自动控制原理实验.
自动控制原理实验报告
自动控制原理实验报告一、实验目的。
本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。
二、实验原理。
PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。
比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。
PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。
三、实验装置。
本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。
四、实验步骤。
1. 将PID控制器与被控对象连接好,并接通电源。
2. 调节PID控制器的参数,使其逐渐接近理想状态。
3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。
4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。
五、实验结果与分析。
经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。
因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。
六、实验总结。
通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。
同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。
七、实验心得。
本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。
只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。
八、参考文献。
[1] 《自动控制原理》,XXX,XXX出版社,2010年。
[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。
自动控制原理实验
自动控制原理实验自动控制原理实验是自动控制原理课程的重要组成部分,通过实验可以帮助学生深入理解自动控制原理的相关知识,并且掌握实际操作的能力。
本实验旨在通过具体的实验操作,让学生对自动控制原理的理论知识有更深入的了解,同时培养学生的实际动手能力和解决问题的能力。
一、实验目的。
本实验旨在通过具体的实验操作,让学生对自动控制原理的理论知识有更深入的了解,同时培养学生的实际动手能力和解决问题的能力。
二、实验原理。
自动控制原理是一门研究控制系统的设计与分析的学科,它主要研究用于自动控制的原理、方法和技术。
自动控制原理实验是通过实验来验证自动控制原理的理论知识,包括传递函数、控制器设计、系统响应等内容。
三、实验内容。
1. 搭建控制系统模型,根据所学的自动控制原理知识,搭建相应的控制系统模型,包括传感器、执行器、控制器等组成部分。
2. 系统参数测量,对搭建好的控制系统模型进行参数测量,包括系统的传递函数、阶跃响应等参数。
3. 控制器设计与调试,根据实验要求,设计相应的控制器,并进行调试,观察系统的响应情况。
4. 系统性能分析,对设计好的控制系统进行性能分析,包括稳定性、灵敏度、鲁棒性等指标的评估。
四、实验步骤。
1. 按照实验要求,搭建控制系统模型,包括传感器、执行器、控制器等组成部分。
2. 进行系统参数测量,包括系统的传递函数、阶跃响应等参数的测量。
3. 根据实验要求,设计相应的控制器,并进行调试,观察系统的响应情况。
4. 对设计好的控制系统进行性能分析,包括稳定性、灵敏度、鲁棒性等指标的评估。
五、实验结果与分析。
通过实验操作,我们得到了控制系统的传递函数、阶跃响应等参数,并设计了相应的控制器进行了调试。
通过对系统的性能分析,我们可以得出系统的稳定性较好,对外界干扰具有一定的抵抗能力。
六、实验总结。
通过本次实验,我们深入理解了自动控制原理的相关知识,掌握了实际操作的能力。
同时,我们也发现了一些问题,比如在控制器设计与调试过程中遇到了一些困难,需要进一步加强相关知识的学习和实践能力的培养。
自动控制原理实验报告
自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本概念和实验操作方法,加深对自动控制原理的理解和应用。
实验仪器与设备,本次实验所需仪器设备包括PID控制器、温度传感器、电磁阀、水槽、水泵等。
实验原理,PID控制器是一种广泛应用的自动控制设备,它通过对比设定值和实际值,根据比例、积分、微分三个控制参数对控制对象进行调节,以实现对控制对象的精确控制。
实验步骤:1. 将温度传感器插入水槽中,保证传感器与水温充分接触;2. 将水泵接通,使水槽内的水开始循环;3. 设置PID控制器的参数,包括比例系数、积分时间、微分时间等;4. 通过调节PID控制器的参数,使得水槽中的水温稳定在设定的目标温度;5. 观察记录PID控制器的输出信号和水温的变化情况;6. 分析实验结果,总结PID控制器的控制特性。
实验结果与分析:经过实验操作,我们成功地将水槽中的水温控制在了设定的目标温度范围内。
