中科院数学分析考研
中国科学院大学《高等代数》《数学分析》考研真题汇总(2009-2018年汇编)
|z| ≤ na, |x| ≤ nh, |y| ≤ nk.
(2) 求证: Hermite 矩阵的特征值都是实数.
(3) 求证:反对称矩阵的非零特征值都是纯虚数.
六、 ( 15 分) 设 A 是 n 维实线性空间 V 的线性变换, n ≥ 1. 求证: A 至少存在一个一维或者二维的不变 子空间.
七、 ( 20 分) 设循环矩阵 C 为
01
生成的子空间. 求 W ⊥ 的一组标准正交基.
00
11
八、 ( 18 分) 设 T1, T2, · · · , Tn 是数域 F 上线性空间 V 的非零线性变换, 试证明存在向量 α ∈ V , 使得 Ti(α) = 0, i = 1, 2, · · · , n.
7
5. 2013年中国科学院大学《高等代数》研究生入学考试试题
三、 ( 20 分) 已知 n 阶方阵
a21
a1a2 + 1 · · · a1an + 1
A
=
a2a1 + 1
a22
···
a2an + 1
,
···
··· ··· ···
ana1 + 1 ana2 + 1 · · ·
a2n
n
n
其中 ai = 1, a2i = n.
i=1
八、 ( 15 分) 设 A 是 n 阶实方阵, 证明 A 为实对称阵当且仅当 AAT = A2, 其中 AT 表示矩阵 A 的转置.
6
4. 2012年中国科学院大学《高等代数》研究生入学考试试题
一、 ( 15 分) 证明:多项式 f (x) = 1 + x + x2 + · · · + xn 没有重根.
[整理]中科院数学分析考研大纲.
中科院研究生院硕士研究生入学考试《数学分析》考试大纲本《数学分析》考试大纲适用于中国科学院研究生院数学和系统科学等学科各专业硕士研究生入学考试。
数学分析是一门具有公共性质的重要的数学基础课程,由分析基础、一元微分学和积分学、级数、多元微分学和积分学等部分组成。
要求考生能准确理解基本概念,熟练掌握各种运算和基本的计算、论证技巧,具有综合运用所学知识分析和解决问题的能力。
一、考试基本要求要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试方法和考试时间数学分析考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
三、考试内容和考试要求(一)考试内容1. 分析基础(1) 实数概念、确界(2) 函数概念(3) 序列极限与函数极限(4) 无穷大与无穷小(5) 上极限与下极限(6) 连续概念及基本性质,一致连续性(7)收敛原理2. 一元微分学(1) 导数概念及几何意义(2) 求导公式求导法则(3) 高阶导数(4) 微分(5) 微分中值定理(6) L’Hospital法则(7) Taylor公式(8) 应用导数研究函数3. 一元积分学(1) 不定积分法与可积函数类(2) 定积分的概念、性质与计算(3) 定积分的应用(4) 广义积分4. 级数(1) 数项级数的敛散判别与性质(2) 函数项级数与一致收敛性(3) 幂级数(4) Fourier级数5. 多元微分学(1) 欧氏空间(2) 多元函数的极限(3) 多元连续函数(4) 偏导数与微分(5) 隐函数定理(6) Taylor公式(7) 多元微分学的几何应用(8) 多元函数的极值6. 多元积分学(1) 重积分的概念与性质(2)重积分的计算(3)二重、三重广义积分(4)含参变量的正常积分和广义积分(5)曲线积分与Green公式(6)曲面积分(7)Gauss公式、Stokes公式及线积分与路径无关(8)场论初步(二)考试要求1.分析基础(1) 了解实数公理,理解上确界和下确界的意义。
中国科学院数学研究院数学分析试题及答案
中国科学院数学与系统科学研究院20XX 年硕士研究生招生初试试题参考解答数学分析1、求a,b 使下列函数在x=0处可导:2,1,ax b y x +≥⎧=⎨+⎩当x 0;当x<0.解:由于函数在x=0处可导,从而连续,由(00),(00)1f b f +=-=,得到b=1;又由(0),(0)0f a f +-==,得到a=0.即得。
2、 1110,,.1n n n a ∞∞==>+∑∑n n 1已知级数发散求证级数也发散a a 证明: 用反证法。
