《近世代数》模拟试题2及答案

合集下载

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题) (2)

(完整word版)近世代数期末考试题库(包括模拟卷和1套完整题) (2)

多所高校近世代数题库一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、近世代数中,群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( )8、若环R 满足左消去律,那么R 必定没有右零因子。

( )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21Λ和D 都是非空集合,而f 是n A A A ⨯⨯⨯Λ21到D 的一个映射,那么( )①集合D A A A n ,,,,21Λ中两两都不相同;②n A A A ,,,21Λ的次序不能调换;③n A A A ⨯⨯⨯Λ21中不同的元对应的象必不相同;④一个元()n a a a ,,,21Λ的象可以不唯一。

2、指出下列那些运算是二元运算( ) ①在整数集Z 上,abb a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。

浙师大11近世代数答案2

浙师大11近世代数答案2

第二章 群论§2.1 半群1.设R 是实数集,在R ×R 中规定(a 1,a 2)⊕(b 1,b 2)=⎪⎭⎫⎝⎛++2,22211b a b a , 问⊕是不是R ×R 的代数运算,(R ×R ,⊕)是不是半群?解:注意到等式右边的运算指的是普通的实数运算,易知⊕是R ×R 的一个代数运算。

下面验证结合律,∀(a 1,a 2), (b 1,b 2),(c 1,c 2)∈R ×R ,[(a 1,a 2)⊕(b 1,b 2)]⊕(c 1,c 2) =⎪⎭⎫⎝⎛++2,22211b a b a ⊕(c 1,c 2) =⎪⎪⎪⎪⎭⎫⎝⎛++++22,22222111c b a c b a =⎪⎭⎫⎝⎛++++42,42222111c b a c b a ,(a 1,a 2)⊕[(b 1,b 2)⊕(c 1,c 2)] =(a 1,a 2)⊕⎪⎭⎫⎝⎛++2,22211c b c b =⎪⎪⎪⎪⎭⎫⎝⎛++++22,22222111c b a c b a =⎪⎭⎫⎝⎛++++42,42222111c b a c b a 。

可知R ×R 的代数运算⊕不满足结合律, 所以(R ×R ,⊕)不是半群。

2.设(S ,·)是一个半群,证明S ×S 关于下面规定的代数运算作成半群,(a 1,a 2)ο(b 1,b 2)=(a 1·b 1,a 2·b 2)。

如果S 是有单位元的交换半群,那么,(S ×S ,ο)是否仍是有单位元的交换半群?证明:显然ο是S ×S 的一个代数运算。

只需验证结合律。

∀(a 1,a 2), (b 1,b 2),(c 1,c 2)∈S ×S ,[(a 1,a 2)ο(b 1,b 2)]ο(c 1,c 2)=(a 1·b 1,a 2·b 2)ο(c 1,c 2) =((a 1·b 1)·c 1,(a 2·b 2)·c 2)=(a 1·(b 1·c 1),a 2·(b 2·c 2))=(a 1,a 2)ο((b 1·c 1),(b 2·c 2))=(a 1,a 2)ο[(b 1,b 2)ο(c 1,c 2)]。

近世代数期末模拟考试与答案

近世代数期末模拟考试与答案

近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且。

( f )2、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( f )3、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( t )4、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

(t )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( f )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( t )7、如果环R 的阶2≥,那么R 的单位元01≠。

( t )8、若环R 满足左消去律,那么R 必定没有右零因子。

( t )9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( f )10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( f )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( 2 ) ①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换; ③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( 3 )4①在整数集Z 上,abba b a +=; ②在有理数集Q 上,ab b a = ; ③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

近世代数模拟试题及答案

近世代数模拟试题及答案

近世代数模拟试题二一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设G 有6个元素的循环群,a 是生成元,则G 的子集( )是子群。

A 、{}aB 、{}e a ,C 、{}3,a eD 、{}3,,a a e 2、下面的代数系统(G ,*)中,( )不是群A 、G 为整数集合,*为加法B 、G 为偶数集合,*为加法C 、G 为有理数集合,*为加法D 、G 为有理数集合,*为乘法3、在自然数集N 上,下列哪种运算是可结合的?( )A 、a*b=a-bB 、a*b=max{a,b}C 、 a*b=a+2bD 、a*b=|a-b|4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( )A 、12σB 、1σ2σC 、22σD 、2σ1σ5、任意一个具有2个或以上元的半群,它( )。

A 、不可能是群B 、不一定是群C 、一定是群D 、 是交换群二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个----------同构。

2、一个有单位元的无零因子-----称为整环。

3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。

4、a 的阶若是一个有限整数n ,那么G 与-------同构。

5、A={∩B=-----。

6、若映射ϕ既是单射又是满射,则称ϕ为-----------------。

7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10 使得010=+++n n a a a αα 。

8、a 是代数系统)0,(A 的元素,对任何A x ∈均成立x a x = ,则称a 为---------。

9、有限群的另一定义:一个有乘法的有限非空集合G 作成一个群,如果满足G 对于乘法封闭;结合律成立、---------。

近世代数初步模拟试卷2(参考答案)[1]

近世代数初步模拟试卷2(参考答案)[1]