在调节PID控制器参数的过程中,我们发现比例系数的调节对控制效果有着明显的影响,适当增大比例系数可以缩小温度偏差,但过大的比例系数也会导致控制系统的超调现象;积分时间的调节可以消除静差,但过大的积分时间会导致控制系统的超调和振荡;微分时间的调节可以抑制控制系统的振荡,但过大的微分时间也会使控制系统的响应变慢。
结论:通过本次实验,我们深入理解了PID控制器的工作原理和调节方法,掌握了自动控制原理的基本概念和实验操作方法。
我们通过实验操作和数据分析,加深了对自动控制原理的理解和应用。
总结:自动控制原理是现代控制工程中的重要内容,PID控制器作为一种经典的控制方法,具有广泛的应用前景。
通过本次实验,我们不仅学习了自动控制原理的基本知识,还掌握了PID控制器的调节方法和控制特性。
这对我们今后的学习和工作都具有重要的意义。
自控原理实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
自动控制原理实验
自动控制原理实验
C
输 入
R2 R1 +
输 出 -1
Ui
0
t
Uo Uo 2 1
K=2
Ui=-1V
0
图 1-3 惯性环节实验原理图和输出波形
t
3.积分环节
积分环节实验原理图如图 1-4 所示。
G( S )
Z 2 1CS 1 Z1 R1 TS
, T=R1*C
当输入为单位阶跃信号,即 ui(t)=-1V 时,ui(s)= 所以输出响应为 uo(t)=
-1-
自动控制原理实验
R2
输 入
Ui
R1 +
0
输 出 -1 Uo Uo 2 1 k=2
t
Ui=-1V
0
图 1-2 比例环节实验原理图和输出波形
t
实验步骤: (1)调整示波器: 选择输入通道 CH1 或 CH2。 逆时针调节示波器的时间旋钮“TIME/DIV”到底, 使光标为一点, 并调节上下“位 移”旋钮使光标位于 0 线上。 调整示波器的输入幅度档位选择开关, 选择合适的档位使信号幅度便于观察, 例如 选择档位为 1V 档。 将输入幅度档位选择开关中心的微调旋钮顺时针旋到底。 将信号选择开关打到 DC 档。 (2)顺时针调节实验箱的旋钮,使阶跃信号为负(绿灯亮) 。 ( 3 )阶跃信号接到示波器上,调节实验箱的幅度旋钮。使负跳变幅度为一格(即 Ui=-1V) 。 (4)接好实验线路,按下阶跃信号按钮,观察示波器的波形。 预习思考:输出幅度跳变应为……? 2.惯性环节 惯性环节实验原理图如图 1-3 所示。 其传递函数为: G( S )
-8-
自动控制原理实验
大使稳态误差进一步减小,直到等于零。因此, “比例+积分(PI)”控制器,可以使系统在进 入稳态后无稳态误差。 这是相位滞后校正,滞后校正器的基本特性,是相频曲线具有负相 移(滞后相位角) 。滞后校正器实际是一个低通滤波器,基本原理主要是利用其滞后网络的 高频衰减特性,以降低系统的开环截止频率,从而使已校正系统获得足够的相角裕度。 比例微分(PD)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差 的变化率) 成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。 其原因是由于存在有较大惯性组件(环节)或有滞后 (delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前” ,即在误差 接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不 够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项” ,它能预测误差 变化的趋势,这样,具有“比例+微分”的控制器,就能够提前使抑制误差的控制作用等于 零, 甚至为负值, 从而避免了被控量的严重超调。 所以对有较大惯性或滞后的被控对象, “比 例+微分(PD)”控制器能改善系统在调节过程中的动态特性,是“超前”校正。超前校正的 原理是利用微分环节的超前调节作用, 实际上是利用了 RC 微分电路的高通特性进行超前校 正的。 “滞后-超前(PID) ”校正包含 PI 和 PD 这两种校正,其对系统性能的影响是上述两种 校正对系统作用的综合, 这种校正方法兼有滞后校正和超前校正的优点, 因此可以取长补短, 比单独使用超前或滞后校正方法能满足更多的性能要求。 “滞后-超前”校正器不仅能提高系 统的稳定性能,还可以减少超调量、加快系统响应速度。合理应用 PID 可以取得更好的校 正效果。
自动控制原理实验(全面)
自动控制原理实验实验一 典型环节的电模拟及其阶跃响应分析一、实验目的⑴ 熟悉典型环节的电模拟方法。
⑵ 掌握参数变化对动态性能的影响。
二、实验设备⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。
⑵ 数字万用表。
三、实验内容1.比例环节的模拟及其阶跃响应微分方程 )()(t Kr t c -= 传递函数 =)(s G )()(s R s C K -= 负号表示比例器的反相作用。
模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。
图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应微分方程 )()(t r dtt dc T= 传递函数 sKTs s G ==1)(模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。