由0n a >知,1n ∞=∑n 1级数a ,111n ∞=+∑na 均为正项级数。
假设级数111n ∞=+∑n a 收敛,则1lim 01n →∞=+n a ,于是有11lim lim lim 1111111n n n n n n a a a →∞→∞→∞===-+++n n 1a a , 从而由正项级数的比较判别法知级数1n ∞=∑n1a 收敛,矛盾,从而得证。
3、 1(1).nx dx ≥-⎰m设m,n 0为整数,求积分x 的值解:1(1),nx dx -⎰m 设I(m,n)=x 则由分部积分法有11111n101I(m,n)=(1-x)(1)|(1)(1)0111m m m n n x x x d x n x dx m m m +++-=----+++⎰⎰(1,1)1nI m n m =+-+, 从而1(,)(1,1)(2,2)112n n n I m n I m n I m n m m m -=+-=+-+++11(,0)12n n I m n m m m n -==++++!1!!()!1(1)!!n m n m n m n m n m ==+++++,即得解。
4 、0().a aa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e 证明:由f(x)是定义在[-a,a]上的连续的偶函数知()()f x f x -=,从而令x t =-有 ()()()11a aat t t aa af t e f t dx dt dt e e -----=-=++⎰⎰⎰xf(x)1+e 从而1()1()()212aaaat t a a aae f t dx dx dt f x dx e ----=+=+⎰⎰⎰⎰x x f(x)f(x)1+e 1+e 0000011[()()][()()]()22aaaaa f x dx f x dx f x dx f x dx f x dx -=+=+=⎰⎰⎰⎰⎰, 得证。
中科院计算数学考研必读经验
中科院计算数学考研必读经验本人本科不是985、211名校,2014年考研,考中国科学院大学计算数学,总成绩386分。
【关于数学分析】:大一大二时,我对老师的数学分析课很感兴趣,所以自认为学得比较认真,理解得也比较深刻。
这虽然是我学得最认真的一门课,但也只仅限于完成平时的作业和完成期末的复习,并没有做很多额外的努力,这样四学期下来,对数学分析整体还是有个宏观的把握,比如说起微积分学基本定理,Dini定理,欧拉积分等都会有个大致的印象。
大三时,我旁听了老师给下一级上的数学分析课和数学分析选论,虽然已经是第二次听,但由于以前学得都没有及时复习,老师讲的很多忘记了,很多知识他讲到才想起来。
同时,大三这一学年我都在自己钻研一些自己比较感兴趣的数学分析内容,比如反常积分敛散性、级数求和等,因此顺便做了数学分析的课题。
但由于大三还是有专业课(实变、抽代等)和其他课程的压力,一直没有系统地开展复习。
大三结束,从7月5日起,正式进入考研复习阶段,一开始,我打算做《裴礼文》,计划每天做20页,但是做了1个月不到,发现效率很低,因为对于我来说里面大部分题目都不会,每道题都要花时间。
到了后来,每天看10页都已经很不错了,因为之前几天看懂的题目又忘了,又需要不断复习。
这时我感到了压力很大,觉得应该以应试为主,《裴礼文》上的题目偏难了,有些大大超过考研难度。
于是,从8月开始,我开始做《题解精粹(钱吉林)》,这本书里面有1000多道各地的考研题,而且对于我来说,有简单题,有少量难题,总的来说比较适合我。
所以我每天做40道,这样做了一整个8月,刚好差不多做完。
这时,我深深感到之前数学分析课堂上学的真的很不够。
从9月份开始,我开始做教材的课后习题,顺便复习一下教材里面的定理。
这时做课后题还是需要借助答案,然后发现原来教材后面的题目许多都是考研题,怪不得以前都不会做。
这一轮复习到了10月中旬。
10月中旬我又把《题解精粹(钱吉林)》在第一遍看时没看透彻或是有跳过的地方补上。
中科院研究生院硕士研究生入学考试
中科院研究生院硕士研究生入学考试《数学分析》考试大纲本《数学分析》考试大纲适用于中国科学院研究生院数学和系统科学等学科各专业硕士研究生入学考试。
数学分析是一门具有公共性质的重要的数学基础课程,由分析基础、一元微分学和积分学、级数、多元微分学和积分学等部分组成。