试题(2)的参考答案一、填空题(27分)1、7阶群的子群共有 2 个。

2、“圆规直尺作图的三大难题”是三等分任意角问题 、 化圆为方问题 、 倍立方问题 。

3、把置换ρ=(1365)(3457)(7215)表示为不相交的轮换的乘积是 (17234)(56) 。

4、如果域E 的乘法群恰好包含f (x ) = x 124-1的所有根,则E 的特征是 5 。

5、剩余类加法群Z 8的生成元有 4 个,它们是 [1], [3], [5], [7] 。

6、除环的理想有 2 个。

7、实数32在有理域上的极小多项式是 x 3-2 。

8、20042005≡ 1 (mod 5).9、复数域C 作为实数域R 的扩域,指数[C : R ]= 2 .二、选择题 10、(D) 11、(B) 12、(C) 13、(A) 14、(B).三、计算题15、解: 如果域E 的乘法子群E*=E\{0}有一个13阶子群H, 且[E*:H]=2, 则|E*|=2|H|=26,进而,|E|=27=33,域E 的特征是3。

………………………10分16、解:32+在有理数域Q 上的极小多项式为f (x ) = x 4-10x 2+1。

………2分因为, (1) 32+∉Q (2) . 假设32+∈Q (2),则3∈Q (2),设3= a+b 2,a , b ∈Q ,且a ≠ 0 ≠ b ,两边平方得3 - a 2-2b 2 = 2 ab 2, 等式左边是有理数,而右边是无理数,矛盾。

………………………2分(2) 2∈Q (32+) . 因为 2=21[(32+-(3-2)]=21[32+-(32+)-1]. ………2分(3) [Q (32+):Q ] = 4. 由(1)和(2)知, Q (2)是Q (32+)的真子域,显然,32+在Q (2)上的极小多项式为x 2-22x -1,进而, [Q (32+):Q (2)]=2,所以,[Q (32+):Q ]= [Q (32+):Q (2)][Q (2):Q]=4. ………2分 (3)说明,32+在Q 上的极小多项式的次数是4。

近世代数期末模拟试题与答案

近世代数期末模拟试题与答案

世代数模拟试题一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( )A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。

A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( )A 、不相等B 、0C 、相等D 、不一定相等。

5、n 阶有限群G 的子群H 的阶必须是n 的( )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。

2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。

3、环的乘法一般不交换。

如果环R 的乘法交换,则称R 是一个------。

4、偶数环是---------的子环。

5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。

6、每一个有限群都有与一个置换群--------。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。

8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。

9、一个除环的中心是一个-------。

近世代数2

近世代数2

第九章 特殊的代数系统习题1. 判断下列运算关于自然数集合是否构成半群:⑴},max{b a b a = ; ⑵b b a = ;⑶ab b a 2= ;⑷b a b a -= 。

解 ⑴是半群。

显然,二元运算“ ”在N 上是封闭的, 所以,>< ,N 是一个代数系统,另一方面,,,,N c b a ∈∀有(){}{}c b a c b a c b a ,,m ax ,m ax == ,而(){}{}c b a c b a c b a ,,max ,max == ,因此,()()c b a c b a =,所以,运算“ ”满足结合律的,故>< ,N 是半群;⑵是半群。

显然,二元运算“ ”在N 上是封闭的, 所以,>< ,N 是一个代数系统,另一方面,N c b a ∈∀,,,有()c c b c b a == ,而()c c a c b a == ,则()()c b a c b a =,所以,运算“ ”满足结合律,故>< ,N 是半群;⑶是半群。

显然,二元运算“ ”在N 上是封闭的, 所以,>< ,N 是一个代数系统,另一方面,N c b a ∈∀,,,有()abc c ab c ab c b a 4)2(2)2(=== ,()()abc bc a bc a c b a 422)2(=== ,即()()c b a c b a = ,所以,运算“ ”满足结合律,故>< ,N 是半群。

⑷不是半群。

虽然,二元运算“ ”在N 上是封闭的,即>< ,N 是一个代数系统,但是 对于5,3,6,因为,()4635635635=--=-= ,而2635635)63(5=--=-= ,即())63(5635 ≠,所以,运算“ ”不满足结合律,故>< ,N 不是半群。

2 在实数集R 上的二元运算定义为:),(R b a ab b a b a ∈++=试判断下列论断是否正确:⑴>< ,R 是一个代数系统; ⑵>< ,R 是一个半群; ⑶>< ,R 是一个独异点。

近世代数期末考试题库包括模拟卷和1套完整题2

近世代数期末考试题库包括模拟卷和1套完整题2

近世代数期末考试题库包括模拟卷和1套完整题2一、(2011年近世代数)判断题(下列命题你认为正确的在题后括号内打,错的打“X” ;每小题1分,共10 分)1、设A与B都是非空集合,那么A B xx A且x B。

()2、设A、B、D都是非空集合,则A B到D的每个映射都叫作二元运算。

()3、只要f是A到A的一一映射,那么必有唯一的逆映射 f 1。

()4、如果循环群G a中生成元a的阶是无限的,贝U G与整数加群同构。

()5、如果群G的子群H是循环群,那么G也是循环群。

()6、近世代数中,群G的子群H是不变子群的充要条件为g G, h H;g 1Hg H。

()7、如果环R的阶2,那么R的单位元1 0。

()8若环R满足左消去律,那么R必定没有右零因子。

()9、F(x)中满足条件p() 0的多项式叫做元在域F上的极小多项式。

()10、若域E的特征是无限大,那么E含有一个与Z?p同构的子域,这里Z是整数环,p是由素数p生成的主理想。

()二、(2011年近世代数)单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设A,阳,A n和D都是非空集合,而f是A1 A2 A n到D的一个映射,那么()①集合A|, A2 , , A n , D中两两都不相同;② A1 , A2 , , A n的次序不能调换;③A1 A2A n中不同的元对应的象必不相同;④一个元a1,a2, , a n的象可以不唯一。