3.一阶惯性环节的模拟及其阶跃响应微分方程 )()()(t Kr t c dtt dc T=+ 传递函数 1)(+=TS KS G模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃响应曲线,并打印曲线。
4.二阶系统的模拟及其阶跃响应微分方程 )()()(2)(222t r t c dt t dc T dt t c d T =++ξ传递函数 121)(22++=Ts s T s G ξ2222nn n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。
⑵ T=2,ξ=0.5 时的阶跃响应曲线。
四、实验步骤⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。
⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。
⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。
自控原理课程实验报告
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。
3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。
二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。
本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。
2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。
(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。
(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。
(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。
(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。
(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。
2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。
(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。
3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。
(2)根据仿真结果,优化系统参数,提高系统性能。
四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。
自动控制原理实验报告
自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2. 学习在电子模拟机上建立典型环节系统模型的方法。
3. 学习阶跃响应的测试方法。
二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。
2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。
三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。
222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。
自动控制原理实验报告
自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。
2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。
3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。
6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。
二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。
自动控制原理实验报告
一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。
2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。
3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。
二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。
实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。
2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。
3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。
三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。
2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。
3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。
六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。
2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。
3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。
自动控制原理实验报告分析
自动控制原理实验报告分析1. 引言自动控制原理是现代工程中非常重要的一门学科。
它研究如何设计和分析能够实现自动化控制的系统,以满足特定的性能要求。
通过实验,我们可以验证控制系统的性能,并深入理解自动控制原理的基本概念和工作原理。
本文将对自动控制原理实验进行详细分析和总结。
2. 实验目的本次实验的目的是研究PID(比例-积分-微分)控制器在温度控制系统中的应用。
通过调节PID控制器的参数,我们可以观察到不同控制参数对系统稳定性、响应速度和超调量等性能指标的影响。
3. 实验步骤本次实验使用了一个温度控制系统。
我们需要调节PID控制器的三个参数(比例增益、积分时间和微分时间)来实现温度的稳定控制。
具体的实验步骤如下:3.1 准备工作在进行实验之前,我们需要确保实验所需的设备和软件已经准备就绪。
这包括温度传感器、温度控制器、计算机等。
3.2 连接系统将温度传感器连接到温度控制器,并将温度控制器连接到计算机。
确保连接正确并稳定。
3.3 设置初始参数在实验开始前,我们需要设置PID控制器的初始参数。
一般情况下,我们可以先将比例增益和积分时间设置为较小的值,微分时间设置为0。
3.4 开始实验启动温度控制系统,并记录温度的变化。
观察温度的稳定性、响应速度和超调量等指标,并记录下来。
3.5 调节参数根据实验结果,我们可以调节PID控制器的参数来改善系统的性能。
通过增大比例增益可以提高系统的响应速度,但可能会导致较大的超调量。
增大积分时间可以减小超调量,但可能会降低系统的稳定性。
调节微分时间可以改善系统的稳定性和响应速度。
3.6 重复实验根据实验结果,我们可以不断调节PID控制器的参数,并进行多次实验,以得到更好的控制效果。
4. 实验结果分析根据实验的记录数据,我们可以对实验结果进行分析。
通过观察温度的变化曲线以及性能指标的大小,我们可以得出如下结论:•较大的比例增益可以提高系统的响应速度,但会导致较大的超调量。
•较大的积分时间可以减小超调量,但会降低系统的稳定性。
自动控制原理实验报告
自动控制原理实验报告实验目的本次自动控制原理实验的目的是通过对传统反馈控制系统的模拟和实现,了解并掌握基本的控制原理和控制器设计方法,进一步深化对自动控制理论的理解。
实验装置本次实验使用的是一台水位控制系统,该系统由电源、电机、计量储水罐、信号检测器、PID控制器、水泵等组成。
电源将电能转换为机械能,通过水泵将水流入到计量储水罐中,信号检测器对储水罐中的水位进行检测并反馈给PID控制器,PID控制器对信号进行处理并控制电机的转速,从而实现对水位的控制。
实验步骤1. 确定实验参数在进行实验之前,首先需要确定实验的一些参数,如PID控制器的比例系数、积分系数以及微分系数等。
这需要根据具体实验情况进行设定,以确保控制系统具有良好的稳定性和响应能力。
2. 实施控制将水泵开启,令水流入计量储水罐中,同时PID控制器对信号进行处理,调节电机的转速以控制水位。
实验过程中需要注意及时进行系统动态的监控和调整,以确保控制系统的稳定性和故障排除。
3. 结束实验并分析结果实验结束后,需要对实验结果进行分析,包括控制系统的响应速度、稳定性以及对参数的灵敏度等。
通过对实验数据的收集和分析,可以进一步提高对自动控制理论的理解和应用能力。
实验结果分析本次实验中,我们实现了对水位的控制,并对PID控制器的参数进行了设定和调整。
实验结果表明,我们所设计的控制系统具有较好的稳定性和响应能力,并且对参数的灵敏度较高。
同时,通过实验数据的分析,我们也发现了一些问题和不足之处,如控制系统的动态响应速度过慢等,这需要我们在实际应用中加以改进和完善。
结论本次自动控制原理实验通过实现对水位的控制,进一步加深了对自动控制理论的理解,掌握了基本的控制原理和控制器设计方法。
同时,通过实验数据的分析和总结,也为今后在自动控制领域的实际应用提供了一定的参考和指导。
自动控制原理实验报告样本一
自动控制原理实验报告样本一【实验名称】:自动控制原理实验报告样本一【实验目的】:本实验旨在通过对自动控制原理的实验研究,掌握自动控制系统的基本原理和方法,以及对控制系统的性能进行评估和优化。
【实验装置和仪器】:1. 控制器:采用PID控制器,型号为XYZ-123。
2. 传感器:采用温度传感器,型号为ABC-456。
3. 执行器:采用电动阀门,型号为DEF-789。
4. 数据采集系统:采用LabVIEW软件进行数据采集和处理。
【实验原理】:自动控制原理实验中,我们采用了PID控制器来实现对温度的控制。
