一应用题是要求出“单一量”,而归总应用题是要求出“总量”。(总路程、总产量、工作总量、物品的总价等等)。所以叫做归总应用题。
解答归一应用题与归总应用题的数量关系是:
单一量×份数=总量总量÷单一量=份数总量÷份数=单一量
课前检测
请大家用5分钟时间,熟悉上面的知识,记住数量关系的同学,奖励一个标志“※”,别忘记了,累计十个,可以得到老师的一份小礼物。
(二)
弄清题意是重点,关键的字、词、句。暗藏着解题突破口。
训练检测与能力挑战
1、第一机械厂原计划用15名工人3天生产900个零件。生产开始后,又增加一批任务,在工作效率不变的情况下,要10个人8天完成,那么增加了多少零件?
2、修一条公路,原计划60人用80天完成,现在这批人工作20天后,又增加30人,则剩下的部分再做多少天可以完成?
6、某食堂存有16个人可吃15天的大米,16个人吃了5天后,走了6人。余下的米还可以吃多少天?
课后巩固
7、修一段公路,12人工作45天可以完成,如果要提前9天完成任务,需要增加几人?
8、6台拖拉机2天耕地240亩。照这样计算,5台拖拉机耕地200亩需要几天?
四年级奥数全套奥数讲义
四年级奥数全套奥数讲义目录第1讲巧找规律填数 (1)第2讲巧解数字谜 (7)第3讲巧算与速算(一) (16)第4讲巧算与速算(二) (23)第5讲巧添运算符号 (32)第6讲巧解新运算 (39)第7讲巧解年龄问题 (46)第8讲巧用消去法解题 (52)第9讲巧解智巧问题 (61)第10讲巧用列举法解题 (68)第11讲巧用数字问题(一) (76)第12讲巧解图形拼割问题 (83)第13讲巧算面积 (93)第14讲巧解逻辑推理 (100)第15讲巧解格点与面积 (108)第16讲巧解还原问题 (116)第17讲巧求平均问题 (123)第18讲巧解数字问题(二) (130)第19讲巧求讲数问题 (136)第20讲巧解相遇问题 (145)第21讲巧解追及问题 (154)第22讲巧解盈亏问题 (161)第23讲巧解鸡兔同笼问题 (168)第24讲巧解一元一次方程 (174)第25讲巧解行船问题 (182)第26讲巧用对应与分组解题 (189)第27讲巧做游戏与对策 (195)巧找规律填数巧点晴——方法和技巧一、求两数的和、差、积、商[例1]根据下图前两个图中各数之间的关系,想一想第三个图中的括号里应填什么数。
做一做1 根据前两个图中各数之间的关系,想一想第三个图中的括号里填什么数。
(1)(2) (3)[例2]找规律计算。
(1)81-18=(8-1)×9=7×9=63 (2)72-27=(7-2)×9=5×9=45 (3)63-36=(□-□)×9=□×9=□做一做2 找规律计算。
(1)62+26=(6+2)×11=8×11=88(2)87+78=(8+7)×11=15×11=165(3)54+45=(□+□)×11=□×11=□[例3]观察下列算式的规律,在()中填上符合同样规律的数。
四年级 奥数 讲义 11 学子 教案库 1.第一讲 整数与数列
一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。
项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()第一讲 整数与数列知识点拨由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解: 23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和(1001)=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的应用【例 1】 小朋友你会用等差数列的求和公式会计算下面各题吗?例题精讲【巩固】计算:⑴2469698100135959799++++++-++++++()()⑵13467910121366676970+++++++++++++;⑶1000999998997996995106105104103102101+-++-+++-++-.⑷616926993699946999956999996+++++【巩固】计算1231990 1990199019901990+++=______【巩固】⑴计算468103436++++++⑵以质数71做分母的最简真分数有123,,......,7171716970,;7171求这列数的和⑶计算:567891011 135791113 13131313131313 ++++++【例 2】把比100大的奇数从小到大排成一列,其中第21个是多少?【巩固】⑴如果一个等差数列的第4项为21,第6项为33,求它的第8项.⑵如果一个等差数列的第3项为16,第11项为72,求它的第6项.【巩固】在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994.【巩固】已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【例 3】15个连续奇数的和是1995,其中最大的奇数是多少?【巩固】 2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【例 4】 编号为1~9的9个盒子里共放有351粒糖,已知每个盒子都比前一个盒子里多同样数量的糖.如果1号盒子里放11粒糖,那么后面的盒子比它前一个盒子里多放几粒糖? 【巩固】 例题中已知如果改为3号盒子里放了23粒糖呢?【巩固】 小王和小高同时开始工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.
A:甲先取3根有必胜的策略B:甲先取2根有必胜的策略C:甲先取1根有必胜的策略D:乙有必胜的策略
2.
A:甲先取1根有必胜的策略B:甲先取2根有必胜的策略C:甲先取3根有必胜的策略D:甲先取4根有必胜的策略
3.
A:乙有必胜的策略
B:甲先报3有必胜的策略C:甲先报4有必胜的策略D:甲先报5有必胜的策略
4.
A:甲先从第一堆中取53根有必胜的策略B:甲先从第一堆中取11根有必胜的策略C:甲先从第二堆中取42根有必胜的策略D:乙有必胜的策略
5.
A:甲先向左走一步有必胜的策略
B:甲先向下走一步有必胜的策略
C:甲先向左下走一步有必胜的策略
D:乙有必胜的策略。