2、指出下列那些运算是二元运算()a K t ___________①在整数集Z上,a b --;②在有理数集Q上,a b ... |ab ;ab③在正实数集R上,a b a In b;④在集合n Zn 0上,a b a b。

3、设是整数集Z上的二元运算,其中a b max a,b (即取a与b 中的最大者),那么在Z中()①不适合交换律;②不适合结合律;③存在单位元;④每个元都有逆元。

近世代数期末考试题库完整

近世代数期末考试题库完整

世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、设A=B=R(实数集),如果A至UB的映射中:x-x+2,Vx€R,则中是从A至UB的(c)A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合AXB中含有(d)个元素。

A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b6G都有解,这个解是(b)乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c)A、不相等B、0C、相等D、不一定相等。

5、n阶有限群G的子群H的阶必须是n的(d)A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1、设集合A“T0」>;B=42},则有BMA=。

2、若有元素e6R使每a6A,都有ae=ea=a,则e称为环R的单位元。

3、环的乘法一般不交换。

如果环R的乘法交换,则称R是一个交换环。

4、偶数环是整数环的子环。

5、一个集合A的若干个-变换的乘法作成的群叫做A的一个变换全。

6、每一个有限群都有与一个置换群同构。

7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。

8、设I和S是环R的理想且1=S=R,如果I是R的最大理想,那么。

9、一个除环的中心是一个-域-----。

三、解答题(本大题共3小题,每小题10分,共30分)[写成对换的乘积。

2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。

奇1、解:把仃和工写成不相杂轮换的乘积:二三(1653)(247)(8).=(123)(48)(57)(6)可知仃为奇置换,七为偶置换。

《近世代数》AB模拟练习题参考答案

《近世代数》AB模拟练习题参考答案

《近世代数》AB模拟练习题参考答案《近世代数》A/B 模拟练习题参考答案⼀、判断题(每题4分,共60分)1、设21:G G →σ是群单同态,则σKer 为单点集(√)2、设21:G G →σ是群同态,σKer 为单点集,则σ必为单射(√)3、设21:G G →σ是群同态,则σKer 为单点集当且仅当σ为单射(√)4、5元置换(42351)是偶置换(√)5、两⼦群的并⼀定是⼦群(×)6、4元置换(4231)是偶置换(×)7、已知K H ,是群G 的⼦群,则HK 也为G 的⼦群(×)8、已知,*),(6+Z 是域(×)9、两⼦群的并⼀定是⼦群(×)10、任意置换均可表⽰为若⼲个不相交的轮换的乘积(√)11、如果循环群G=(a)中⽣成元a 的阶是⽆限的,则G 与整数加群同构(√)12、设G 是n 阶, e 是它的单位元,则e 的周期为1(√)13、如果群G 的⼦群H 是循环群,那么G 也是循环群(×)14、若环R 满⾜左消定律,那么R 必定没有右零因⼦(√)15、唯⼀分解环必是主理想环(×)⼆、证明题(每题20分,共300分)1、设[]x F 为域F 上的⼀元多项式环,[]x F x f ∈)(,则))((x f 为极⼤理想当且仅当)(x f 为不可约多项式。

证明:(必要性)假设)(x f 不是不可约多项式,可知)(x f 不是零元也不是可逆元,从⽽存在⾮零⾮可逆元[]x F x h x g ∈)(),(,使得)()()(x h x g x f =,故))(())((x g x f ?,))(())((x g x f ≠,因为))((x f 是极⼤理想,所以[]x F x g =))((,故1)(±=x g ⽭盾。

综上,) (x f 为不可约多项式。

(充分性)若有理想))((x f N ?,则因为[]x F 是主理想环,所以必有[]x F x g ∈)(使得))((x g N =,从⽽)(|)(x f x g ,由)(x f 为不可约多项式可知,或者1)(±=x g ,或者)()(x f x g ±=。

近世代数期末考试试题库

近世代数期末考试试题库
A、(1),(123),(132)B、12),(13),(23)
C、(1),(123)D、S3中的所有元素
二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果 是 与 间的一一映射, 是 的一个元,则 ----a------。
8、设 和 是环 的理想且 ,如果 是 的最大理想,那么---------。
9、一个除环的中心是一个-域-----。
三、解答题(本大题共3小题,每小题10分,共30分)
1、设置换 和 分别为: , ,判断 和 的奇偶性,并把 和 写成对换的乘积。2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。奇1、解:把 和 写成不相杂轮换的乘积:
2、答:(E, )不是群,因为(E, )中无单位元。
3、解方法一、辗转相除法。列以下算式:
a=b+102
b=3×102+85
102=1×85+17
由此得到(a,b)=17,பைடு நூலகம்[a,b]=a×b/17=11339。
然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b.
8、无零因子环R中所有非零元的共同的加法阶数称为R的---特征--------。
9、设群 中元素 的阶为 ,如果 ,那么 与 存在整除关系为---mIn----。
三、解答题(本大题共3小题,每小题10分,共30分)
1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?
2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗?