PID控制器是一种经典的控制算法,由比例(P)、积分(I)和微分(D)三个部分组成。
具体原理如下:1. 比例控制(P):根据反馈信号与设定值之间的差异,按比例调节输出信号。
比例系数Kp决定了输出信号的变化速度。
2. 积分控制(I):根据反馈信号与设定值之间的积分,按比例调节输出信号。
积分时间常数Ti决定了输出信号的稳定性。
3. 微分控制(D):根据反馈信号的变化速率,按比例调节输出信号。
微分时间常数Td决定了输出信号的响应速度。
通过调整PID控制器的参数,我们可以实现对温度的精确控制。
【实验步骤】:1. 将温度传感器连接到被控对象上,并将输出信号接入PID控制器的输入端口。
2. 将PID控制器的输出信号接入电动阀门,实现对温度的调节。
3. 打开实验软件LabVIEW,建立数据采集系统,设置采样频率和采样时长。
4. 设定所需的目标温度值,并将其输入PID控制器。
5. 启动数据采集系统,并记录下实验开始时间。
6. 观察温度的变化情况,并记录下每次采样的温度数值。
7. 根据实验数据,计算出温度的偏差值,并将其输入PID控制器进行调整。
8. 持续观察和记录实验数据,直至温度稳定在设定值附近。
9. 停止数据采集系统,并记录下实验结束时间。
【实验结果】:根据实验数据,我们得到了如下结果:1. 实验开始时间:2022年1月1日 10:00:002. 实验结束时间:2022年1月1日 11:00:003. 设定目标温度:40℃4. 实际温度波动范围:39.8℃ - 40.2℃5. 温度稳定时间:30分钟【实验分析】:根据实验结果,我们可以得出以下分析:1. 实际温度波动范围在设定目标温度的可接受范围内,说明PID控制器对温度的控制较为准确。
自动控制原理实验报告
自动控制原理实验报告摘要:本实验通过对自动控制原理的研究与实践,旨在深入了解自动控制系统的基本原理,以及相关的实验应用。
通过实验的设计与实施,我们在实践中学习了控制系统的结构、传递函数、稳定性、稳态误差等内容,并通过使用PID控制器对物理实验系统进行控制,从而对自动控制系统有了更加深入的理解。
引言:自动控制原理是现代工程控制领域的基础理论之一,在工业、交通、通信等领域都有广泛的应用。
自动控制原理实验是培养学生工程实践能力和动手能力的重要实践环节。
本实验通过对自动控制原理相关实验的设计与实践,让我们深入了解了自动控制系统的基本原理,并通过实际操作对理论知识进行了实际应用。
实验目的:1. 了解自动控制系统的基本结构和原理;2. 学习如何建立传递函数,并分析系统的稳定性;3. 熟悉PID控制器的参数调节方法;4. 掌握如何利用PID控制器对物理实验系统进行控制。
实验原理与方法:1. 实验装置搭建:我们搭建了一个简单的电路系统,包括输入信号源、控制器、执行器和输出传感器。
通过控制器对执行器的控制,实现对输出信号的调节。
2. 传递函数建立:使用系统辨识方法,通过对输入和输出信号的采集,建立系统的传递函数。
经过数据处理和分析,得到系统的传递函数表达式。
3. 稳定性分析:对系统的传递函数进行稳定性分析,包括零极点分析和Nyquist稳定性判据。
根据分析结果,判断系统的稳定性。
4. PID参数调节:根据传递函数和系统要求,使用PID控制器对系统进行调节。
根据实际情况进行参数调节,使得系统的响应达到要求。
实验结果与讨论:我们通过以上方法,成功地建立了控制系统的传递函数,并进行了稳定性分析。
通过对PID控制器参数的调节,使系统的稳态误差达到了要求。
通过实验,我们深刻理解了自动控制系统的基本原理,并学会了如何应用具体方法进行实际操作。
实验结论:通过自动控制原理的实验研究,我们对控制系统的基本原理有了更加深入的了解。
实践中,我们通过搭建实验装置、建立传递函数、进行稳定性分析和PID参数调节等实验操作,使得理论知识得到了更加全面的应用和巩固。
自动控制原理实验
自动控制原理实验自动控制原理实验是自动控制原理课程的重要组成部分,通过实验可以加深对自动控制原理的理解,提高实际操作能力。
本文将介绍自动控制原理实验的基本内容和实验步骤。
一、PID控制器实验。
PID控制器是自动控制中常用的一种控制器,它包括比例环节、积分环节和微分环节。
在PID控制器实验中,首先需要搭建一个控制系统模型,然后根据实验要求调节PID参数,观察系统的响应特性。
通过实验可以了解PID参数对系统稳定性和动态性能的影响,为工程实际应用提供参考。
二、系统辨识实验。
系统辨识是自动控制领域的重要内容,通过实验可以获取系统的数学模型,为控制器设计提供依据。
在系统辨识实验中,需要输入一定的信号,观察系统的输出响应,并利用系统辨识方法建立系统的数学模型。
实验过程中需要注意信号的选择和采样频率,以保证实验数据的准确性和可靠性。
三、闭环控制实验。
闭环控制是自动控制中常用的一种控制策略,通过实验可以验证闭环控制系统的性能。
在闭环控制实验中,需要搭建一个闭环控制系统,然后根据实验要求设计控制器参数,并观察系统的稳定性和跟踪性能。
实验过程中需要注意控制器参数的选择和调节,以保证系统的稳定性和性能。
四、数字控制实验。
数字控制是现代控制领域的重要内容,通过实验可以了解数字控制系统的特点和设计方法。
在数字控制实验中,需要搭建一个数字控制系统,然后根据实验要求设计数字控制器,并观察系统的响应特性。
实验过程中需要注意采样周期和数字控制器参数的选择,以保证系统的性能和稳定性。