要求考生能准确理解基本概念,熟练掌握各种运算和基本的计算、论证技巧,具有综合运用所学知识分析和解决问题的能力。
一、考试基本要求要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试方法和考试时间数学分析考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
三、考试内容和考试要求(一)考试内容1. 分析基础(1) 实数概念、确界(2)函数概念(3) 序列极限与函数极限(4) 无穷大与无穷小(5)上极限与下极限(6) 连续概念及基本性质,一致连续性(7)收敛原理2. 一元微分学(1) 导数概念及几何意义(2) 求导公式求导法则(3) 高阶导数(4) 微分(5) 微分中值定理(6) L’Hospital法则(7) Taylor公式(8) 应用导数研究函数3. 一元积分学(1) 不定积分法与可积函数类(2) 定积分的概念、性质与计算(3) 定积分的应用(4) 广义积分4. 级数(1) 数项级数的敛散判别与性质(2) 函数项级数与一致收敛性(3) 幂级数(4) Fourier 级数5. 多元微分学(1) 欧氏空间(2) 多元函数的极限(3) 多元连续函数(4) 偏导数与微分(5) 隐函数定理(6) Taylor 公式(7) 多元微分学的几何应用(8) 多元函数的极值6. 多元积分学(1) 重积分的概念与性质(2)重积分的计算(3)二重、三重广义积分(4)含参变量的正常积分和广义积分(5)曲线积分与Green 公式(6)曲面积分(7)Gauss 公式、Stokes 公式及线积分与路径无关(8)场论初步(二)考试要求1.分析基础(1) 了解实数公理,理解上确界和下确界的意义。
中科院数学考研真题
中科院数学考研真题在数学学科考研已经成为越来越多数学学子的选择之一的当下,中科院作为国内顶尖的科研机构,其数学考研真题备受关注。
本文将从历年真题分析、备考要点以及提高复习效果等方面,为考生提供有益的指导。
一、历年真题分析中科院数学考研真题一直以其难度较高、考察深度较深而闻名。
对于考生来说,熟悉历年真题是复习的重要环节。
通过分析历年真题,可以较好地把握考试的出题思路和内容重点。
在数学中,几何、代数、概率与数理统计等方面都是考试的重点内容。
历年真题中通常会涉及到这些领域的基础知识,但考查的形式和题目难度却不断变化。
因此,考生在准备复习时应对这些领域进行重点关注,并切实配合做好相关知识点的强化训练。
此外,历年真题还体现了中科院考试的一贯风格,强调数学的严密性和思维的灵活性。
考生在复习过程中,不仅需要掌握数学知识,还要注重培养解决问题的能力和应试策略。
二、备考要点1. 基础知识的牢固掌握中科院数学考研真题对考生的基础知识要求相对较高。
因此,在备考阶段,考生需对数学的各个知识点进行全面系统的学习和巩固。
建议考生在初期阶段,可以通过查阅教材和参考书,对基础知识进行有计划的温故知新。
2. 真题的细致分析真题是备考的重要素材,通过仔细分析真题可以更好地把握考试的特点和出题规律。
在分析真题时,考生要注意题目的难度、知识点的覆盖范围以及解题方法的灵活运用。
同时,要结合历年真题的考察重点,有针对性地制定复习计划,做到有的放矢。
3. 加强解题能力的训练在中科院数学考研中,解题能力是考试的关键。
除了对基础知识的掌握外,还需要考生能够熟练运用所学知识解决实际问题。
因此,考生在备考过程中要注重解答各种类型的题目,尤其是能够综合运用多个知识点解决问题的综合题。
三、提高复习效果的方法1. 制定合理的复习计划复习计划的制定是备考过程中的第一步。
考生应根据自身的时间和实际情况,制定具体可行的复习计划。
计划要有条理,合理分配复习时间,并注意预留一定的复习和休息时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读书破万卷下笔如有神中科院研究生院硕士研究生入学考试《数学分析》考试大纲本《数学分析》考试大纲适用于中国科学院研究生院数学和系统科学等学科各专业硕士研究生入学考试。
数学分析是一门具有公共性质的重要的数学基础课程,由分析基础、一元微分学和积分学、级数、多元微分学和积分学等部分组成。
要求考生能准确理解基本概念,熟练掌握各种运算和基本的计算、论证技巧,具有综合运用所学知识分析和解决问题的能力。