近世代数模拟试题及答案

近世代数模拟试题及答案

近世代数模拟试题及答案一、选择题1. 下列哪个集合不是群?A. 自然数集NB. 整数集ZC. 有理数集QD. 实数集R答案:A2. 在群G中,若a, b属于G,且a*b=b*a对所有a, b成立,则称G 为交换群。

以下哪个不是交换群?A. 整数加法群B. 奇数乘法群C. 偶数乘法群D. 所有实数的加法群答案:C二、填空题1. 一个环R,如果满足乘法交换律,则称R为_________。

答案:交换环2. 有限群的阶是指群中元素的个数,设群G的阶为n,则群G的拉格朗日定理表明,G的任何子群的阶都是n的_________。

答案:因数三、简答题1. 解释什么是子群,并给出一个例子。

答案:子群是指一个群G的一个非空子集H,使得H中的元素在G的运算下封闭,并且包含G的单位元。

例如,整数集Z在加法运算下构成自然数集N的一个子群。

2. 描述什么是环的零因子,并给出一个例子。

答案:在环R中,如果存在非零元素a和b,使得a*b=0,则称a和b为零因子。

例如,在模6的剩余类环Z6中,元素3和3是零因子,因为3*3=9≡0 (mod 6)。

四、计算题1. 给定群G={1, a, a^2, a^3},其中a^4=1,求证G是一个群,并找出它的所有子群。

答案:首先验证群的四个基本性质:- 封闭性:对于任意g, h属于G,g*h也属于G。

- 结合律:对于任意g, h, k属于G,(g*h)*k = g*(h*k)。

- 单位元:1是G的单位元,因为对于任意g属于G,1*g = g*1 = g。

- 逆元:对于任意g属于G,存在g的逆元g^(-1),使得g*g^(-1) = g^(-1)*g = 1。

例如,a的逆元是a^3。

G的子群有:- {1}:平凡子群。

- {1, a^2}:由a^2的幂构成的子群。

- G本身:{1, a, a^2, a^3}。

2. 证明在任何交换环中,如果a和b是可逆元素,则它们的乘积ab也是可逆的。

答案:设a和b是交换环R中的可逆元素,存在a^(-1)和b^(-1)使得a*a^(-1)=1且b*b^(-1)=1。

近世代数练习题(附答案)

近世代数练习题(附答案)