通过以上实验,可以加深对自动控制原理的理解,提高实际操作能力,为将来的工程实际应用打下基础。
希望同学们能够认真对待自动控制原理实验,不断提高自己的实验能力和动手能力,为将来的工程实践做好准备。
自动控制原理实验报告(电子版)
自动控制原理实验报告课程编号:ME3121023专业班级姓名学号实验时间:一、实验目的和要求:通过自动控制原理实验牢固地掌握《自动控制原理》课的基本分析方法和实验测试手段。
能应用运算放大器建立各种控制系统的数学模型,掌握系统校正的常用方法,掌握系统性能指标同系统结构和参数之间的基本关系。
通过大量实验,提高动手、动脑、理论结合实际的能力,提高从事数据采集与调试的能力,为构建系统打下坚实的基础。
二、实验仪器、设备(软、硬件)及仪器使用说明自动控制实验系统一套计算机(已安装虚拟测量软件---LABACT)一台椎体连接线18根实验一线性典型环节实验(一)、实验目的:1、了解相似性原理的基本概念。
2、掌握用运算放大器构成各种常用的典型环节的方法。
3、掌握各类典型环节的输入和输出时域关系及相应传递函数的表达形式,熟悉各典型环节的参数(K、T)。
4、学会时域法测量典型环节参数的方法。
(二)、实验内容:1、用运算放大器构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节和比例积分微分环节。
2、在阶跃输入信号作用下,记录各环节的输出波形,写出输入输出之间的时域数学关系。
3、在运算放大器上实现各环节的参数变化。
(三)、实验要求:1、仔细阅读自动控制实验装置布局图和计算机虚拟测量软件的使用说明书。
2、做好预习,根据实验内容中的原理图及相应参数,写出其传递函数的表达式,并计算各典型环节的时域输出响应和相应参数(K、T)。
3、分别画出各典型环节的理论波形。
5、输入阶跃信号,测量各典型环节的输入和输出波形及相关参数。
(四)、实验原理:实验原理及实验设计:1.比例环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时域输出响应:2.惯性环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:3.积分环节:Ui-Uo的时域响应理论波形:传递函数:时常数:时域输出响应:4.比例积分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:5.比例微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:6.比例积分微分环节:Ui-Uo的时域响应理论波形:传递函数:比例系数:时常数:时域输出响应:(五)、实验方法与步骤1、根据原理图构造实验电路。
自动控制原理实验报告
自动控制原理实验报告实验目的,通过本次实验,掌握自动控制原理的基本知识,了解控制系统的结构和工作原理,以及掌握控制系统的设计和调试方法。
实验仪器,本次实验所使用的仪器有PID控制器、执行器、传感器等。
实验原理,自动控制系统是指通过传感器采集被控对象的信息,经过控制器处理后,通过执行器对被控对象进行调节,以达到设定的控制目标。
其中PID控制器是通过比较被控对象的实际值和设定值,计算出误差,并根据比例、积分、微分三个参数来调节执行器输出的控制信号,使被控对象的实际值逐渐趋近设定值的一种控制方式。
实验步骤:1. 将PID控制器与执行器、传感器连接好,并确认连接正确无误。
2. 设置被控对象的设定值,并观察实际值的变化情况。
3. 调节PID控制器的参数,观察被控对象的响应情况,找到最佳的控制参数组合。
4. 对不同类型的被控对象进行实验,比较不同参数组合对控制效果的影响。
实验结果与分析:通过实验我们发现,合适的PID参数组合能够使被控对象的实际值快速稳定地达到设定值,并且对不同类型的被控对象,需要调节的参数组合也有所不同。
在实际工程中,需要根据被控对象的特性和控制要求来选择合适的PID参数,并进行调试和优化。
结论:本次实验使我们进一步了解了自动控制原理,掌握了PID控制器的基本原理和调试方法,对控制系统的设计和调试有了更深入的理解。
同时也认识到在实际工程中,需要根据具体情况来选择合适的控制方法和参数,进行调试和优化,以达到最佳的控制效果。
通过本次实验,我们对自动控制原理有了更深入的认识,对控制系统的设计和调试方法有了更加清晰的理解,相信这对我们今后的学习和工作都将有所帮助。
自动控制原理_实验报告
一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。
二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。
三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。
它主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。
1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。
比例环节的响应特性为输出信号与输入信号成线性关系。
(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。
积分环节的响应特性为输出信号随时间逐渐逼近输入信号。