一、考试基本要求要求考生比较系统地理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法。
要求考生具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
二、考试方法和考试时间数学分析考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
三、考试内容和考试要求(一)考试内容1. 分析基础(1) 实数概念、确界(2)函数概念(3) 序列极限与函数极限(4) 无穷大与无穷小(5)上极限与下极限(6) 连续概念及基本性质,一致连续性(7)收敛原理2. 一元微分学(1) 导数概念及几何意义(2) 求导公式求导法则(3) 高阶导数(4) 微分(5) 微分中值定理(6) L'Hospital法则(7) Taylor公式(8) 应用导数研究函数一元积分学3.读书破万卷下笔如有神(1) 不定积分法与可积函数类(2) 定积分的概念、性质与计算(3) 定积分的应用(4) 广义积分4. 级数(1) 数项级数的敛散判别与性质(2) 函数项级数与一致收敛性(3) 幂级数(4) Fourier级数5. 多元微分学(1) 欧氏空间(2) 多元函数的极限(3) 多元连续函数(4) 偏导数与微分(5) 隐函数定理(6) Taylor公式(7) 多元微分学的几何应用(8) 多元函数的极值6. 多元积分学(1) 重积分的概念与性质(2)重积分的计算(3)二重、三重广义积分(4)含参变量的正常积分和广义积分(5)曲线积分与Green公式(6)曲面积分(7)Gauss公式、Stokes公式及线积分与路径无关(8)场论初步(二)考试要求1.分析基础(1)了解实数公理,理解上确界和下确界的意义。
掌握绝对值不等式及平均值不等式。
(2)熟练掌握函数概念(如定义域、值域、反函数等)。
(3)掌握序列极限的意义、性质(特别,单调序列的极限存在性定理)和运算??N方法。
法则,熟练掌握求序列极限的(4)掌握函数极限的意义、性质和运算法则(自变量趋于有限数和趋于无限两???方法,了解广义极限和单侧极限种情形),熟练掌握求函数极限的的意义。
(5)熟练掌握求序列极限和函数极限的常用方法(如初等变形、变量代换、两边夹法则等),掌握由递推公式给出的序列求极限的基本技巧,以及应用Stolz公式求序列极限的方法。
(6)理解无穷大量和无穷小量的意义,了解同阶和高(低)阶无穷大(小)量的意义。
(7)了解上极限和下极限的意义和性质。
理解函数两类间断点的熟练掌握函数在一点及在一个区间上连续的概念,(8).读书破万卷下笔如有神意义,掌握初等函数的连续性,理解区间套定理和介值定理。
理解一致连续和不一致连续的概念。
(9)掌握序列收敛的充分必要条件及函数极限(当自变量趋于有限数及趋于无穷两种情形)存在的充分必要条件。
2.一元微分学(1)掌握导数的概念和几何意义,了解单侧导数的意义,解依据定义求函数在给定点的导数。
(2)解应用求导公式和法则熟练计算函数导数(包括用参数式给出的函数的导数)、隐函数的导数以及函数的高阶导数。
(3)理解函数微分的概念和函数可微的充分必要条件,了解一阶微分的不变性,能利用微分作近似计算。
(4)理解并掌握微分中值定理(Rolle定理,Lagrange定理和Cauchy中值定理),并能应用它们解决函数零点存在性及不等式证明等问题。
(5)熟练掌握应用L'Hospital法则求函数极限的方法。
(6)理解Taylor公式(Lagrange余项和Peano余项)的意义,并熟记五个基?x,ln(1)?x),cos x,(1?ex,sin x在x=0点的带有本公式(Peano余项的Taylor公式),能将给定函数在指定点展成Taylor级数,掌握应用Taylor公式解决不等式证明、求函数极限等问题的基本技巧。
(7)熟练掌握应用导数判断函数升降、凹凸性以及画出函数图像的方法,以及求一元函数极值和最值的方法。
3.一元积分学(1)理解不定积分概念和基本性质,熟记基本积分表,理解并掌握换元法和分部积分法的意义和方法,解应用他们熟练计算不复杂的不定积分。
(2)了解可积分函数类的意义及其积分法,熟练掌握有理函数、三角函数有理式及简单的根式的有理式的积分方法。