《近世代数》练习题(附答案)一.选择题1. 设R 是实数集, 则对任意的,a b R ∈, 代数运算2a b a b =+ ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律2. 在群G 中,a G ∈, a 的阶为12, 则8a 的阶为 ( B )(A) 12 (B) 3 (C) 4 (D) 63.在7次对称群7S 中(25)(437)π=和(13)(546)λ=, 则πλ等于( A )(A) (1376524) (B) (137)(6524) (C) (65)(24137) (D) (1746253)4.在一个无零因子环R 中,,a b R ∈,,0a b ≠对加法来说,有( C )(A) a 的阶<3b 的阶 (B) a 的阶>3b 的阶(C) a 的阶=3b 的阶 (D) 4a 的阶>3b 的阶5.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子6. 假定φ是A 与A 间的一一映射,A a ∈, 则)]([1a φφ-和)]([1a -φφ分别为 ( D )(A) a , a (B) 无意义, a (C) 无意义,无意义 (D) a ,无意义7. 在群G 中, G b a ∈,, 则方程b ax =和b ya =分别有唯一解为 ( B )(A) 1-ba , b a 1- (B) b a 1-, 1-ba (C) a b 1-, b a 1- (D) b a 1-, 1-ab8. 设M 是正整数集, 则对任意的,a b R ∈, 下面“o ”是代数运算的是( B ) (A) b a b a = (B) b a b a = (C) 2a b a b =+- (D) 2a b ab =- 9. 设M 是实数集, 代数运算是普通加法,下列映射是M 的自同构的是( D )(A) 2x x → (B) sin x x → (C) x x → (D) 5x x →-10. 在偶数阶群G 中阶等于2的元数为 ( A )(A) 奇数 (B) 偶数 (C) 1 (D) 不可确定11.在5次对称群5S 中元1(15)(24)π=和2(154)π=的乘积12ππ是( D )(A) (14)(25) (B) (124) (C) (152) (D) (142)12.若群G 的阶为48, G 的真子群H 的阶不可能为 ( C )(A) 12 (B) 16 (C) 18 (D) 2413.群G 中元a 的阶为24中,那么G 的循环子群9()a 的阶为 ( C )(A)3 (B) 4 (C) 8 (D) 914.在一个环R 里如果有一个消去律成立,那么下面不正确的是( B )(A) 另一个消去律也成立 (B) R 中非零元都有逆元(C) R 是无零因子环 (D) R 中非零元对加法的阶都一样15.假定F 是一个域,则一元多项式环[]F x 一定是 ( A )(A) 欧式环 (B) 除环 (C) 域 (D) 无法确定16.设12,εε为唯一分解环I 中单位, a 是I 中任意元, 则下列正确的是 ( B )(A) 12εε+ 也是单位 (B) 12,εε互为相伴元(C) 12,εε 都是a 的真因子 (D) a 有唯一分解17.一个30个元的域的特征可能是( A )(A) 5 (B) 6 (C) 10 (D) 1518.假定域R 与R 同态, 则R 是( C )(A) 域 (B) 整环 (C) 环 (D) 除环19.若I 是一个唯一分解环,I a ∈且a 21p p =和a 21q q =(其中2121,,,q q p p 都为素元),则下列说法正确的是 ( D )(A) 1p 与1q 互为相伴元 (B) 1p 与1q 互为相伴元和2p 与2q 互为相伴元(C) 2p 与2q 互为相伴元 (D) 1p 与1q 互为相伴元或1p 与2q 互为相伴元20.假定)(a 和)(b 是整环I 的两个主理想, 若)()(b a =, 则 ( A )(A) b 是a 的相伴元 (B) b 与a 互素 (C) b 是a 的真因子 (D) |b a 21.=A {所有整数},令τ: 2a a →,当a 是偶数;21+→a a ,当a 是奇数.则τ为 ( B )(A) 单射变换 (B) 满射变换 (C) 一一变换 (D) 不是变换22.若)(a G =,且a 的阶为有限整数n ,则下列说法正确的是 ( A )(A) G 与模n 的剩余类加群同构 (B) G 的阶可能无限(C) 元21012,,,,,---n a a a a a 中没有相同元 (D) G 与整数加群同构23.若R 是一个特征为有限整数n 的无零因子环,且R b a ∈,,则 ( D )(A) 0,00≠≠⇒=b a b a (B) 21n n n =,其中21,n n 为素数(C) 存在R 中元c 的阶为无限整数 (D) R 对乘法成立两个消去律24. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)22a b b a b =+ (B)b a b a= (C) 22a b a ab b =-+ (D) 10a b a b += 25. 在群G 中, ,,a b c G ∈, 则方程xaxba xbc =的唯一解为 ( D )(A)11abca b -- (B) 111bca a b --- (C) 111a b a bc --- (D) 111a bca b ---26.在6次对称群6S 中123456326514π⎛⎫= ⎪⎝⎭的阶是( A ) (A) 5 (B) 24 (C) 12 (D) 627.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个28.假定F 是一个域,则一元多项式环[]F x 一定是 ( B )(A) 除环 (B) 欧式环 (C) 域 (D) 无法确定29.若Q 是一个域, 不正确的是 ( B )(A) Q 是交换除环 (B) Q 对乘法作成群(C) Q 无零因子 (D) Q 中不等于零的元都有逆元30.若I 是主理想环, p 是I 中素元, 且I b a ∈, 则 ( C )(A) 主理想)(p 不是I 的最大理想 (B) a 没有唯一分解(C) 若p |ab ,有p |a 或p |b (D) I /()p 不是域31. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律32. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( A )(A) 2a b a b =+ (B)b a b a= (C) a b b a = (D) 10a a b = 33. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( D )(A)1aba - (B) 11a b -- (C) 11ba b -- (D) 1a -34.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B )(A) 2 (B) 3 (C) 4 (D) 535.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个36.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定37. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 838.一个有8个元的域的特征是( A )(A) 2 (B) 4 (C) 6 (D) 839.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子40.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 441. 设R 是实数集, 则对任意的,a b R ∈, 代数运算a b a b =- ( C )(A) 适合结合律但不适合交换律 (B) 适合交换律但不适合结合律(C) 不适合结合律和交换律 (D) 适合结合律和交换律42. 设Q 是有理数集, 则对任意的,a b Q ∈,下列“o ”是代数运算的是( C ) (A)a b b a = (B)b a b a= (C) 2a b a b =+ (D) 10a a b = 43. 在群G 中, ,a b G ∈, 则方程xaxb xb =的唯一解为 ( C )(A)1aba - (B) 11a b -- (C) 1a - (D) 11ba b --44.在5次对称群5S 中1234532541π⎛⎫= ⎪⎝⎭的阶是( B ) (A) 2 (B) 3 (C) 4 (D) 545.除环有理想( C )(A) 4个 (B) 1个 (C) 2个 (D) 无穷个46.假定R 是一个整环,则一元多项式环[]R x 一定是 ( A )(A) 整环 (B) 除环 (C) 域 (D) 无法确定47. 在16阶循环群()G a =中 , 循环子群6()a 的阶为 ( D )(A) 6 (B) 3 (C) 4 (D) 848.一个有8个元的域的特征是( )(A) 2 (B) 4 (C) 6 (D) 849.设p 为整环I 中素元, 则下列正确的是 ( D )(A) p 为零元 (B) p 为单位 (C) p 有真因子 (D) p 仅有平凡因子50.若群G 的阶为48, G 的子群H 的阶为16,则H 在G 中的指数为( C )(A) 1 (B) 2 (C) 3 (D) 4二.填空题1.