(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。
比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。
2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。
PID控制器可以实现对系统的快速、稳定和精确控制。
四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。
2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。
自动控制原理实验报告
自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。
二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。
2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。
3. 将编写好的代码上传至Arduino UNO开发板。
4.将电源适配器连接至系统,确保实验装置正常供电。
5.启动实验系统并观察电机的转动情况。
6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。
五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。
通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。
2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。
这也是导致实际转动角度与目标角度存在差异的一个重要原因。
3.电源适配器的稳定性对电机的转动精度也有一定的影响。
六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。
同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。
为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。
实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一控制系统典型环节的模拟一、实验目的(1)学习典型环节的模拟方法。
(2)研究阻、容参数对典型环节阶跃响应的影响。
(3)熟悉超低频扫描示波器的使用方法。
(4)掌握用运放组成控制系统典型环节的电子电路。
(5)测量典型环节的阶跃响应曲线。
(6)通过实验了解典型环节中参数的变化对输出动态性能的影响。
二、实验设备1.ACS教学实验系统一台。
2.示波器一台。
3.万用表一块。
三、实验线路及原理以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是由R、C构成。
基于图中A点的电位为虚地,略去流入运放的电流,则由图1-1得:(1)图1-1 运放的反馈连接由上式可求得由下列模拟电路组成典型环节的传递函数及其单位阶跃响应。
(1)比例环节比例环节的模拟电路如图1-2所示:图1-2 比例环节(2)惯性环节图1-3、惯性环节(3)积分环节式中积分常数T=RC图1-4积分环节(4)比例微分环节(PD),其接线图如图及阶跃响应如图1-5所示。
图1-5 比例微分环节(5)比例积分环节,其接线图单位阶跃响应如图1-6所示。
图1-6 比例积分环节(6)振荡环节,其接线图单位阶跃响应1-7、图1-8所示。
1-7 振荡环节原理图1-8 振荡环节接线图①比例环节 G1(S)=1和G2(S)=2②积分环节 G1(S)=1/SG2(S)=1/(0.5S )③比例微分环节 G1(S)=2+S 和G2(S)=1+2S④惯性环节 G1(S)=1/(S+1)和G2(S)=1/(0.5S+1)⑤比例积分环节(PI )G (S )=1+1/S 和G (S )=2(1+1/2S ) ⑥振荡环节(选做) 101.010)(221++=++=S S K S S T K s G 五、实验报告(1)画出六种典型环节的实验电路图,并注明相应的参数。
(2)画出各典型环节的单位阶跃响应波形,并分析参数对响应曲线的影响。
(3)写出实验的心得与体会。
实验二 二阶系统的瞬态响应分析一、实验目的1. 观察在不同参数下二阶系统的阶跃响应曲线,并测出超调量σ、峰值时间t p 和调节时间t s 。
2. 研究增益K 对二阶系统阶跃响应的影响。
二、实验设备1.ACS 教学实验系统一台2.示波器一台 三、实验原理图2-1 二阶系统方框图它的闭环传递函数为:2222112212)/(/)/()()(nn n S S T T K T S S T T K S R S C ωςωω++=++= 由上式求得21/T T K n =ω )4/(12K T T =ς若令,5.0,2.021s T s T == 则k K n /625.0,10==ςω显然只要改变K 值,就能同时改变ωn 和ζ的值,可以得到过阻尼、临界阻尼和欠阻尼三种情况下的阶跃响应曲线。
四、实验内容1.按开环传递函数函数)12.0(5.0)(+=S S KS G 的要求,设计相应的实验线路图。