(3)理解定积分的概念,掌握定积分的基本性质及函数在有限区间上可积的充分必要条件,熟练掌握定积分的计算方法。
了解变限定积分的性质,掌握积分中值定理。
(4)熟练应用定积分计算平面曲线弧长、平面图形面积、立体体积、旋转曲面表面积,并解应用于求均匀平面图形重心坐标等简单物理、力学问题。
(5)理解广义积分及其收敛、绝对收敛和发散的意义,掌握广义积分收敛的判定法则。
4.级数(1)掌握数项级数收敛、发散和绝对收敛的概念、级数收敛的充分必要条件(Cauchy准则),收敛和绝对收敛级数的性质以及级数加法和乘法的运算法则。
(2)熟练掌握正项级数敛散判别法(比较判别法、D'Alembert判别法、Cauchy根式判别法以及Cauchy积分判别法),掌握一般项级数敛散判别方法。
能计算一些特殊数项级数的和。
(3)理解函数项级数收敛的意义并能确定其收敛域。
理解函数序列一致收敛以及函数项级数一致收敛的意义,掌握函数项级数一致收敛的判别法则(Cauchy一致收敛准则,Weierstrass判别法,Abel判别法,Dirichlet判别法)及一致收敛级数的性质。
.读书破万卷下笔如有神(4)理解幂级数的概念并能确定其收敛半径。
掌握幂级数的基本性质和运算法?x,ln(1?x1?x))e,sin x,cos x,()。
则,熟记五个基本幂级数展开式(能求出给定函数在指定点的幂级数展开式及应用幂级数运算求一些级数的和。
(5)理解函数Fourier展开式的意义,掌握求Fourier展开式的基本方法。
了解Fourier级数的收敛性定理、逐项积分和逐项求导定理以及Parseval等式,?1?)。
并能应用Fourier级数求某些级数的和(例如2n1n?5.多元微分学(1)理解欧氏空间的概念及欧氏空间中向量的内积与模、开集与闭集、开区域与闭区域的意义,了解完备性定理及紧性定理。
(2)理解多元函数的概念。
掌握多元函数的全面极限、累次极限和特殊路径极限的意义,并能根据定义计算多元函数极限,或证明二元极限不存在,能计算多元函数的全面极限和累次极限。
(3)理解多元连续函数的概念,掌握其性质,并能判断多元函数的连续性。
了解多元函数的一致连续性。
(4)理解偏导数的概念,掌握其计算法则,能熟练计算函数的偏导数和复合函数的导函数,能计算函数在给定方向上的导函数。
(5)理解多元函数的微分的概念,并能判断函数的可微性。
(6)理解隐函数存在定理和反函数存在定理,熟练掌握隐函数的微分法。
(7)理解Taylor公式的意义,并能求出二元函数的具有指定阶数的Taylor公式。
(8)能应用偏导数求空间曲线的切线、法平面及空间曲面的法线和切平面的方程。
(9)理解多元函数的极限和最值的意义、极值的必要条件和充分条件,掌握求多元函数极值、条件极值及在闭区域上的最值的方法,并用于解决实际问题。
6.多元积分学(1)理解重积分的概念、可积的充分必要条件及重积分的性质。
(2)掌握二重积分和三重积分化累次积分的方法以及二重、三重积分的变量代换方法(特别,平面极坐标变换,空间柱坐标和球坐标变换),能熟练计算二重和三重积分,并用于计算平面图形面积、柱体体积、曲面面积及曲面所围的立体体积。
了解n重(n>3)积分的计算方法(化为累次积分及变量代换)。
(3)了解二重、三重广义积分的意义(无界域情形和不连续函数情形),掌握它们的基本判敛法和基本计算方法。
(4)了解含参变量的正常积分的基本性质(连续性,积分号下取极限、求导和求积分),了解含参变量的广义积分一致收敛性的意义及其基本性质(连?了解掌握其一致收敛判别法,积分号下取极限、求导及求积分),续性,?函数。
和(5)理解第一型和第二型曲线积分的意义、性质、实际背景及二者的联系,能熟练计算曲线积分。
公式的意义,并能应用它计算曲线积分。
Green理解并掌握(6).读书破万卷下笔如有神(7)理解第一型和第二型曲面积分的意义、性质、实际背景及二者的联系,能熟练计算曲面积分。
(8)理解并掌握Gauss公式和Stokes公式的意义,并能用于曲面积分或曲线积分的计算。
了解空间曲线积分与路径无关的充分必要条件及其对曲线积分计算的应用。
(9)了解场的概念和保守场的意义,能计算场的梯度、散度和旋度。
四、参考书目现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。
编制单位:中国科学院研究生院编制日期:20XX年7月1日。