设是集合A 的元间的一个等价关系,那么满足反射律、 对称律 、 推移律 .2.若G 为群,,,a b c G ∈,则3211()b c a c --- 123c ac b .3.循环群()a 的阶是50,则它的子群15()a 的阶是 10 .4. 群G 的中心N 是G 的一个 不变 子群.5.n 次对称群n S 的阶为 !n .6.假定B A ⊂,那么B A A , B A B .7. 假定A 和A 同态, A 和A 同态, 则A 和A 也同态 .8. 在群G 中, G b a ∈,, 则方程b ya =有唯一解为 1ba .9.设集合A 的元数为3 ,那么A 共有子集 8 个,A 的元间的关系共有 512 个.10.若G 为群, 方程1x ax bx -=的唯一解为 1ba .11.一个有限非可换群至少含有______ 6 ______个元素 .12.设~是集合A 的元间的一个等价关系,那么~满足自反律、对称律 、 推移律 .13.若G 为群,,,a b c G ∈,则211()bc a --- 21ac b .14.5次对称群5S 的阶为 120 .15.若φ是环R 与R 的同态满射, 则同态核中元都是R 中 单位元 e 的逆象,且同态核是R 的一个 理想 .16.设A 是有单位元的交换环R 的一个最大理想,那么剩余类环R A 是一个 域 .17.在整数环Z 中,理想(3,7)等于主理想 (1) .18.设9Z 为模9的剩余类环,那么[5]的负元为 [4] ,逆元为 【2】 .19.设G 是17阶群,则G 的生成元有 16 个.20.除环的最大理想是 零理想 .21.设R 是模7的剩余类环,在多项式环[]R x 中2([6][4])([2][5])x x x +-+=32[6][6]x x x -++22.设10Z 为模10的剩余类环,那么[3]的负元为 [7] ,逆元为[7] .23.在整数环I 中,主理想()()a b =当且仅当b 是a 的 相伴元 .24.设{,,}A a b c =,{,,,}R aRa aRc cRa cRc =.那么由R 决定的A 的分类为 {,},{}a c b .25.设I 是一个唯一分解环,那么多项式环[]I x 是 唯一分解 环.26.设9Z 为模9的剩余类环,那么[7]的负元为 [2] ,逆元为[4] .27.设I 是一个唯一分解环,那么I 的元12,,,n a a a 的两个最大公因子d 和d '相差一个相伴元 .28.若群的元a 的阶是15,b 的阶是8,且ab ba =, 则8a 和ab 的阶分别是 15 和 120 .29.在一个特征为p 的无零因子的交换环R 中,有p 为 素 数,且()p a b += p p a b + .30. 若群G 的阶为60, G 的子群H 的阶为15,则H 在G 中的指数为 4 .31. 若φ是环R 与R 的同态满射,则对,,a b c R ∈,它们的象分别为,,a b c ,则元()a b c +的象为 ()a b c + .32.设A 是环R 的一个最大理想,那么包含A 的R 的理想仅有 A 和R .33.在整数环Z 中,理想(42,35)等于主理想 (7) .34.在唯一分解环I 中,若素元p 能整除ab ,则p 必能整除 ,a b 中一个元 .35. 若G 是由集合A 的全体一一变换所作成, 则G 是一个 变换 群.36.若R 是有单位元的交换环,则R 的主理想)(a 中的元有形式为 ,ra r R . 37.0R 是有单位元的交换环, x 是0R 的子环R 上的未定元, 则仅当 010n a a a时,才有010=+++n n x a x a a 成立.38. R 是一个有单位元的环, 且}0{≠R ,则在R 中必有一个元没有逆元, 它是 0 ; 必有两个元有逆元,它们是 1和-1 .39.唯一分解环I 中的元a 和b 的两个最大公因子d 和d '只能差一个 相伴元 .40.设}2,1{=A ,}4,3{=B .那么=⨯B A { (1,3),(1,4),(2,3),(2,4) } .41.若群G 和集合G 同态,则G 是 群 ,并且有G 中元e 和1-a 的象为G 中元e 和1a .42.在无零因子环R 中,如果对R b a ∈,有0=ab , 那么必有 0a 或0b .43.群的元a 的阶是n ,若d 是整数r 和n 的最大公因子,则r a 的阶是 n d. 44.在一个域Q 中,若有0,0,,≠≠∈d b Q d c b a ,则=+d c b a ad bc bd. 45.设φ是环R 与R 的同态满射, 则φ的核是环R 的一个 理想 . 46.在整环中必有一个元没有逆元,它是 0 ; 必有两个元有逆元,它们是 1和-1 .47.整环I 的元a 是][x I 的多项式)(x f 的根, 当且仅当)(x f 能被 xa 整除.三.判断题1.设}4,3,2,1{=A ,则能找到A A ⨯到A 的一一映射. ( × )2.无限群中的元的阶都无限. ( × )3.除环的最大理想是单位理想. ( × )4.整环中的素元只能有有限个数的因子. ( × )5.任何欧式环一定是主理想环,也一定是唯一分解环. ( √ )6.A 为不等于零的实数的全体,那么普通除法适合结合律. ( × )7.有限群中存在某个元的阶无限. ( × )8.假定域R 与R 同态, 则R 也是域. ( × )9.整环中的单位ε同素元p 的乘积p ε还是一个素元. ( √ )10.除环除了零理想和单位理想还有其它理想. ( × )四.解答题1. 用循环置换的方法写出三次对称群3S 的全体元.说明集合})23(,)1({=N 是3S 的子群,并且写出N 的所有左陪集.解: )}132(),123(),23(),13(),12(),1{(3=S ,(2分) 因为N 是有限集合, 由)1()1)(1(=,)23()23)(1(=,)23()1)(23(=,)1()23)(23(=知N 是封闭的,所以N 是3S 的子群.(4分) N 的全体左陪集为(6分):)}23(),1{()23()1(==N N ,)}132(),12{()132()12(==N N ,)}123(),13{()123()13(==N N .2. 求模6的剩余类环F 的所有子环.解:因为剩余类环F 是循环加群,所有子环为主理想:([1]),([2]),([3]),([6]).3. 设A 是整数集,规定A 中元间的关系R 如下:)6(b a aRb ≡⇔说明R 是A 中元间的等价关系,并且写出模6的所有剩余类.解: 因为对任意的整数 c b a ,,有(1)反射律: a 与a 模6同余;(2分)(2)对称律: 若a 与b 模6同余,那么必有b 与a 模6同余;(2分)(3)推移律: 若a 与b 模6同余,b 与c 模6同余,那么必有a 与c 模6同余, 所以R 是A 中元间的等价关系.(2分)模6的全体剩余类为(6分):},12,6,0,6,12,{]0[ --=, },13,7,1,5,11,{]1[ --=,},14,8,2,4,10,{]2[ --=, },15,9,3,3,9,{]3[ --=,},16,10,4,2,8,{]4[ --=, },17,11,5,1,7,{]5[ --=.4.求出阶是32的循环群()a 的所有子群.这些子群是否都是不变子群.解: 因为()a 为循环群,所以()a 为交换群,又因为32的所有正整数因子为:1,2,4,8,16,36. (2分) 所以循环群()a 的所有子群为循环子群:()a ,2()a ,4()a ,8()a ,16()a 360()(){}a a e ==. (8分)并且这些子群都是不变子群. (10分)5.设Z 是整数环,请把Z 的理想(3)(4)和(3,4)的元列出来.解: Z 是整数环,理想(3)(4)和(3,4)如下:(3)(4){,9,6,3,0,3,6,9,}{,12,8,4,0,4,8,12,}=------ (2分){,24,12,0,12,24,}=-- (4分)(12)= (6分) (3,4)(1){,3,2,1,0,1,2,3,}Z ===--- (10分)6.设R 是模8的剩余类环,在一元多项式环[]R x 中把32([2][7][3])([5][2])x x x x +--+计算出来,并求432()[4][5][2][7]f x x x x x =-+-+的导数. 解: R 是模8的剩余类环(1) 32([2][7][3])([5][2])x x x x +--+543322[2][5][2][2][2][7][5][7][7][2][3][5][3][3][2]x x x x x x x x =-++-+-+- (1分)543322[2][2][4][3][7][6][7][3][6]x x x x x x x x =-++-+-+- (3分) 5432[2][2][7][6][6]x x x x x =-+-+- (5分)(2) 多项式432()[4][5][2][7]f x x x x x =-+-+的导数为32()4[1]3[4]2[5][2]f x x x x '=-+- (2分)32[4][4][2][2]x x x =-+-.7.找出对称群3S 的所有子群.解:因为3{(1),(12),(13),(23),(123),(132)}S =,它的子群的阶只可能为:1,2,3,6.所以它的所有子群为:1阶子群1{(1)}H =; (1分) 2阶子群21{(1),(12)}H =,22{(1),(13)}H =,23{(1),(23)}H =; (4分) 3阶子群3{(1),(123),(132)}H =; (5分) 6阶子群3{(1),(12),(13),(23),(123),(132)}S =。