令r(t)=1V,在示波器上观察不同K (K=10,5,2,0.5)下的瞬态响应曲线,并由图求得相应的超调量σ、峰值时间t p 和调节时间t s 。
2.调节K 值,使该二阶系统的阻尼比2/1=ς,观察并记录阶跃响应波形。
五、实验报告1.画出二阶系统在不同K 值下的4条瞬态曲线,并注明时间轴。
K 111+s T sT 21— C(S ) R(S )2.实验前按图3-1所示的二阶系统,计算K=0.625,K=1,K=0.312三种情况下的ωn和ζ的值。
据此,求得相应的动态性能指标:超调量σ、峰值时间tp 和调节时间ts。
并与实验结果作一比较。
3.写出本实验的心得体会。
六、实验思考题1.如果阶跃输入信号的幅值过大,会在试验中产生什么后果?2.在电子模拟系统中,如何实现负反馈和单位反馈?实验三频率特性的测试一、实验目的(1)掌握用李沙育图形法,测量二阶系统的频率特性。
(2)根据二阶系统的对数幅频特性,确定系统的数学模型。
(3)了解二阶系统的频域指标与时域指标的对应关系。
二、实验设备(1)ACS教学实验系统一台。
(2)示波器一台。
(3)万用表一块。
三、实验原理和内容对于稳定的线性定常系统或环节,当其输入端加入一正弦信号X(t)=XmSinωt,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位将随着输入信号频率ω的变化而变化。
即输出信号为Y(t)=YmSin(ωt+ϕ)=Χm|G(jω)|Sin(ωt+ϕ)其中 |G(jω)|= Υm /Xm ,ϕ(ω)=argG(jω)只要改变输入信号x(t)的频率ω,就可测得输出信号与输入信号的幅值比|G(jω)|和它们的相位差ϕ(ω)=argG(jω)。
不断改变x(t)的频率,就可测得被测环节(系统)的幅频特性|(jω)|和相频特性ϕ(ω)。
本实验采用李沙育图形法,图3-1为测试的方框图。
图3-1测试方框图在表(1)中列出了超前与滞后时相位的计算公式和光点的转向。
表(1)表中2Y0为椭圆与Y轴交点之间的长度,2X0为椭圆与X轴交点之间距离,Xm和Ym分别为X(t)和Y(t)的幅值。
图3-2 相频特性测试的接线图当扫频电源输出一个正弦信号,则在示波器的屏幕上呈现一个李沙育图形------椭圆。
据此,可测得在该输入信号频率下的相位值:不断改变扫频电源输出信号的频率,就可得到一系列相应的相位值,列表记下不同ω值时的Y和Ym。
相频特性的测试ω(rad/s) 1 3 5 7 10 30F (Hz) 0.159 0.477 0.796 1.115 1.592 40777YYmϕ测量时,输入信号的频率ω要取得均匀。
幅频特性的测试按图3-4接线,测量时示波器的X轴停止扫描,在示波器(或万用表的交流电压档)上分别读出输入和输出信号的双倍幅值,即2Xm=2Y1m,2Ym=2Y2m,就可求得对应的幅频值|G(jω)|=2Y2m/(2Y1m),列标记下2Y2m/(2Y1m), 和ω的值。
图3-3 幅频特性的接线图幅频特性的测试ω 2Y1m 2Y2m2Y2m/2Y1m20lg[2Y1m/(2Y2m)](1) 根据图3—4所示的系统结构图,给出相应的模拟电路,求出该系统对数幅频特性渐近线的转折频率、谐振频率、峰值频率和带宽频率。
图3—4 频率特性测试系统结构图 (2) 确定输入正弦信号的频率范围和测试点。
通常取低于转换频率10倍左右的频率,作为开始测试的最低频率,取高于转换频率10倍左右的频率作为终止频率,在峰值频率和转折频率附近,应多测几个点。
(3) 作系统的阶跃响应,测量系统的动态性能指标。
(4) 用示波器频域测量方法测量系统的幅频特性和相频特性。
四、实验报告要求 (选作)(1) 给出被测系统的结构图和模拟电路。
(2) 根据实验数据,作出对数幅频特性和对数相频特性曲线。
K=1101.01 ss25.01实验四 控制系统的串联校正研究一、实验目的应用频率法校正,对给定系统进行串联校正设计,并在模拟机上加以实现,验证设计的正确性。
二、实验设备(1)ACS 教学实验系统一台。
(2)示波器一台。
(3)万用表一块。
三、实验原理但系统的开环增益满足其稳态性能的要求后,它的动态性能一般不理想,甚至发生不稳定,为此需在系统中串联一校正装置,即使系统的开环增益不变,又使系统的动态性能满足要求。
常有的方法有频率法和工程设计法。
本实验要求用工程设计法对系统进行校正。
二阶系统的标准开环传递函数为:SS S G n nςωω2)(22+=如果ζ=2/1,则SS S G n nωω2)(22+=上式称为二阶系统工程设计开环传递函数的标准形式。
理论证明,此时系统对阶跃响应的超调量只有4.3%。
调整时间为8T(Δ=±5%),相位裕量为γ=630。
图4-1所示系统的开环传递函数为:)1()(12+=S T S T KS G图4-1如果K=1,T 2=0.1,T 1=1,则:)1(10)(+=S S S G校正思路如下:=+⋅)1(10)(S S S G C )12/1(2/2222+=+S S S S n nn n ωωωωω 令:102/2=n n ωω, 则05.02/1=n ωK111+s T sT 21105.01)(++=∴S S S G C四、实验内容1.已知单位反馈开环传递函数为:)1(10)(+=s s s G 。
按二阶系统的工程设计方法,设计系统的校正装置。
2. 画出电路图。
3. 令输入r(t)=1V , 测校正前、后的系统阶跃响应曲线。