自考数学教育专业近世代数习题指导

自考数学教育专业近世代数习题指导

自考《近世代数》练习1及答案一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分)1、设A 、B 、D 都是非空集合,则B A ⨯到D 的每个映射都叫作二元运算。

( )2、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=⋃x 且( )3、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。

( )4、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。

( )5、如果群G 的子群H 是循环群,那么G 也是循环群。

( )6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ⊆∈∀∈∀-1;,。

( )7、如果环R 的阶2≥,那么R 的单位元01≠。

( )8、若环R 满足左消去律,那么R 必定没有右零因子。

( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。

( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。

( )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。

答案选错或未作选择者,该题无分。

每小题1分,共10分)1、设n A A A ,,,21 和D 都是非空集合,而f 是n A A A ⨯⨯⨯ 21到D 的一个映射,那么( )①集合D A A A n ,,,,21 中两两都不相同;②n A A A ,,,21 的次序不能调换;③n A A A ⨯⨯⨯ 21中不同的元对应的象必不相同;④一个元()n a a a ,,,21 的象可以不唯一。

2、指出下列那些运算是二元运算( )①在整数集Z 上,ab b a b a += ; ②在有理数集Q 上,ab b a = ;③在正实数集+R 上,b a b a ln = ;④在集合{}0≥∈n Z n 上,b a b a -= 。

近世代数期末考试试卷与答案

近世代数期末考试试卷与答案

.....一、单项选择题 (本大题共 5 小题,每题 3 分,共 15 分)在每题列出的四个备选项中只有一个是切合题目要求的,请将其代码填写在题后的括号内。

错选、多项选择或未选均无分。

1、设 G 有 6 个元素的循环群, a 是生成元,则 G 的子集()是子群。

A、aB、 a, eC、 e,a 3D、 e, a, a32、下边的代数系统( G,* )中,()不是群A、G 为整数会合, *为加法B、 G 为偶数会合,*为加法C、G 为有理数会合,*为加法D、G 为有理数会合,*为乘法3、在自然数集 N 上,以下哪一种运算是可联合的?()A、a*b=a-bB、a*b=max{a,b}C、 a*b=a+2b D 、a*b=|a-b|4、设 1 、 2 、3是三个置换,此中1 = (12 )( 23)( 13),2 = (24)( 14),3=(1324),则3 =()A、 2B、12C、 2D、 2 11 25、随意一个拥有 2 个或以上元的半群,它()。

A、不行能是群B、不必定是群C、必定是群D、是互换群二、填空题 (本大题共 10 小题,每空 3 分,共 30 分 )请在每题的空格中填上正确答案。

错填、不填均无分。

1、凯莱定理说:任一个子群都同一个 ----------同构。

2、一个有单位元的无零因子----- 称为整环。

3、已知群G中的元素a的阶等于 50,则a4的阶等于 ------ 。

.....4、a 的阶假如一个有限整数 n,那么 G 与------- 同构。

5、A={1.2.3} B={2.5.6} 那么 A∩B=----- 。

6、若映照既是单射又是满射,则称为-----------------。

7 、叫做域 F 的一个代数元,假如存在 F 的----- a, a1,,an使得n0 。

a0 a1 a n8 、a是代数系统( A,0)的元素,对任何 x A 均成立x a x ,则称 a 为--------- 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近世代数模拟试题
一、单项选择题(每题5分,共25分)
1、在整数加群(Z,+)中,下列那个就是单位元( )。

A 0
B 1
C -1
D 1/n,n就是整数
2、下列说法不正确的就是( )。

A G只包含一个元g,乘法就是gg=g。

G对这个乘法来说作成一个群
B G就是全体整数的集合,G对普通加法来说作成一个群
C G就是全体有理数的集合,G对普通加法来说作成一个群
D G就是全体自然数的集合,G对普通加法来说作成一个群
3、下列叙述正确的就是( )。

A 群G就是指一个集合
B 环R就是指一个集合
C 群G就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆
元存在
D 环R就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆
元存在
4、如果集合M的一个关系就是等价关系,则不一定具备的就是( )。

A 反身性
B 对称性
C 传递性
D 封闭性
S的共轭类( )。

5、下列哪个不就是
3
A (1)
B (123),(132),(23)
C (123),(132)
D (12),(13),(23)
二、计算题(每题10分,共30分)
S的正规化子与中心化子。

1、求S={(12),(13)}在三次对称群
3
2、设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶。

3、设R 就是由一切形如⎪⎪⎭
⎫ ⎝⎛0,0,y x (x,y 就是有理数)方阵作成的环,求出其右零因子。

三、证明题(每小题15分,共45分)
1、设R 就是由一切形如⎪⎪⎭
⎫ ⎝⎛0,0,y x (x,y 就是有理数)方阵作成的环,证明⎪⎪⎭
⎫ ⎝⎛0,00,0就是其零因子。

2、设Z 就是整数集,规定a ·b =a +b -3。

证明:Z 对此代数运算作成一个群,并指出其单位元。

3、证明由整数集Z与普通加法构成的(Z,+)就是无限阶循环群。

近世代数模拟试题答案
一、单项选择题(每题5分,共25分)
1. A
2. D
3. C
4. D
5. B
二、计算题(每题10分,共30分)
1. 解:正规化子N(S)={(1),(23)}。

(6分)
中心化子C(S)={(1)}。

(4分)
2. 解:群G 中的单位元就是1。

(2分)
1的阶就是1,-1的阶就是2,i 与-i 的阶就是4。

(4×2分)
3. 解:设其右零因子为⎪⎪⎭
⎫ ⎝⎛0,0,b a 。

(2分) 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭
⎫ ⎝⎛0,0,xb xa =0。

(3分) 因为x 任意,所以a =b =0。

(3分)
因此右零因子为⎪⎪⎭
⎫ ⎝⎛0,00,0。

(2分)
三、证明题(每小题15分共45分)
1.证明:设其右零因子为⎪⎪⎭
⎫ ⎝⎛0,0,b a 。

(2分)
所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝
⎛0,0,yb xa =0。

(5分) 因为x,y 任意,所以a =b =0。

(8分)
同理设其右零因子为⎪⎪⎭
⎫ ⎝⎛0,0,b a 。

(10分) 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭
⎫ ⎝⎛0,0,yb xa =0。

(12分) 因为x,y 任意,所以a =b =0。

(14分)
因此零因子为⎪⎪⎭
⎫ ⎝⎛0,00,0。

(15分)
2.明:首先该代数运算封闭。

(3分)
其次我们有:(a ·b)·c =(a +b -3)·c =(a +b -3)+c -3=a +((b +c -3)-3)=a ·(b ·c),结合律成立。

(6分) 令e =3,验证a ·e =a +e -3=a,有单位元。

(7分)
对任意元素a,6-a 就是其逆元,因为a ·(6-a)=3。

(8分) 因此,Z 对该运算作成一个群。

显然,单位元就是e =3。

(10分)
3.证明:首先证明(Z,+)就是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0就是运算+的单位元
又由于: ()()0=+-=-+x x x x
所以 ,1x x -=-从而(Z,+)为群。

(2分)
由于+满足交换律,所以(Z,+)就是交换群。

(4分) (Z,+)的单位元为0,
对于1Z ∈,由于 1+(-1)=0,所以111-=-,。

(5分) 于就是对任意Z k ∈,
若0=k ,则:010=;
若0>k ,则k k =+++=1111 。

(8分) 若0<k ,则
()()()k k k k ------===11111
1)1()1()1(---++-+-=个k
))(1(k --= k = 。

(10分)
综上,有k k =1,对任意的Z k ∈、 因而,{}Z k Z k ∈=1,从而(Z,+)就是无限阶循环群。

(15分)。

相关文档
最新文档